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Minimum Buffered Routing With Bounded
Capacitive Load for Slew Rate and Reliability Control

Charles J. Alpert, Member, IEEE, Andrew B. Kahng, Bao Liu, Ion I. M̆andoiu, and Alexander Z. Zelikovsky

Abstract—In high-speed digital VLSI design, bounding the load
capacitance at gate outputs is a well-known methodology to im-
prove coupling noise immunity, reduce degradation of signal tran-
sition edges, and reduce delay uncertainty due to coupling noise.
Bounding load capacitance also improves reliability with respect
to hot-carrier oxide breakdown and AC self-heating in intercon-
nects, and guarantees bounded input rise/fall times at buffers and
sinks.

This paper introduces a newminimum-buffer routing problem
(MBRP) formulation which requires that the capacitive load of
each buffer, and of the source driver, be upper-bounded by a given
constant. Our contributions are as follows:

• We give linear-time algorithms for optimal buffering of a
given routing tree with a single (inverting or noninverting)
buffer type.

• For simultaneous routing and buffering with a single nonin-
verting buffer type, we prove that no algorithm can guarantee
a factor smaller than 2 unless P= NP and give an algorithm
with approximation factor slightly larger than 2 for typical
buffers. For the case of a single inverting buffer type, we give
an algorithm with approximation factor slightly larger than
4.

• We give local-improvement and clustering based MBRP
heuristics with improved practical performance, and present
a comprehensive experimental study comparing the run-
time/quality tradeoffs of the proposed MBRP heuristics on
test cases extracted from recent industrial designs.

NOMENCLATURE

Capacitance of a wire segment of unit length, assumed
to be the same for all wires.
Input capacitance of the given buffer type.
Input capacitance of sink or buffer.
Input signal polarity of sink or inverting buffer.
Length of wire segment.
Capacitance of wire segment, i.e., .
Subtree of rooted at .
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Lumped capacitance of , i.e.,
.

Given upper-bound on the capacitive load of each
buffer.

I. INTRODUCTION

I N HIGH-SPEED digital VLSI design, bounding the load ca-
pacitance at gate outputs is a well-known part of today’s

electrical correctnessmethodologies. Bounds on load caps im-
prove coupling noise immunity, reduce degradation of signal
transition edges, and reduce delay uncertainty due to coupling
noise [13]. According to [21], commercial EDA methodologies
and tools for signal integrity rely heavily on upper-bounding the
load caps of drivers and buffers to prevent very long slew times
on signal transitions. Such buffer insertions for long or high-
fanout netsare for electrical—not timing optimization—rea-
sons.1 Essentially, load cap bounds serve as proxies for bounds
on input rise/fall times at buffers and sinks. Although slew time
is not completely determined by capacitive loads, Tellez and
Sarrafzadeh [24] show experimentally the strong correlation be-
tween them. Bounded capacitive loads also improve reliability
with respect to hot-carrier oxide breakdown (hot electrons) [10],
[12] and AC self-heating in interconnects [20], and facilitate
technology migration since designs are more balanced.

In this work, we do not address the well-studied problem of
buffer insertion for timing optimization. Instead, we focus on
the very practical and immediate requirement ofelectrical cor-
rectness in large interconnects—a requirement that arisesbefore
timing optimization even starts. The motivating observation is
that any design flow requires early elimination of all electrical
violations (i.e., load cap or slew)—even for noncritical nets—as
a prerequisite to initiating meaningful placement and timing op-
timizations. In other words, until electrical correctness is estab-
lished, timing analyses are meaningless and layout/timing op-
timizations cannot begin. Several reasons for this are as fol-
lows. 1) Gates are well-characterized only for particular cap
load ranges, and applying table lookups plus extrapolations in
the timing tools will result in garbage transition times for loads
outside these ranges. 2) Any inaccurate slew time caused by
a cap load violation will propagate through the timing graph
and cause misleading values downstream. 3) Until all slew time
and cap load violations are fixed, static timing analysis results

1For signal integrity purposes buffer insertion should alsolower boundthe
capacitive load of drivers and buffers, since a driver that is too strong relative
to its load will result in too sharp a transition, creating a stronger aggressor to
neighboring potential victim nets. Our algorithms can be extended to simulta-
neously ensure that the capacitive load of each buffer isat least halfthe given
load upper-bound (see Lemma 3).
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cannot be trusted and the quality of a floorplan or placement
cannot even be evaluated meaningfully.

