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Short Papers

On the Skew-Bounded Minimum-Buffer Cv  given upper-bound on the capacitive load of each buffer and
Routing Tree Problem of the source driver;
Co input capacitance of sink or buffer,
Christoph Albrecht, Andrew B. Kahng, Bao Liu, lon l.&1doiu, and I length of wire segment;
Alexander Z. Zelikovsky Ce capacitance of wire segmenti.e.,c. = Cul.;
T, subtree ofl" rooted atv;
) ) ] ¢(T,) lumped capacitance o, i.e., ¢(T,) = Xcer,cc +
Abstract—Bounding the load capacitance at gate outputs is a standard > o
element in today’s electrical correctness methodologies for high-speed dig- veleavesr,) v .
ital very large scale integration design. Bounds on load caps improve cou-  {(Z») maximum number of bu.ffers ona pgth framto a sinks €
pling-noise immunity, reduce degradation of signal transition edges, and T, (called longest path in the following);

reduce delay uncertainty due to coupling noise (Kahnget al. 1998). For s(T,) minimum number of buffers on a path franto a sinks € T,
clock and test distribution, an additional design requirement is bounding (called shortest path in the following);

the buffer skew i.e., the difference between the maximum and the minimum ST I(T T3 (buff k T ’
number of buffers over all of the source-to-sink paths in the routing tree, (Tv) UT) = s(T) (buffer skew ofZ%).
since buffer skew is one of the main factors affecting delay skew (Tellez
and Sarrafzadeh 1997). In this paper, we consider algorithms for buffering
a given tree with the minimum number of buffers under given load cap and
buffer skew constraints. We show that the greedy algorithm proposed by  For high-speed digital very large scale integration design, bounding

Tellez and Sarrafzadeh is suboptimal for nonzero buffer-skew bounds and the load capacitance at gate outputs is a standard element in today’s
give examples showing that no bottom-up greedy algorithm can achieve

optimality. The main contribution of the paper is an optimal dynamic pro- electr.lcal cqrreanesm(_athodologles. Bounds_ on Ioad_ caps mpr_oye
gramming algorithm for the problem. Experiments on test cases extracted Coupling-noise immunity, reduce degradation of signal transition
from recent industrial designs show that the dynamic programming algo- edges, and reduce delay uncertainty due to coupling noisé [6].
rithm has practical running time and saves up to 37.5% of the buffers in- According to [9], commercial electronic design automation method-
serted by Tellez and Sarrafzadeh’s algorithm. ologies and tools for signal integrity rely heavily on upper-bounding
Index Terms—-Algorithms, buffer insertion, buffer skew, dynamic pro-  the capacitive loads on driver and buffer outputs (to prevent very long
gramming, interconnect design. slew times on signal transitions). Essentially, the load capacitance
bounds serve agroxiesfor bounds on input rise/fall times at buffers

|. INTRODUCTION

NOMENCLATURE and sinkg (Telle_z and _Sarrafzadeh [10] formally proves this equi\_/g—
lence using a simple linear model). We assume that such capacitive
n number of sinks, i.en = |S/; load bounds are inherent to any buffered routing-tree design task. It is
Cw  capacitance of a wire of unit length, which is assumed to hifatural to propose ainimum-buffefformulation, so as to minimize
the same for all wires; changes made to the routing tree in meeting the load bounds.
Cy,  buffer input capacitance, assumed to be the same for allBuffering to control slew times is also critical &arly timing anal-
buffers? ysis With lookup-table-based modeling of gate delays and output tran-

sition times, very long input slews tend to be propagated inaccurately,
resulting in extremely slow transitions. Static timing analyses that are
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From the above context and assumptions, we obtain the followiagproximation algorithms for constructinmbufferedtrees with zero
problem formulation. or bounded-skew can be found, e.g., in [3] and [12]). To guarantee
Bounded Skew Buffering Problem (BSBP) Given a netV, bounded delay skew after buffering, we need to ensure that the
per-uni’[ |ength wire Capacitance’ sink and buffer inpu’[ Capaci_ difference in the number of buffers of the |OngeSt and shortest paths

tances, capacitive load bounds for buffers and for the tree sourcefrom the rootr to the sinks is at most a given buffer skew bouhd

and an upper bound on buffer skew, find a buffering oV that i.e.,
satisfies all bounds while using the minimum number of buffers.
The BSBP was first formulated by Tellez and Sarrafzadeh [10], who §(T)=UT)—s(T) < A. 3)

suggested a greedy algorithm with runtidén + %), wheren is the . o .
number of sinks in the neV andk is the number of inserted buffers. A buffering satisfying both the load constraint (2) and the buffer
In this paper, we make the following contributions. skew constraint (3) will be callefasible In this paper, we consider

« We give examples showing the suboptimality of the Tellez-Sathe problem of findirjg a feasible buffering with minimum number of
rafzadeh algorithm for BSBP with nonzero buffer-skew bound8uffers, formally defined as follows.
and further, prove that no bottom-up greedy algorithm can
achieve optimality (Section IlI). C. BSBP

* We give a nontrivial dynamic programming algorithm which - Gjyen: 1) NetV with sourcer and set of sinks; 2) binary routing
guarantees optimum solutions for BSBR(hin(A + 1)3NB2_) treeT = (r,V, E) for N; 3) sink input capacitances, s € S: 4)
time, wheren, A, and VB are the number of sinks, the givenygfer input capacitancé’,; 5) unit-length wire capacitancg,, ; 6)
skew bound, and an upper-bound on the optimum number gt 4 upper-bound’, ; and 7) buffer-skew bound.

inserted buffers, respectively (Section 1V). Find: BufferingT’ = (r,V, E, B) of T such that
» We present experimental results on test cases extracted from re- T

cent industrial designs, showing that the dynamic programminggg ;((IDJ’)) § il foreveryb € B U {r};
algorithm has practical running time and inserts up to 37.5% =

fewer buffers compared to the algorithm in [10] (Section V). ©) tgr?(;ot;[;“ number of inserted buff| is minimum subject to a)
For every v € V, the branch of v, denotedbr(v), is
I NOTATIONS AND PROBLEM FORMULATION T, U (v, parentv)), (where parertt) = r). If X is a buffering
We start with a few definitions and notations. Lstbe anetcon- ©Of a subtree containing node we denote byX. the buffering X
sisting of asourcer and a set o6inksS. restricted to the branchr(v).

« A routing treefor the netV is a binary treeT” = (r, V, E)rooted 0 €achbufferingt” of a branctor (v), we denote byb(.X), I(.X),
atr such that each sink of is a leaf inT. s(X), andcap(X) the total number of buffers, the number of buffers
« A buffered routing tredor the netV is a treel” = (r,V, E, B) on the _Iongest path, the n_umber of buffe_rs on the shortest pat_h, and
such thatl’ = (r,V, E) is a routing tree fory andB is asetof the residual capac_ltance (i.e., the capacitance o_f the stage driven by
buffers located on the edgdesf T. parentv)), respectively. LefX andY be two bufferings of the same
branchB. We say tha” dominatesX if nb(Y) < nb(X),I(Y) <
1(X),s(Y) > s(X),andcap(Y’) < cap(X). Note that a bufferingd
rooted at and has no internal buffers. A buffered routing tre€ £ can be replaced by a buffering that dominates it in any context
T = (r,V,E,B) has|B| + 1 stages including source stage (i.e., in any buffering of the_ entire routing t_ree)_wnhout increasing the
driven by the source. number of buffers or creating load/skew violations.

For anyb € B U {r}, thesubtree driven by, D,, also referred
to as thestageof b [10], is the maximal subtree & which is

A. Load Constraints I1l. WHY GREEDY DOESNOT WORK

As noted in [10], bounded slew rate can be ensured byThe BSBP has been previously studied by Tellez and Sarrafzadeh
upper-bounding the lumped capacitive load of each buffer aptd]. In [10], a greedy algorithm is first presented for minimum
of the source driver. Thiumped capacitive loadf b € B U {r} is buffering without buffer-skew constraints, and then the algorithm

given by is modified to handle such constraints. Below, we describe the two
algorithms for the case of binary trees; the description in [10] is given
c(Dy) = Z ce + Z Co. (1) for arbitrary trees.
c€Dy vEleaves(Dy) When there are no constraints on buffer skew, the algorithm in [10]
) starts with an empty buffering’ = ), and then performs the following
Thus, to ensure bounded slew rate we require that two steps for each node in bottom-up order.
¢(Dy) < Cu, for everyb € BU {r}. @ 1) packNode(u): While cap(X.) + cap(Xw) > Cu (wherew

andw are the two children of;), add a buffer at the topmost
position of the child branch with the largest residual capacitance
(the greedy choice).

2) packEdge€w): While cap(X.) > Cts, add a buffer on the edge
Tellez and Sarrafzadeh [10] also note that the buffer skew is a  (u, parenfu)), at the highest possible position still meeting the

significant factor affecting delay skew. Other sources of delay skew, load cap bound’y .

such as propagation delays, have been well studied (heuristics andith buffer skew constraintpackEdgeemains the same, while the

— ) ) ) ) modified packNode-B%u ) consists of the following four steps.
In this paper, we restrict ourselves to binary routing trees Every routing tree T i
can be made binary by duplicating nodes and inserting zero-length edges. 1) Balancel’, as follows. If{(X.) < (X, ), then swap andw.
“\We assume that buffers have a single input and a single output, and thus, are  If 1(Xv) —s(Xw) > A, theninsert(X,) — s(X.) — A buffers
inserted only on the edges &t at the topmost position @fr (w). Exit if cap(X.) < Cu.

B. Buffer-Skew Constraints
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leaves. This leads to buffering one of the branchesdniéth at least
(3/2)272 buffers.

Claim 2: To guarantee optimality, every bottom-up buffering algo-
rithm may need to compute branch bufferings with a longest path equal
tol,l+1,...,1+ A —1, respectively, whergis the minimum longest

X path.

Claim 2 follows from the example in Fig. 3, in which there are-

A “u" leaves, each with input capacitancg = Cy — 2¢, and one

additional “” leaf, with input capacitance, = 0. We further assume

thatCy = 0 and that the capacitance of every wire segment in the figure
(@ (b) is equal tae. Then bufferings shown in Fig. 3 have residual capacitance

Fig. 1. Counterexample for the greedy BSBP algorithm in [10]. (a) Define§dUa! t00. €. ..., (n = 1)z, and a longest path length equaliton —

(b) Defined. 1,...,1, respectively. None of these solutions can be dropped from
consideration by an optimum algorithm since each ofsthdifferent
tradeoffs between the longest path length and residual capacitance may

2) PerformpackNodg«) excluding the child branches with max-be needed upstream.
imum longest path, i.e., f{X.,) < I(X,), then add a buffer at  |Indeed, letB;. be thekth buffering (counting from the top) in Fig. 3.
the topmost position ifr (w). Exitif cap(X.) < Cu. By, has residual capacitance equalfo— 1)c and the length of the
3) Insert buffers at the topmost position of all child branches witlbngest path equal te— &+ 1. Suppose the upstream topology consists
shortest path equal f¢u) — A (in order to maintain buffer skew of an edge with total capacitangeC; — =), connecting: to the source
at mostA when we insert buffers on the longest paths in the ne¥t and an edge with total capacitanceonnecting tos a sinkb with
step). Exitifcap(X.) < Cu. input capacitance, = 0. If By is used to buffer the subtree rooted
4) PerformpackNode(u) considering only child branches with at a, then a feasible buffering is obtained by inserting- 1 buffers
maximum longest path, i.e., longest path equalio) + A — 1. betweens anda. On the other hand, the following applies.