To make progress with any methodology, it is crucial to have
a fast and resource-efficient method for fixing electrical vio-
lations. Of particular interest are practical methods for other-
wise noncritical nets that have up totens of thousands of sinks
(e.g., scan enable). Again, such nets are not timing-critical, but
timing and layout optimizations require their efficient buffering
for electrical correctness. We observe the following.

• Even if buffers have been inserted by synthesis to honor
cap load bounds, the synthesis tool’s buffer insertion is
layout-oblivious. These buffers must be ripped out and
recalculated from the placement, analogous to how syn-
thesized clock and scan structures are treated in modern
flows.

• In buffering for electrical correctness, it suffices to use
a single buffer and/or inverter type with reasonable drive
strength. One buffer type has been shown to be sufficient
to yield good results in timing optimization [4]. (Opti-
mization of buffer drive strengths can also be performed
during later power/timing optimization phases.)

• Since one just wants to quickly fix violations without
using too many resources, minimizing the total wire and
buffer area is a suitable objective. A simplified objective
is to minimize the number of inserted buffers, which
also minimizes the number of placement perturbations
required to accommodate the buffers.

These observations motivate the problem addressed in this
paper, informally formulated as follows:

Minimum-Buffered Routing Problem (MBRP):Given a net
, sink input capacitances, and an (inverting) buffer type, find

a minimum-cost (polarity obeying) buffered routing tree for
such that the capacitive load of each buffer and of the source is
at most a given upper bound.

A. Previous Work

The vast amount of research on buffer insertion can be
roughly divided into three categories.

Fanout Optimization During Logic Synthesis:Works in this
category (see, e.g., [6], [8], [17], [23]) seek buffered routing
topologiesand focus on timing optimization. Since placement
information is not available at the logic synthesis stage, the
delay models used in these works consist mainly of gate delay
and statistically inferred interconnect delay. In contrast, our
work is targeted to the early postplacement phases of the design
cycle.

Timing-Driven Buffer Insertion During Routing:Works in
this category concentrate on bufferingtiming-critical nets, e.g.,
maximizing the required arrival time (RAT) at the source, often
with no bounds on the number of buffers, power consumption,
or area. The seminal work of Van Ginneken [25] proposed a dy-
namic programming approach to finding the optimum buffering
of an already routed net, using identical buffers and at most
one buffer per wire. Lilliset al. [15], [16] extended the dy-
namic programming approach by incorporating slew effects into
the delay model and performing simultaneous buffer insertion
and wire sizing; they also considered formulations that seek to
minimize area or power consumption subject to meeting given

timing constraints. More recently, Alpert and Devgan [1] gave
extensions to multiple buffers per wire, and Alpert, Devgan and
Quay [2] extended the approach to simultaneous noise and delay
optimization. Okamoto and Cong [18] considered simultaneous
routing and buffer insertion, showing that significant delay re-
ductions can be achieved over previous approaches which in-
sert buffers into an already routed net. These techniques are ap-
propriate for buffered routing of (relatively small) timing-crit-
ical nets, but not for upper-bounding slew rates innoncritical
nets: (1) quadratic or worse runtimes reduce their applicability
to large (tens of thousands of sinks) instances; (2) timing-driven
objectives such as max RAT at the source, and reliance on un-
available or meaningless timing analyzes and constraints, lead
to wasted resources (too many buffers inserted); and (3) mini-
mizing area or power subject to RAT constraints as in [15], [16]
cannot guarantee that slew constraints will be met.

Clock-Tree Buffering:Work on buffered clock trees has fo-
cused on delay [22] and skew minimization [9], [19]. Tellez and
Sarrafzadeh [24] considered minimal buffer insertion inrouted
clock trees with skew and slew constraints. They argued that
slew upper-bounds can be met by upper-bounding the lumped
capacitive loads of the buffers, and gave a linear time algo-
rithm for buffering a routed clock tree with a single noninverting
buffer type under these constraints. We differ from [24] in sev-
eral respects. 1) We seek simultaneous routing and buffering,
while [24] considers only the problem of buffering an already
routed clock tree. 2) Besides noninverting buffering, we also
consider buffering with a single inverting buffer type, which re-
quires handling additional sink polarity constraints (the number
of inverting buffers on each source-to-sink path must be consis-
tent with the given polarity of the sink). 3) Clock trees in [24]
require bounded buffer skew—this constraint is not necessary
in our application.

B. Our Contributions

Our contributions are as follows.

• We give linear-time algorithms for optimal buffering of a
given routing tree with a single (inverting or noninverting)
buffer type.2

• For simultaneous routing and buffering with a single
noninverting buffer type, we prove that no algorithm can
guarantee a factor smaller than 2 unless PNP and give
an algorithm with approximation factor slightly larger
than 2 for typical buffers. For the case of a single inverting
buffer type, we give an algorithm with approximation
factor slightly larger than 4.

• We give local-improvement and clustering based MBRP
heuristics with improved practical performance, and
present a comprehensive experimental study comparing
the runtime/quality tradeoffs of the proposed MBRP
heuristics on test cases extracted from recent industrial
designs.

C. Organization of the Paper

We formally define MBRP in Section II. Then, in Section III,
we describe two exactlinear-time algorithms for buffering
a given routing tree: a greedy algorithm for buffering with a

2A different algorithm for noninverting buffers was previously given in [24].



ALPERT et al.: MINIMUM BUFFERED ROUTING WITH BOUNDED CAPACITIVE LOAD 243

noninverting buffer type and a dynamic programming algo-
rithm for buffering with an inverting buffer type. In Section IV
we analyze the approximation complexity of MBRP and give
provably-good approximation algorithms for both inverting
and noninverting buffer types. We give local-improvement and
clustering heuristics with improved practical performance in
Section V, and present experimental results comparing the run-
time/quality tradeoffs of the proposed heuristics in Section VI.
We conclude in Section VII with directions for future research.

II. PROBLEM FORMULATION

We start with basic definitions and notations. Letbe anet
consisting of asource and a set ofsinks .

• A routing treefor the net is a tree rooted
at such that each sink of is a leaf in .

• A buffered routing tree for the net is a tree
such that is a routing tree

for and is a set of buffers located on the edges of.3

• For any , thesubtree driven by, also referred
to as thestageof [24], is the maximal subtree of
which is rooted at and has no internal buffers. A buffered
routing tree has stages, including
a source stagedriven by the source.

Load Model: We use thelumped capacitive loadmodel, in
which the load of a buffer is given by

Load Constraints:As noted in [24], bounded slew rate can
be ensured by upper-bounding the lumped capacitive load of
each buffer and of the source driver. Formally, we
require that

for every

Cost Functions:The cost of a buffered routing treeis mea-
sured by the total wire and buffer area. Denoting the area of
each buffer by , the combined costof the buffered routing

can be expressed as follows:

(1)

The wire area of depends on the wirelength in each metal layer
and the number of vias. During early post-placement phases of
the design cycle the wire area still cannot be estimated very
accurately, since layer assignment and via information is not
yet available. Therefore, we assume that each stage requires
the same amount of routing resources and define the simplified
routing cost as the number of stages in the buffered routing,
i.e.,

(2)

Thus, in this paper we adopt the simplified cost measure (2):
Minimum-Buffered Routing Problem (MBRP):Given a

net with source and set of sinks (with prescribed

3We assume that buffers have a single input and a single output and thus are
inserted only on the edges ofT .

polarities), input capacitance for every sink , buffer
input capacitance , unit-length wire capacitance , and
load upper-bound ,4 find a buffered routing tree

for such that

a) for every ;
b) (for inverting buffer type) the parity of the number of

buffers on each path from the source to any positive sink
is the same, and opposite from the parity of the number of
buffers on the paths from the source to any negative sink;

c) is minimum among all buffered routing
trees satisfying conditions a) and b).

III. EXACT ALGORITHMS FORBUFFERINGROUTED NETS

In this section, we present two algorithms for optimally
buffering an already routed net using a single inverting or
noninverting buffer type. The running time of each algorithm
is linear in the number of sinks and the number of inserted
buffers.

A. Single Noninverting Buffer Type

Our algorithm for buffering a given routing tree with a single
noninverting buffer type is a generalization of a greedy algo-
rithm for partitioning node-weighted trees due to Kundu and
Misra [14]. Like in [14], we traverse the tree in bottom-up order,
inserting “fully loaded” buffers, i.e. buffers that drive a subtree
with total capacitance equal to . If no fully loaded buffer can
be inserted then we must have reached a nodewith subtree
capacitance greater than such that the capacitance of each
child branch is strictly less than . In this case we greedily in-
sert the most loaded buffer, i.e., the buffer at the top of the child
branch with highest capacitance.