The modified greedy algorithm finds the optimum solution of any « |f the subtree rooted at is buffered usingB;, i > k, we will

given tree when the skew boumx is zero. However, contrary to the need one additional buffer in order to compensate for the larger
claim made in [10], the modified greedy algorithm may give subop-  residual capacitance df;.

timal solutions forA > 1. There are several reasons for its subopti- « |fthe subtree rooted atis buffered using3;, i < k, we still need
mality. One reason is that child branches with maximum longest path || ; — 1 buffers betweer anda to satisfy load-cap constraints.

u 1%

are considered for bufferingfter considering the other branches, re- This gives a longest path ¢f —i + 1) + (k — 1) > n, and thus,
gardless of their residual capacitance. This may cause the algorithmto % — ; more buffers should be inserted on the edgé)Yin order
return a suboptimal solution, e.g., when the skew bafind so large to satisfy the buffer-skew constraint.

that the buffer-skew constraint never becomes tight (in this case the Wus, B, is the only buffering from the list in Fig. 3 which can be

timum is found by always choosing the branch with the largest reSidl@tended to an optimum buffering under the above upstream topology.
capacitance ipackNodg

Fig. 1 shows a small instance for which the Tellez—Sarrafzadeh al-
gorithm fails to find the optimal buffering. In this instance, we have IV. DYNAMIC PROGRAMMING ALGORITHM

A =1,C, = Cy = 0, and sink input capacitances are given by In thi . . .

; : n this section, we use dynamic programming to solve the bounded
cu = Cpy ande, = ¢, = (3/4)Co. Fig. 1(a) shows the suboptimal skew-buffering problem. The dynamic programming technique has
solution cpmputed t_)y the gr?e.dy algorlthm, while Fig. 1(b) sh_ows O%2en applied in the past to timing-driven buffer insertion (see e.g., [1],
of the optimal solutions. This instance points to a more basic rea d [11]). Its application to BSBP presents nontrivial challenges
for the suboptimality of the modified greedy algorithm: the optimujgﬁl’ and [11)). S app P . . vieng
buffering of a given tree may be suboptimal when restricted to subtre ye to the sp_ecﬁ_lc buffer-sk(_aw constralnt_. In this sectl_on, we first give

. B . R exponential time-dynamic programming, then refine it to achieve
A natural question prompted by the example in Fig. 1 is whether BBIynomiaI time
not there exists a bottom-up algorithm that computfesinumber of ’
solutions for each branch and still guarantees global optimality. Below, . ) ]
we give two series of examples showing that the answer to this questfobnExponential Time-Dynamic Programming
is negative. The basic observation enabling dynamic programming is that it suf-
Claim 1: To guarantee optimality, every bottom-up buffering algofices to considenormalizedbufferings, i.e., bufferings in which no
rithm may need to compute branch bufferings wittm +1,...,m+  puffer can be moved higher (closer to the source) on the tree edge
k buffers, respectively, where is the minimum number of buffers for to which it belongs. LeNB be the number of buffers inserted in the
the branch, and is arbitrarily large. input tree by the algorithm of Tellez and Sarrafzadeh [10] with the
Claim 1 follows from the example in Fig. 2, in which = 1 and skew-bound set to zero. ClearlyB is an upper-bound on the number
C. = Cp» = 0. Each pair of sibling leaves contains @"leaf and a of buffers in any optimal buffering with buffer skex > 0. Thus,
“v”leaf, with ¢, = Cvy andC, /(2972 41) < ¢» < Cir /2972, where  we can always guarantee an optimum buffering if we choose the best
d is the depth off,. among the normalized bufferings with upXd3 buffers. The exponen-
The minimum number of buffers for each of the two branches int@al time-dynamic programming algorithm, referred to as DP1, com-
a is 2972, since buffers are only required by the™leaves. If we putes for each brandhr (), in bottom-up order, the sef(«) of all
start with a minimum number of buffers for both branches imtwve normalized bufferings with up t&B buffers.
will have to insert a buffer right below on one of them in order to  For a sink v, £(u) consists of the normalized buffering
meet the load constraints. This, in turn, triggers the insertion of a ves§ b»(v) = (u,parenfu)) with minimum feasible number of
large number of buffers upstream due to the skew constraint. The typHfers %, plus all bufferings obtained fron¥ by adding just below
timum overall solution is to insert buffers right abc¥& 2 of the “v”  parentu) between 1 an®B — k buffers, respectively. For a node
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Fig. 2. Proof of Claim 1.

v

| P B. Polynomial Time-Dynamic Programming

In this section, we describe a polynomial time refinement of DP1,
referred to as DP2. In contrast to DP1, DP2 (see Fig. 4) does not add
to £(u) bufferings ofbr(u) with more than one buffer right below

U U parentu). More precisely, for each branéh(«), DP2 adds toZ(u)
only nonredundanbufferings, where a buffering” of br(u) is said
y to be redundantif there exists a normalized bufferin§ such that
cap(X) < cap(Y), nb(X) = nb(Y) — k, I(X) = I(Y) — k and
s(X) = s(Y) — k, wherek > 1.

For a sinkw, L£(u) consists of all nonredundant bufferings of

br(u) = (u,parentu)). There are at most two such nonredundant
bufferings: the bufferingZ of (u,parentx)) with a minimum
feasible number of buffers, and, éhp(Z) > C,, the bufferingZ’
obtained fromZ by adding one buffer just below parén}. Note
that the bufferingZ’ is redundant whemap(Z) < (5, since then
cap(Z) < cap(Z') = Cyp,nb(Z) = nb(Z") — 1,1(Z) = 1(Z") — 1,

T—T—q y ands(Z) = s(Z') — 1.