Before formally describing the algorithm we need to intro-
duce two more definitions. Let be a routing tree.
A vertex of is calledcritical if is a bottom-most point of
such that cannot be driven by a single buffer. Formally,is
critical if and for every child of .
A heaviest child of is one which accumulates more capaci-
tance than any other child of. Formally, is a heaviest child of

if for every other child of .
The algorithm (see Fig. 1) finds critical vertices by a post-

order traversal of the input tree. Then, for every such critical
vertex , the algorithm repeatedly inserts buffers on the edge
connecting to its heaviest child, until is no longer critical. For
simplicity of analysis we give here a recursive implementation
of the algorithm.

Remark: The runtime of the algorithm in Fig. 1 is
(since the tree is traversed once for each inserted buffer). An
optimal time implementation inserts all buffers in
a single bottom-up traversal; see [3] for the full details.

Theorem 1: The algorithm in Fig. 1 finds an optimum
buffering of the input tree with the given noninverting buffer
type.

The proof of the theorem follows from the following two
lemmas, corresponding to the two possible cases in Step 3 of
the algorithm.

4We require thatC > 2C since otherwise buffering is impossible for some
trees.
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Fig. 1. Routed Net Buffering (RNB) algorithm.

Fig. 2. Sincec(T ) = C , the treeT (shaded area) must contain a buffer
b in any optimum bufferingB . (B n fb g) [ fbg is then an optimum
buffering ofT containingb.

Lemma 1: If is a critical vertex of and is a child of
with , then there exists an optimum

buffering of containing a buffer located on the edge
such that (see Fig. 2).

Proof: Let the optimum buffering of consist of the set
of buffers . The subtree of rooted at must contain at
least one buffer from since it has total capacitance equal
to . The lemma follows by observing that
is a feasible buffering of .

Lemma 2: If is a critical vertex of and
for the heaviest child of , then there exists an optimum

buffering of that contains a bufferplaced immediately below
on the edge (see Fig. 3).

Proof: Let the optimum buffering of consist of the set
of buffers . Since is critical, must contain at least one
buffer of . We claim that is an op-
timum buffering of . The claim follows as in Lemma 1 if is
located in . Otherwise, the claim follows by observing that (i)
by optimality, there is no buffer of on the path connecting

to in , and (ii) , since is the
heaviest child of .

Notice that the capacitive load of each buffer inserted in Step
3 when is exactly , i.e., these buffers are
“fully filled.” Although this is not true for the buffers inserted
when , it is easy to see that in this case
inserted buffers have a capacitive load of at least , where

is the degree of . In particular, when the routing tree is
binary, we obtain Lemma 3.

Fig. 3. Whenb is located on a different branch (shaded area) than that of the
heaviest childu, c(T ) + c � c(D ). Hence,(B n fb g)[ fbg is an
optimum buffering ofT containingb.

Lemma 3: If the input to the algorithm in Fig. 1 is a binary
routing tree, then the load of each inserted buffer is at least

.
Lemma 3 will be used in proving the approximation guar-

antee for the algorithms in Section IV. It also gives a way to
satisfy the simultaneous lower- and upper-bound constraints on
buffer loads referred to in Footnote 1, since every routing tree
can be converted to a binary tree by inserting zero-length edges.

B. Single Inverting Buffer Type

Optimal buffering with a single inverting buffer type is more
complex than buffering with a noninverting buffer type. The
greedy approach does not work in this case, and we must use
dynamic programming. In bottom-up order, the algorithm (see
Fig. 4) computes two solutions for each subtree of, one for
positive and one for negative topmost buffer input polarity.
Then, after choosing the best output polarity for the source, it
determines the position of the buffers by a top-down traversal.
The running time of the algorithm is linear assuming that the
degree of the routing tree is bounded; in the rectilinear plane
this assumption holds for all standard routing tree constructions,
including the minimum spanning tree, the minimum-length
Steiner tree, and approximations of the latter one.

For simplicity, we give the algorithm for binary trees, i.e.,
we assume that all vertices other than the source (which is the
root of the tree) and the sinks (which are leaves) have outde-
gree 2. Without loss of generality, we assume that sink input
capacitances are all equal to 0—nonzero sink capacitances can
be compensated by increasing the length of the edges incident
to the sinks. By scaling, we also assume that the unit wirelength
capacitance, , is equal to 1. The algorithm associates with
each leaf of the tree two labels, and , such that
one of them belongs to and the other is 0. The labels

and represent the penalty capacitance incurred in
assuming that the sink has the opposite polarity. Initially, for
each sink ,

if
otherwise

and
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For each tree leaf, define thestemof to be the edge con-
necting to its parent. Also, define afork of to be a set of
four vertices , where and are two leaves,
is the common parent of and , and is the parent of .
The bottom-up phase of the algorithm consists of two main pro-
cedures:Reduce_stemandCollapse_fork. The procedureRe-
duce_stemsimply reduces the length of the stem of a leafuntil
it becomes strictly less than . The procedure also counts the
number of buffers inserted on the stem of, referred to as
and , depending on the polarity of the topmost buffer.

The procedureCollapse_fork replaces a fork
with the single edge , computes the appropriate labels for
, and modifies the number of buffers inserted on the edges

and as needed. The labels ofdepend on the la-
bels of and and the length of the edges and .
To guarantee optimality,Collapse_forkchecks all possibilities
of inserting buffers on the stems and . Among the
feasible bufferings of these two stems it chooses the one with
the least buffers inserted, breaking ties according to the residual
capacitance. Note that after the stems and have
been reduced, the maximum number of buffers that may be in-
serted on each stem is at most 2. Thus, no more than 9 cases
need to be checked inCollapse_fork, depending on whether 0,
1, or 2 buffers are inserted on each stem. In fact, since inserting
2 buffers in each of the two stems is always a dominated solu-
tion, we never need to check more than 8 cases.

Theorem 2: The algorithm in Fig. 4 finds an optimum
buffering of the input tree with the given inverting buffer
type.

IV. A PPROXIMATING MBRP

The approximation factor of an algorithmfor a minimiza-
tion problem is the worst-case performance of. Formally,
the approximation factor of is defined as ,
where the supremum is taken over all instancesof the problem

, is the output value of the algorithm on input , and
is the optimal value for the instance. In this section

we prove that, unless P NP, no algorithm can guarantee a
factor smaller than 2 for MBRP with single (inverting or non-
inverting) buffer type. On the positive side, for any , we
give a factor approximation
algorithm for MBRP with single noninverting buffer type and a
factor approximation algo-
rithm for MBRP with single inverting buffer type.

A. Approximation Complexity of MBRP

Theorem 3: For any , approximating MBRP within a
factor of is NP-hard.

Proof: The proof is by reduction from the rectilinear
Steiner minimum tree (RSMT) problem, which is NP-hard
[11]. An RSMT instance consists of a setof terminals and a
number , and the problem is to decide if terminals incan
be interconnected via a rectilinear Steiner tree of lengthor
less. Let be an arbitrary terminal in and let .
Consider the MBRP instance in which all sinks have input ca-
pacitance 0, ; , and . Then, there exists

Fig. 4. Routed Net Inverting Buffering (RNIB) algorithm.

a rectilinear Steiner tree of length at mostfor the terminals
in if and only if the above MBRP instance has optimum cost
equal to 1, and any -approximation algorithm for MBRP
would find the optimum solution if this is the case.

Remark: Fig. 5 gives an example showing that MBRP is in-
herently more difficult than the RSMT problem since, in gen-
eral, the Steiner points for MBRP do not belong to the Hanan
grid, i.e., to the grid formed by the vertical and horizontal lines
passing through terminals. In this example the input capacitance
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(a)

(b)

Fig. 5. (a) Four terminal net and optimum buffered routing using a non-Hanan
grid edge. (b) Best buffered routing on the Hanan grid for the same net.

Fig. 6. Steiner Tree Buffering (STB) algorithm.

of each sink and of the buffers is 1, the unit wirelength capaci-
tance is 1, and the buffer load upper-bound is eight. Any
routing along the Hanan grid must use at least 3 buffers, while
the optimum buffered routing, which uses a non-Hanan edge,
has only two buffers.

B. Approximating MBRP With Single Noninverting Buffer Type

In this section we show that optimal buffering of an approx-
imate rectilinear Steiner minimum tree over the terminals (see
Fig. 6) comes within a constant factor of the MBRP optimum.
Below, the output of a polynomial-time RSMT algorithm with
approximation factor of will be referred to as an -approxi-
mate Steiner tree.

Theorem 4: The algorithm in Fig. 6 approximates the MBRP
with single noninverting buffer type within a factor of

for every net with total sink capacitance
of at least .5

Proof: Let be the number of stages in an optimum
buffered routed net , and let be the capacitance of

before buffering, i.e.,

5In practice, the total sink capacitance is greater thanC for almost all mul-
tipin nets. Also, the ratioC =C is typically much greater than 2 (recall that
C =C > 2 to guarantee that every tree can be buffered). In our benchmarks
C =C varies between 12 and 200, which corresponds to an approximation
factor between2:1� and2:005� in Theorem 4.