[OR

For a nodex with childrenv andw, let X andY” be bufferings in
L(v), respectivelyL(w). Since redundant bufferings are not explicitly
kept as in DP1, DP2 may insert extra buffers at the top of either)
or br(w) when combiningX andY . Just as DP1, DP2 drops the pair
(X, Y) from consideration whenap(X ) 4+ cap(Y) > Cy or when
Fig. 3. Proof of Claim 2. combining the pairX, Y) with the minimum feasible buffering of the

edge(u, parentu)) results in more thaly B buffers. If the skew bound

for X U'Y is violated, instead of dropping the paiX (Y"), DP2 fixes
u with childrenv andw, each buffering ofZ() is the union of a e skew by inserting enough buffers at the top of the branch with the
buffering X € L(v), a bufferingY” € L(w), and a buffering of the fewest buffers on the shortest path. For example, Wh&n — s(1) >
edge (u, parenfu)). Each pair of bufferingsX, Y) is combined A [see Fig. 5(a)], DP2 inserfé.X) — s(Y') — A buffers at the top of
with the buffering of (u,parent(u)) with a minimum feasible .. ,)[see Fig. 5(b)]. Furthermore, DP2 generates more bufferings by
number of buffers:, as well as all bufferings having between 1 anghserting extra buffers at the top of the branch with fewest buffers on
NB—k—nb(X)—nb(Y) extra buffers inserted just belgwrent(u).  the shortest path while neither the interiidlX ), 1(X )] nor the interval

u

A pair of bufferings (', Y') is dropped from consideration if [s(Y),1(Y)] is fully inside the othef. For example, for a pairX, Y)
a) cap(X) + cap(Y) > Cv (load cap violation); as in Fig. 5(b), extra buffers are inserted one by one at the tbp( ef)
b) nb(X) 4+ nb(Y) + & > NB (too many buffers); or until either the shortest or longest pathsterv) andbr(w) become

c) max{l(X)—s(Y),I(Y)—s(X)} > A (skew bound violation). equal [see Fig. 5(c)]. Each of these pairs of augmented bufferings of
It is easy to prove by induction that(u) contains all normalized br(v)andbr(w)is completed to (at most) two nonredundant bufferings
bufferings of br(u) with up to NB buffers. Thus, by returning a of br(u) by inserting on the edge, parent«)), the minimum feasible
buffering with a minimum number of buffers frofy(r), DP1 guaran- number of buffers, and (possibly) one extra buffer just below parent
tees optimality. The main drawback of DP1 is that, in the worst case

% . N .
the size ofZ(u)’s, and hence, the runtime, grows exponentially. The bufferings created in this way may be useful since they have smaller

skew thanX U Y". On the other hand, the bufferings obtained by continuing to
insert buffers after one of the intervdlg X' ), I(X')] and[s(Y"), I(Y")] encloses

5An upper-bound on the size @f(w) is SNE k" = O(kNP), wherek de-  the other are dominated by bufferings with these buffers inserted at the top of
notes the number of edgestn(u). (u, parentu)).
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Input: Net N with source r and set of sinks S, binary routing tree T = (r,V,E) for N, input capacitances cs, s € S, buffer input capacitance Cp,

unit-length wire capacitance Cy, load upper-bound Cy, buffer-skew bound A, and upper bound NB on the number of buffers in afi optimal solution
Output: Minimum size feasible buffering of T

1. Foreachu eV, L(u) + 0
2. For each sink s € S do
Add to L(s) the buffering Z of (s, parent(s)) with minimum feasible number of buffers
If cap(Z) > Cp, add to L(s) the buffering Z with one more buffer added just below parent(u)
3. For each non-sink node « with children v and w, in bottom-up order (postorder), do
(a) Foreach X € L(v) and Y € L(w) s.t. cap(X)+cap(Y) < Cy do
Ifi(X) > [(Y) then
t = max{0,/(X) —s(Y) — A}
Repeat forever
Let W be the buffering of br(u) obtained from X UY by
(*) adding ¢ buffers at the top of br(w), and
(**) buffering the edge (u, parent(u)) with minimum feasible number of buffers
If nb(W) < NB then add W to L(s)
If cap(W) > Cp, and nb(W) + 1 < NB then add to L(s) the buffering W with one more buffer added at the top of br(u)
If nb(W) > NB or one of the intervals [s(X),/(X)] and [s(Y) +¢,I(Y) +1] is inside the other, then exit the repeat loop
Elset =t+1
If I(X) < I(Y), repeat above code in which X and br(v) reverse roles with Y and br(w)
(b) Remove from £(u) all dominated bufferings
(c) For each buffering W € L(u) remove from L(u) all bufferings Z' with nb(Z') = nb(W) +k, I(Z') = I(W) +k, and s(Z') = s(W) + k, where
k>2
4. Return the buffering X € £(r) with minimum nb(X)

Fig. 4. DP2 algorithm for BSBP.

parent(u) ) parent(u)

parent(u)

@) (b) (©

Fig. 5. (a) Pair &, Y) of bufferings for which the skew is greater than i.e.,/(X) — s(Y") > A.(b) The skew is fixed by adding= I(X) — s(Y) — A
buffers at the top obr(w), after this additiorl(X ) — s(Y") = A. (c) More useful skews are generated by adding buffers at the o of). We stop when either
shortest or longest paths &n(v) andbr(w) become equal (with the former case represented here).

Finally, DP2 refines the sef(«) by removing all of the dominated holds for the two childrem andw of «. Let X andY” be the restrictions
[Step 3(b)] and redundant bufferings [Step 3(c)]. of Z to br(v) andbr(w). By induction, there exisk’ € £(v), Y’ €
Correctness of DP2 follows from the following. L(w), andi, j > 0, such thatX andY" are dominated byx” and

lTheorem 1: For each bufferingZ of br(u), therelex_ists buffering y- \yith ; (respectively,) buffers added at the top of the respective
Z' € L(u) andk > 0 such thatZ is dominated byZ’ with % buffers

branches. Additionally, we can assume thand; are the minimum
added at the top. .
) . . . .. numbers of redundant buffers with the above property.
Proof: The proof is by induction on the depth of The claim is , i ; N
triviallv true whenu is a sink. i.e.. a leaf of . Assume that the lemma Let Z' be the buffering obr(u) obtained fromZ by replacingX
vially rue whenu 1S a sink, 1.€., -Assd andY by X’ (respectivelyY”) with i (respectively,) buffers added
"This refinement is required since dominated or redundant solutions may®ethe top o (v) [respectivelypr(w)]. Clearly, Z" dominatesZ. To
added toZ () by combining different pairsX, V). complete the proof, we need to show ti#atis added by DP2 td (u).
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parent(u) ) parent(u)
r', T~ N
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Fig. 6. (a) Redundant buffers on the top of both branéinés) andbr(w). (b) Buffering with redundant buffers moved up to the topofu ).
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Fig. 8.
from br(w) to the top ofbr(u).

It is easy to see that this is true wheér= j = 0. If both7 andj are

(a) Pair of bufferings for whick(X’) > s(Y”) + j, butl(X’) < I(Y”) + j. (b) Buffering obtained after excessive redundant buffers are moved up

If s(X') < s(Y') + j, thenZ’' can be replaced by the buffering

positive, then we can replagg with the buffering obtained by deleting Z” obtained by removing = min{j, s(Y') + j — s(X")} redundant

min{z, j } redundant buffers from the top of each of the branéhés)
andbr(w), and insertingnin{¢, j } redundant buffer at the top &f ()

buffers from the top obr(w), which dominates. Indeednb(Z") =
nb(Z) -k, 1(Z") < 1(Z), andcap(Z") = cap(Z) (because the re-

(see Fig. 6). Without loss of generality, in the following, we assume thatoved buffers are redundant). FinallyZ") = s(Z), sinces(X') <

i = 0andj > 0.

s(Y') + j (see Fig. 7). Ift = j, thenZ" is added by DP2 td(u)
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TABLE |
NUMBER OF BUFFERS (BOLDFACE) AND RUNTIME (IN SECONDS FOR DP2 AND THE GREEDY ALGORITHM IN [10] FOR
TREESCONSTRUCTEDUSING GREEDY-DME WITH LINEAR DELAY

Testcase Cy A=0 A=1 A=2 A=3 A=4 Lower
Parameters (fF) |[Greedy DP2 |Greedy DP2 Gain |Greedy DP2  Gain |Greedy DP2  Gain | Greedy DP2  Gain | Bound
) 34 34| 31 26 161%| 21 25 74%| 21 25 714%| 27 25 74%| 25
#Sinks=330 5001 901 0.02| 000 003 001 0.05 0.00 0.07 0.00 0:09 0.00
Witz 000 0 1 17 14 T76% ] 15 12 200%| 16 12 250%| 16 12 250%| 12
mm 0.01 0.01| 000 0.03 0.01 0.06 0.00 0.07 0.00 0.09 0.01

5 8 7T 6 143% T 5 286% T 5 28.6% T 5 28.6% 5

Cp=31.50F 20000 601 001| 0.00 0.03 0.01 0.05 0.00 0.07 0.00 0.09 0.00
. 55 a3 250% T3 00% 33 00% 33 00% 3
Min/Max/Ze(fF) | 4000 | 400 001| 000 0.03 0.01 0.05 0.01 0.07 0.00 0.08 0.00
7 2 T 1 00% T 1 00% T 1 00% T 1 00% T

2.04127.753017 180001 600 001| 0.00 0.03 001 0.04 0.01 0.07 0.00 0.09 0.00
— 101 101] 91 8 44%| 9 8 78%| 8 8L 90%| 88 8 80%| 81
#Sinks=830 5000 002 003| 001 0.04 001 0.08 0.01 0.10 001 0.11 0.01
a6 46| 45 41 89% | 45 W 156%| 43 38 116%| 4 38 95%| 38

WL=170mm 11000 01 002 001 0.04 0.01 0.06 0.01 0.08 001 0.10 0.01
B B’ 2 23 20 BO%| 24 19 208%| 23 19 174%| 23 19 174%| 19
Cp=37.50(F 200011 901 002| 001 005 0.01 0.07 0.01 0.10 001 0.12 0.00
. 11 9 00% 99 00% 10 9 100%| 10 9 100% 9
Min/Max/Ze(fF) | 4000 1 401 002 001 0.04 001 0.07 0.01 0.09 0.01 0.10 0.01
55 5 4 200% a4 00% a4 00% a4 00% 3

425/4.25/3528 1800011 05 002| 0.02 005 001 0.06 001 0.09 001 0.11 0.01
. 105 105] 90 84 67%| 8 19 92%] 8 719 92%| 8 78 82%| 78
#Sinks=1900 50001 003 0.08| 003 014 003 0.22 0.03 0.30 0.03 0.37 0.02
WLeT6mm o0 53 53| 46 a2 87% | 43 40 0% 43 39 93%| 4 39 1A% 9
= 002 005| 002 0.12 003 021 0.03 029 002 035 0.02

B 6 26| 23 20 B30% | 22 19 B36% | 21 19 95%| 21 19 95%| 19
Cp=37.50(F 200011 903 005| 003 0.13 0.03 0.20 0.03 027 0.03 033 0.02
. W 14 12 10 167% | 11 9 182%| 11 9 B82%| 11 9 182% 9
Min/Max/Ze,(fF) | 4000 | 403 006| 003 0.13 0.04 020 0.03 027 0.03 031 0.02
6 6 a4 00% a4 00% a4 00% a4 00% i

7.91/7.97/15494 180001 63 006| 0.04 0.12 0.03 020 0.03 025 0.04 032 0.03
—— 133 133 121 105 132%| 115 102 113%| 116 100 138%| 116 9 14.7%| 99
#Sinks=2400 5001 004 0.10] 003 0.18 0.03 029 0.04 039 0.03 0.49 0.03
W97 - © G 34 30 TA%| 52 48 7% | 52 47 96% | 52 47 96%| 47
003 007| 003 016 0.04 027 0.04 037 0.04 045 0.02