Fig. 7. Steiner Tree Inverting Buffering (STIB) algorithm.

Fig. 8. Cut&Connect algorithm.

In the optimum buffering of , each of the OPT stages has
a capacitance of at most . Since the total capacitance of the
buffered tree is , we get that

, i.e.,

(3)

Let be the capacitance before buffering of the-ap-
proximate Steiner tree constructed by the algorithm in Fig. 6.
Then , where is the total
input capacitance of the sinks. Since we assume that ,
this gives ,
i.e.,

(4)
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(a)

(b)

(c)

Fig. 9. Example execution of the Cut&Connect heuristic, whereC = 14,
C = 0, andC = 1. (a) The original routing tree after applying RNB. (b)
The modified routing tree after cutting the leftmost terminal and “filling” the
first buffer. (c) The optimal buffered routed tree with a single buffer.

Let be the number of stages in the buffering produced by the
algorithm. Since is a binary tree, by Lemma 3 every buffer in-
serted by the algorithm in Fig. 1 has a minimum load of .
Furthermore, the total capacitance of the source stage and of the
stage driven by the last inserted buffer is greater than(oth-
erwise the source can drive alone both stages). Thus,

, i.e.,

(5)

Fig. 10. Clustering algorithm.

Finally, inequalities (3)–(5) give

Since the rectilinear Steiner tree for a given set of terminals
can be approximated in polynomial time to within any desired
accuracy using Arora’s PTAS [5], Theorem 4 gives the fol-
lowing.

Corollary 1: For any , the MBRP with single nonin-
verting buffer type can be approximated within a factor of

in time .

C. Approximating MBRP With Single Inverting Buffer Type

A naive solution to handling sink polarities is to make the
polarity of all sinks the same by inserting one inverter for each
sink of the minority polarity, and then use noninverting buffers
to route the signal from the source. In the worst case this solution
may require as many as inverters, plus the noninverter
buffers needed to drive a Steiner tree spanning all terminals. A
better solution is to construct two separate Steiner trees, one for
the positive sinks and one for the negative sinks, buffer them
optimally with noninverting buffers using the RNB algorithm,
and then insert a single inverter at the top of one of them.

If an inverting buffer occupies less than half the area of a non-
inverting buffer with the same driving strength, an even better
solution is provided by algorithm in Fig. 7. In this algorithm, we
construct a routing tree for all sinks, buffer it with noninverting
buffers, and then make it consistent with sink polarities by re-
placing each noninverting buffer by two inverters.
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Fig. 11. Steiner Tree Inverting Buffering with Swapping (STIB-S) algorithm.

Fig. 12. Steiner Tree Inverting Buffering with Load Filling (STIB-LF) algorithm.

Theorem 5: The algorithm in Fig. 7 approximates the
MBRP with single inverting buffer type within a factor of at
most .

Proof: First we show that is a feasible solution. Indeed,
by construction, each inserted inverter drives sinks or inverters
of the same polarity. Also, the load of each inverter inserted in

is at most , since this load is never larger than the load of
the corresponding stage of .6

The key observation is that the optimum number of in-
verting buffers, , is no less than the optimum number of
noninverting buffers . Let and be the number of
buffers inserted by the algorithms STB and STIB, respectively.
Then, by Theorem 4,

.
Using Arora’s PTAS [5], Theorem 5 gives the following.
Corollary 2: For any , the MBRP with single inverting

buffer type can be approximated within a factor of
in time .

By Theorem 3, no approximation algorithm with a factor
better than 2 exists for MBRP with single inverting buffer type.
Closing the gap between Corollary 2 and this hardness result is
an interesting open problem.

6For simplicity we assume that the buffer input capacitanceC is less than
any sink capacitance. The algorithm in Fig. 7 can be modified such that this
assumption is not necessary.

(a) (b)

Fig. 13. Inverter insertion with the algorithm in Fig. 12. (a) Tree before inverter
insertion. (b) Tree after inserting an inverter driving the “—” sinks.

V. MBRP HEURISTICSWITH IMPROVED PRACTICAL

PERFORMANCE

A. Noninverting Buffer Type

Theorems 3 and 4 imply that the STB algorithm is essentially
the best possible from the point of view of worst case approxi-
mation guarantee. In this section we describe two MBRP heuris-
tics which, by changing the topology of the Steiner tree, improve
upon the STB algorithm on practical instances.