B 20297 26 24 7% | 26 23 115%| 25 23 80%| 25 23 80%| 23
Cp=37.501F 200011 503 0.08| 0.03 0.16 0.04 025 0.04 035 0.03 0.44 0.02
. 16 161 15 12 200% | 15 10 3B3%| 14 10 B6%| 14 10 2B6%| 10
Min/Max/Ze(fF) | 4000 | 403 007 0.04 0.16 0.04 025 0.04 0.33 0.04 042 0.03
9 9 8 5 375% T 5 28.6% T 5 28.6% T 5 28.6% 5

797719719423 180001 604 08| 0.05 0.17 0.04 025 0.05 034 0.04 0.41 0.03
—— 266 266] 238 211 113%| 220 204 109% | 226 198 124%| 227 19 13.7%| 19
#5inks=2600 5000 004 0.14| 004 036 0.04 0.66 0.04 0.93 003 1.12 0.02
wictsomm  Noogll 135 15| 17 104 TLi%| 109 %9 93%| 106 9% 75%| 106 98 75%| 7
003 0.12| 004 032 0.04 055 0.04 0.79 0.04 098 0.03

B G G 55 50 91%| 52 49 58%| 52 48 7% | 52 48 T7%| 48
Cy=37.501F 20001 604 0.12| 0.04 031 0.05 055 0.04 078 0.04 097 0.02
. M 3| 30 26 B33% | 29 23 W07% | 28 2 24% | 28 22 204%| 22
Min/Max/Ze(F) 14000 || 04 012| 004 032 0.05 055 0.04 078 0.05 097 0.03
5151 15 12 200%| 13 11 134%| 13 11 34%| 13 11 54%| 11

2.96/63.57/45077 18000 || 04 012| 0.05 031 005 0.52 005 0.73 0.05 0.90 0.04
—— 389 489 441 399 95%| 424 375 11.6% | 426 369 134%| 423 366 135%| 366
#8inks=12000 | 500\ 18 042| 0.19 075 020 120 019 1.62 0.19 1.95 0.13
wicisomm  [togl 227 227T[ 208 185 IL1%| 202 173 W@4%| 202 171 153%| 200 170 150% 170
= 019 034] 021 069 021 1.12 021 152 021 1.6 0.15

B 114 114|100 89 11.0% | 98 87 1i2%| 98 86 122%| 97 8 124%| 8
Cp=37.50(F 20001l 419 036| 022 070 024 111 022 146 023 180 0.16
. 53 5| 48 45 62%| 49 44 102%| 4 44 102%| 49 44 102%| &
Min/Max/Ze(fF) | 4000 | 451 035| 022 067 025 1.02 024 137 026 1.70 0.18
38 28| 25 21 160% | 25 20 200% | 24 19 208%| 24 19 208% | 19

4.55/4.55/54837 18000 || 7 036| 025 0.68 026 1.06 026 141 025 1.72 0.20

when combiningY’ with Y’ and the proof is complete. Otherwise, weSimilarly, if 7(X") < I(Y') + j, thenZ’ can be replaced by the
may assume that the updated numpef redundant buffers satisfies buffering Z”, obtained by moving: = min{j,1(Y") + j — 1(X")}
redundant buffers from the top &f (w) to the top ofbr (). Z" domi-
$(X") > s(Y') 4. (4) natesZ becauseb(Z") = nb(Z),(Z") = 1(Z),cap(Z") = C, <
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cap(Z), ands(Z") = s(Z) by (4) (see Fig. 8). Again, it = j, then TABLE I
Z" is added by DP2 ta(x) when combiningX’ with Y’, and the MIN/MAX SPICE NSERTION DELAY AND SKEW (IN PICOSECOND$

. . FOR GREEDY-DME (LINEAR DELAY) UNBUFFERED TREES AND
proof is complete. Otherwise, we may assume that THEIR OPTIMUM BUFFERINGSWITH A € {0, 1,2, 3}

(X)) > 1Y)+ (5) #Sinks Cy(fF) [Delay [A=0 A=1 A=2 A=3 Unbuffered

Max [ 390 442 490 490 1943

We now show that inequalities (4) and (5) imply ti#tis generated 330 500 Min| 277 290 274 274 1590
by Step 3(a) of DP2 when combinin§’ € L(v) withY’ € L(w). Skew | 113 152 216 216 353
First, note thaj > ¢ = max{0,{(X) — s(Y) — A} sinceZ' is Max | 483 494 644 644 1943
feasible and, thug(X') — s(Y"') — j < A. Finally, Step 3&() of DP2 330 1000 | Min| 336 273 316 316 1590
inserts;j buffers at the top ofr(w), since, by (4) and (5), the intervals Skew | 147 220 327 327 353

[s(X"),(X")] and[s(Y") + 7,1(Y") + j] are not strictly containing

Max | 758 754 847 873 6706

one another. . 830 500 | Min| 648 599 589 575 4153

Finally, the theorem follows from the fact that only dominated or Skew | 110 154 258 298 2553
redundant bufferings are deleted in Steps 3(b) and (c) of DP2. Indeed, if Max | 773 841 911 989 5706
Z' is deleted, then there exists a bufferiig e £(«) andk > 2, such .
thatnb(Z') = nb(W)+k,1(Z') = I(W)+k,ands(Z') = s(W)+ k. 830 1000 | Min 618 598 601 589 4153
Sincenb(Z') > 2, it follows thatcap(Z') > Cy, and thus,Z' is Skew | 154 242 309 400 2553
dominated by with % buffers added at the top 6f(u). [ ]

Lemma 1: For each node of T', the setZ(«) computed by DP2 TABLE Il
contains at mos2(A + 1)NB bufferings. MIN/MAX SPICE NSERTION DELAY AND SKEW (IN PICOSECOND$

Proof: Let us call a triple b, I, s) of integersrepresentedn FOR GREEDY-DME (ELMORE DELAY) UNBUFFERED TREES AND

L(u) if there exists a bufferingd € £(u) such thatb(X) = nb, THEIR OPTIMUM BUFFERINGSWITH A € {0,1,2,3}

I(X) = I, ands(X) = s. Since dominated bufferings are removed
in Step 3(b), any triple of parametensi( [, s) can be represented at

#Sinks Cy(fF) [Delay [A=0 A=1 A=2 A=3 Unbuffered

most once by the bufferings surviving () (by a buffering with the Max | 377 408 433 495 1860
smallest possible residual capacitance). We will show that no more than 330 500 Min [ 308 275 234 228 1848
2(A + 1)NB triples @b, [, s) can be represented. Indeed, consider all Skew [ 69 132 198 266 12
triples @b, 1, s) withl — s = § andnb —1 = m, i.e., triples of the form Max | 422 465 565 583 1860
(nb, nb — m, nb — m — 6). For every fixeds andm, there aret most 330 1000 Min | 307 299 282 226 1848
two values ofnd for which (b, nb — m, nb — m — 6) will survive the Skew | 115 165 282 356 12
deletions in Steps 3(c) of DP2. The lemma follows since all bufferings Max | 785 806 843 919 6627
generated by the algorithm hage< § < A and0 < m < NB. [ ] 830 500 Min | 694 661 657 666 6567
Theorem 2: DP2 returns the optimum buffering in tinde(n (A + Skew 90 145 186 252 59
1)’NB?). Max | 825 884 973 973 6627
Proof: The running time follows by observing that, for each of 830 1000 Min| 657 689 723 723 6567
then — 1 nonsink nodes, DP2 need@% (A +1)*NB?) time to compute Skew | 167 195 249 249 59

the setZ(w). Indeed, the time needed by Step 3(&)igA+1)-|L(v)]-
|£(w)|), wherev andw are the two children of. Lemma 1 implies
that, at the end of Step 3(a), the sizeldf:) is M = 4(A + 1)>NB?.  maximum, and total sink input capacitance for each instance (sink ca-
To complete the proof, we need to show that Steps 3(b) and (c) cangagitances vary between 2.g4" and 63.57f F in these testcases).
implemented inD(M) time. This is done as follows. Reported runtimes are for a SUN Ultra 60 running SunOS 5.7.
1) For each bufferingt, computem (X) = nb(X) — 1(X) and The first observation is that, although slower than the greedy algo-
distribute X's into NB buckets, each containing bufferings withrithm of [10] by a factor of up to 26, DP2 has very practical runtime
the samen; (even for the 12 000-sink testcase, DP2 finishes in less than 2 s). The
2) Distribute all bufferings in each bucket betwean+ 1 sub- results suggest that the worst case bound in Theorem 2 is an overly pes-
buckets, each containing bufferings with the same skeyw Simistic estimation of actual runtime. Indeed, in our experiments, the
{0,1,..., A} average size of (u)’s was always significantly smaller than the bound
3) In one linear traversal, extract from each subbucket two buffegiven in Lemma 1.
ings: a buffering with a minimum number of buffers and, sub- As expected, both algorithms insert the optimum number of buffers
ject to this, a minimum residual capacitance, plus, if it exists,@hen a buffer skew bound of zero is imposed. For nonzero skew
buffering withnb + 1 buffers and a residual capacitance equal tBounds, DP2 inserts almost always strictly fewer buffers compared
C, (all other bufferings are either dominated or redundans. 0 the greedy algorithm of [10], with savings reaching as much as
37.5%. Table | also shows that a significant reduction in the number of
inserted buffers can be achieved with a small increase in buffer skew,
e.g., when going from zero buffer skew to a buffer skew of one. For
Both DP2 and the greedy algorithm of [10] have been implementedmparison, we have also included in the table a lower bound on the
in C. Table | gives the results obtained by running the two algorithrmumber of buffers, which is the minimum number of buffers needed
on six testcases from [2]. In this set of experiments, the initial tree was meet the load-cap constraints while disregarding buffer skew
computed using the Greedy-DME algorithm of [3] with linear delayconstraints. This lower bound was computed using the linear-time
The unit-wire capacitance was,, = 0.177 fF/um and the buffer algorithm given in [2]. In all but one case, the lower bound is matched
input capacitance was, = 37.5 f F. The first column of Table | gives by the optimum buffering withA = 4, and often it is matched with a
the total wirelength of the Greedy-DME tree (WL) and the minimuntuffer skew as small as two.

V. EXPERIMENTAL RESULTS
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The effectiveness of the buffer-skew model was verified by SPICH11] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree net-
simulation based on the 130-nm ITRS Predictive Technology Beta Ver- "S\'Ofkslgogominimsﬁgs'ﬂ&%re delay,” irProc. IEEE Int. Symp. Circuits
_5|0n device model. In thes_e simulations, buffers were formed as pairs ?:[2] A?/;t.'ZeIiko’vgﬁ&/ andl. I. l\/.ﬁndoiu, “Practical approximation algorithms
inverters. Interconnect wire segments were represented bynadel for zero- and bounded-skew treeSJAM J. Discrete Mathvol. 15, no.
with 0.076€2 unit-wire resistance and equal wire capacitance lumped 1, pp. 97-111, 2002.
at both ends of the segment. Each interconnect was driven by a ramped
input signal with 150-ps slew time under 1.5 V supply voltage. Ta-
bles Il and 11l show the maximum, minimum, and skew of 50% SPICE
insertion delay from the source to each sink for trees constructed using
the Greedy-DME algorithm with linear, respectively, EImore delay. As

expected, the more accurate EImore delay leads to much smaller skewA New Reasoning Scheme for Efficient Redundancy

values. Delay skews after buffering are relatively small, and can be fur- Addition and Removal

ther reduced by optimizations that do not affect the number of buffers,

e.g., fine tuning of load buffers. Furthermore, the results on both types Chih-Wei Jim Chang, Ming-Fu Hsiao, and
of trees exhibit a strong correlation between buffer skew and delay Malgorzata Marek-Sadowska

skew, thus justifying the use of the buffer skew model for early esti-
mation of buffering resources.
Abstract—Redundancy addition and removal is a rewiring technique
which, for a given target wire w;,, finds a redundant alternative wire w,,.
V1. CONCLUSION AND FUTURE RESEARCH The addition of w, makesw; redundant and, hence, removable without
changing the overall circuit functionality. Incremental logic restructuring
In this paper, we have addressed the problem of finding the mimased on this technique has been used in many applications. However,
imum-buffered routing of a given tree under buffer load and skew coff- the earlier methods, the search for valid alternative wires required