The first heuristic, called Cut&Connect (see Fig. 8), modifies
the Steiner tree constructed by STB in a bottom-up fashion,
starting from the sinks and working toward the root. When
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TABLE I
NUMBER OF BUFFERS, WIRELENGTH (mm), AND RUNTIME (CPU s)FOR THE RNB, CUT & CONNECT, AND CLUSTERING

HEURISTICS FORNONINVERTING BUFFERINSERTION

finding a buffer whose load is smaller than , the heuristic
tries to fill ’s load up to by cutting a subtree from some
other part of the tree and reconnecting it to the closest point
in . If the resulted modified stage of the bufferhas the
capacitive load still no more than , then such reconnect is
accepted, otherwise the reconnect is reversed. If needed, the
position of may be adjusted to ensure that its load remains at
most (see Fig. 9(a) and (b)).

Similar to Cut&Connect, the Clustering heuristic (see
Fig. 10) repeatedly chops off buffer stages from a Steiner tree
over terminals. The Clustering heuristic is essentially a greedy
algorithm which tries the reconnected vertex with the largest
gain. There are two main differences between Clustering and
Cut&Connect. The first difference is in the way buffer loads
are filled: Clustering always adds one sink at a time, while
Cut&Connect adds whole subtrees. For example, Clustering
constructs the tree in Fig. 9(c), while Cut&Connect cannot.
The second difference is in the fact that Clustering recomputes
the Steiner tree after chopping off each buffer stage. Tree
recomputation improves solution quality, but also leads to a
much higher time complexity, of , where
is the time needed to compute a Steiner tree. To achieve a
competitive running time, our implementation of Clustering
uses minimum spanning trees as approximate Steiner trees.

B. Inverting Buffer Type

Both algorithms in this section are improved versions of the
STIB algorithm in Section IV-C. The improvement in the first
algorithm (see Fig. 11) is based on the following observations:
The STIB algorithm replaces each buffer inserted by the STB al-
gorithm by a pair of inverters, but if all sinks driven by a buffer
have the same polarity then a single inverter replacement is suf-
ficient. Furthermore, new saving opportunities can be created
for higher levels byswappingthe two inverters in an inserted
pair such that the most appropriate polarity comes on top.

A significant limitation of the STIB-S algorithm is that it in-
serts inverters only at locations of buffers inserted by the STB
algorithm. In order to avoid leaving too much unused driving
capacity, the STIB-LF algorithm in Fig. 12 computes the place-
ment of inverters in bottom-up order as the highest position
which can still drive all positive (respectively negative) sinks
below, thus in effect “filling” the load of each inverter as close as
possible to the its full capacity. Similar to the STIB and STIB-S
algorithms, whenever an inverter is inserted by the algorithm in
Fig. 12 the driven sinks/buffers are connected to the inverter by
duplicating paths of the routing tree (see Fig. 13).

In the algorithm in Fig. 12, we use some additional nota-
tion. For every node of a tree , let be the tree
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TABLE II
NUMBER OF BUFFERS, WIRELENGTH (mm), AND RUNTIME (CPU s)FOR RNIB, STIB-S, AND STIB-LF HEURISTICS

ON TESTCASESWITH ALL SINKS OF THE SAME POLARITY

rooted at which is the union of all paths from to the pos-
itive (respectively negative) driven sinks/buffers in, and de-
note by the total capacitance of (respec-
tively ), e.g., if is positive sink and
if is a negative sink. Also, let
if and otherwise, and, similarly,

if and
otherwise.

VI. EXPERIMENTAL RESULTS

We have implemented the RNB and RNIB algorithms for op-
timally buffering a given tree with a single noninverting, re-
spectively inverting, buffer type, the Cut&Connect and Clus-
tering heuristics for MBRP with single noninverting buffer type,
as well as the STIB-S and the STIB-LF heuristics for MBRP
with single inverting buffer type. Tables I–III give the results
obtained by these heuristics on eight large nets extracted from
recent industrial designs. For all heuristics, the initial tree is
a minimum spanning tree over the terminals. The runtime is
in CPU seconds on a SUN Ultra 60 and includes the time for

computing the initial minimum spanning tree. For all datasets,
m, , while sink input capaci-

tances are varying between and .

Table I gives the results obtained by the three heuristics
for noninverting buffering. For comparison, Table I includes
a lower bound on the optimum number of buffers, calculated
according to (3) with RSMT length estimated using the
edge-based heuristic of [7]. The lower-bound estimates the
number of buffers by assuming that (a) the tree is shortest
possible, and (b) each buffer is fully loaded. Since the optimum
solution is unlikely to meet these two conditions simultane-
ously, the lower-bound may significantly under-estimate the
optimum number of buffers.

Results in Table I show that, on the average, the Cut&Con-
nect heuristic inserts 5.81% fewer buffers than the RNB algo-
rithm, while increasing the wirelength by 6.52%. The Clustering
heuristic inserts 10.43% fewer buffers than RNB on the average,
with an average wirelength increase of only 2.02%. In fact, Clus-
tering solutions are almost always better than Cut&Connect re-
sultsbothin number of inserted buffers and total wirelength. As
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TABLE III
NUMBER OF BUFFERS,WIRELENGTH (mm), AND RUNTIME (CPU s)FOR RNIB, STIB-S,AND STIB-LF HEURISTICS ONTESTCASESWITH RANDOM SINK

POLARITIES. SPLITMST VARIANTS CORRESPOND TOINDEPENDENTLYBUFFERINGMINIMUM SPANNING TREES FOR THEPOSITIVE AND NEGATIVE SINKS

expected, the Clustering heuristic—which recomputes a min-
imum spanning tree after each buffer insertion—has the slowest
runtime, being as much as 267 times slower than RNB and 24
times slower than Cut&Connect. However, Clustering runtime
remains practical: even for the nets with tens of thousands of
sinks Clustering takes just a little over one second of CPU time
per inserted buffer.

We have compared the inverting buffering heuristics on two
sets of datasets. In one set (Table II) all sinks are assigned the
same polarity, while in the second (Table III) sink polarities are
assigned at random. The results indicate that optimal inverting
buffering of a minimum length spanning or Steiner tree can
be very far from optimal, and that heuristics for simultaneous
tree construction and buffering are particularly important in this
case.

The results for uniform sink polarities given in Table II show
that the STIB-S heuristic inserts on the average 25.74% fewer
buffers compared to the MST buffered optimally using RNIB;
the STIB-S wirelength is larger than the MST wirelength by an
average of 13.38%. With the same or even smaller runtime, the
STIB-LF heuristic reduces the number of buffers by an average
of 57.23% compared to RNIB, with an average wirelength in-
crease of 20.84%.

Table III gives the results obtained by the inverting buffering
heuristics on testcases with random sink polarities. We have

included in comparison two variants of each heuristic: the first
variant buffers (or starts with) an MST spanningall sinks,
while the second variant computes separate MSTs for the sinks
of each polarity and buffers each tree independently. Such a
“split” construction proves to be particularly important for
RNIB buffering, since on the average half of the sinks require
an inverter when RNIB is run on the MST over all sinks.7

The split MST construction also helps the STIB-S heuristic in
most cases, reducing the number of buffers by an average of
8.21% compared to the running STIB-S on the MST over all
sinks. Interestingly, however, the split MST constructionhurts
the STIB-LF heuristic in most cases, increasing the number
of buffers by an average of 13.64% and the wirelength by
6.44%. The STIB-LF heuristic on the MST for all sinks gives
the best results on the average, with 42.31% fewer buffers and
13.90% wirelength increase compared to RNIB over the split
MST, respectively 25.30% fewer buffers and 1.05% wirelength
increase compared to STIB-S over the split MST.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper we have addressed a minimum-buffered routing
problem which asks for bounded input rise/fall time for all

7The number of inverters inserted by RNIB is almost the same for the whole
range of driving strengths since most inverters are inserted to meet polarity, not
load cap, constraints.
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buffers and sinks. We have analyzed the approximation com-
plexity of this problem and given provably-good algorithms
for buffering with a single inverting or noninverting buffer
type. We have also proposed local-improvement and clustering
heuristics with improved practical performance; experiments
conducted on industrial datasets show that our heuristics are
efficient and insert a near-optimum number of buffers.

A natural research direction is to extend the results in this
paper to MBRP with multiple buffer/invertor types. If the buffer
library can be arbitrary the problem becomes considerably
harder than the single buffer type case considered in this
paper. For example, a direct reduction from the subset sum
problem shows that even finding the optimum buffering of a
routed two-pin net is NP-hard. Our ongoing research addresses
the case of libraries with small number of buffer types. We
also investigate multisource formulations, in which the buffer
solution should be legal for multiple rooted orientations of the
tree, and multi-constraint formulations, in which, e.g., input
capacitance and fanout must be upper-bounded simultaneously.
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