- : - jal-and-error redundancy testing of a potentially large set of candidate
straints. We have shown that a greedy algorithm previously propos%,ll?es_ Here, we study the fundamental theory behind this technique and

for this problem in [10] may fail to .find the Optimum Solgtion, andyropose a new reasoning scheme (RAMFIRE), which directly identifies

we have proposed an exact dynamic programming algorithm. Expekernative wires without performing trial-and-error tests. Experimental

imental results on test cases extracted from recent industrial desi'%:ylts show speedup of up to 15 times than that of the best techniques in
|

show that the dynamic programming algorithm has practical runniffef® literature.
time and inserts up to 37.5% fewer buffers compared to the greedyndex Terms—Logic restructuring, logic synthesis, physical synthesis,
algorithm of [10]. timing optimization.
Our future research will address:
1) multiconstraint formulations in which, e.g., input capacitance

and fanout must be upper-bounded simultaneously; N ) )
2) minimum inverter insertion in a given tree subject to sink- Redundancy addition and removal (RAR) is a powerful combina-

|. INTRODUCTION

polarity constraints, in addition to inverter load and skewjonal logic restructuring technique [7]. First, aredundant wire is added

constraints: to the circuit. As a result, some previously irredundant wires become
3) simultaneous tree construction and buffering under givdgdundant and, hence, can be removed without affecting the overall
buffer load and skew constraints. functionality of the circuit. The underlying engine is based on logic

implication. Many applications of this technique have been developed
in the past, including technology-independent literal minimization [2],
[3], [7], [13], field programmable gate array routing [5], and postlayout
[1] C. Alpertand A. Devgan, “Wire segmenting for improved buffer insertiming optimization [9], [11]. The major advantage of the RAR tech-
tion,”in Proc. ACM/IEEE Design Automation Conf997, pp. 588-593. nique is that only wires are reconnected while logic gates are preserved.

2] S:M_A_Ipert, /E' f?. thng,_B. #uu, ||. I l\/ér:jdoulj', Erlld A Z Zﬁ!lkﬁgvsky, This property is especially desirable in the deep-submicron age, when
IEI'Enér_]XJgM Il;t.eé%nfr_oggﬂquu?éf ;ge%anggﬂ(')'&f; njgjs’_ilg?c' timing estimation obtaine_d duri_ng_ logic synthgsis cannot be justified

[3] M. Edahiro, “Delay minimization for zero-skew routing,” ifroc. ~ after placement and routing. Timing can be incrementally corrected
IEEE-ACM Int. Conf. Computer-Aided Desigt993, pp. 563-567. through a sequence of rewiring steps guided by accurate physical in-

[4] P.Fang, J. Tao, J. F. Chen, and C. Hu, “Design in hot-carrier reliabiligormation. Rewiring minimally perturbs layout and helps in achieving
for high performance logic applications,” iroc. IEEE Custom Inte- timing closure
grated Circuits Conf.1998, pp. 525-532. ’

[5] C. Hu, “Hot carrier effects,” inAdvanced MOS Device Physijd$. G.
Einspruch, Ed. New York: Academic, 1989, pp. 119-160.

[6] A.B. Kahng, S. Muddu, E. Sarto, and R. Sharma, “Interconnect tuning Manuscript received March 6, 2002; revised November 1, 2002. This work
strategies for high-performance ICs,"Bnoc. Conf. Design Automation was supported in part by the Semiconductor Research Corporation under Grant
Test Eur, Feb. 1998, pp. 471-478. 98-DJ-619. This paper was recommended by Associate Editor E. Macii.

[7] J. Lillis, C.-K. Cheng, and T.-T. Lin, “Optimal wire sizing and buffer ~C.-W. J. Chang was with the Department of Electrical and Computer Engi-
insertion for low power and a generalized delay modi&FE J. Solid- neering, University of California, Santa Barbara, CA 93106 USA. He is now
State Circuitsvol. 31, pp. 437-447, 1996. with the Department of Electrical Engineering, National Taiwan University,

[8] S.Rzepka, K.Banerjee, and E. Meusel, “Characterization of self-heatifigipei 106, Taiwan, R.O.C. (e-mail: emersons@ms6.hinet.net).
in advanced VLSI interconnect lines based on thermal finite elementM.-F. Hsiao was with the Department of Electrical and Computer En-
simulation,” IEEE Trans. Comp., Packag., Manufact. Technglvél.  gineering, University of California, Santa Barbara, CA 93106 USA. He
21, pp. 406-411, Sept. 1998. is now with Cadence Design Systems, San Jose, CA 95134 USA (e-mail:

[9] L. Scheffer, private communication, Apr. 2000. cwchangl@yahoo.com).

[10] G.E.Tellezand M. Sarrafzadeh, “Minimal buffer insertion in clock trees M. Marek-Sadowska is with the Department of Electrical and Computer En-
with skew and slew rate constraint$EEE Trans. Computer-Aided De- gineering, University of California, Santa Barbara, CA 93106 USA.
sign vol. 16, pp. 333-342, Apr. 1997. Digital Object Identifier 10.1109/TCAD.2003.814239

REFERENCES

0278-0070/03$17.00 © 2003 IEEE



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


