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Minimum Buffered Routing With Bounded
Capacitive Load for Slew Rate and Reliability Control

Charles J. AlpertMember, IEEEANndrew B. Kahng, Bao Liu, lon |. Endoiu, and Alexander Z. Zelikovsky

Abstract—in high-speed digital VLSI design, bounding the load  ¢(7,,) Lumped capacitance @, i.e.,c(T,) = >_ oy, ce +
capacitance at gate outputs is a well-known methodology to im- > el 73 Co-
prove coupling noise immunity, reduce degradation of signal tran- Cu Gi\jgriaa?é)ér)-bound on the capacitive load of each

sition edges, and reduce delay uncertainty due to coupling noise.
Bounding load capacitance also improves reliability with respect
to hot-carrier oxide breakdown and AC self-heating in intercon-
nects, and guarantees bounded input rise/fall times at buffers and
sinks.

This paper introduces a newminimum-buffer routing problem
(MBRP) formulation which requires that the capacitive load of
each buffer, and of the source driver, be upper-bounded by a given
constant. Our contributions are as follows:

We give linear-time algorithms for optimal buffering of a
given routing tree with a single (inverting or noninverting)
buffer type.

For simultaneous routing and buffering with a single nonin-
verting buffer type, we prove that no algorithm can guarantee
a factor smaller than 2 unless P= NP and give an algorithm
with approximation factor slightly larger than 2 for typical
buffers. For the case of a single inverting buffer type, we give
an algorithm with approximation factor slightly larger than
4,

We give local-improvement and clustering based MBRP
heuristics with improved practical performance, and present
a comprehensive experimental study comparing the run-
time/quality tradeoffs of the proposed MBRP heuristics on
test cases extracted from recent industrial designs.

NOMENCLATURE

buffer.

|. INTRODUCTION

N HIGH-SPEED digital VLSI design, bounding the load ca-
I pacitance at gate outputs is a well-known part of today’s
electrical correctnesmethodologies. Bounds on load caps im-
prove coupling noise immunity, reduce degradation of signal
transition edges, and reduce delay uncertainty due to coupling
noise [13]. According to [21], commercial EDA methodologies
and tools for signal integrity rely heavily on upper-bounding the
load caps of drivers and buffers to prevent very long slew times
on signal transitions. Such buffer insertions for long or high-
fanout netsare for electrical—not timing optimization—rea-
sonst Essentially, load cap bounds serve as proxies for bounds
on input rise/fall times at buffers and sinks. Although slew time
is not completely determined by capacitive loads, Tellez and
Sarrafzadeh [24] show experimentally the strong correlation be-
tween them. Bounded capacitive loads also improve reliability
with respect to hot-carrier oxide breakdown (hot electrons) [10],
[12] and AC self-heating in interconnects [20], and facilitate
technology migration since designs are more balanced.

In this work, we do not address the well-studied problem of

Cy Capacitance of a wire segment of unit length, assumébdffer insertion for timing optimization. Instead, we focus on
to be the same for all wires. the very practical and immediate requiremenelgfctrical cor-

Cy Input capacitance of the given buffer type. rectness in large interconneetsa requirement that ariseefore

Co Input capacitance of sink or buffer timing optimization even starts. The motivating observation is

oy Input signal polarity of sink or inverting buffer. that any design flow requires early elimination of all electrical

le Length of wire segment. violations (i.e., load cap or slew)even for noncritical nets-as

Ce Capacitance of wire segmenti.e.,c. = Cyl.. a prerequisite to initiating meaningful placement and timing op-

T, Subtree ofl" rooted atw. timizations. In other words, until electrical correctness is estab-
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cannot be trusted and the quality of a floorplan or placemetithing constraints. More recently, Alpert and Devgan [1] gave
cannot even be evaluated meaningfully. extensions to multiple buffers per wire, and Alpert, Devgan and
To make progress with any methodology, it is crucial to hav@uay [2] extended the approach to simultaneous noise and delay
a fast and resource-efficient method for fixing electrical viooptimization. Okamoto and Cong [18] considered simultaneous
lations. Of particular interest are practical methods for otheiouting and buffer insertion, showing that significant delay re-
wise noncritical nets that have uptens of thousands of sinksductions can be achieved over previous approaches which in-
(e.g., scan enable). Again, such nets are not timing-critical, @t buffers into an already routed net. These techniques are ap-
timing and layout optimizations require their efficient bufferingPropriate for buffered routing of (relatively small) timing-crit-

for electrical correctness. We observe the following. ical nets, but not for upper-bounding slew ratesioncritical

« Even if buffers have been inserted by synthesis to honrc])erzlt s: (1) quadr:\ tr']C or Wodrse frupt;(me_s reduce _the" .""F’P"Cgb_"”y

cap load bounds, the synthesis tool's buffer insertion 10 large (tens of thousands of sinks) instances; (2) timing-driven

- ! . 5 jectives such as max RAT at the source, and reliance on un-
layout-oblivious. These buffers must be ripped out a

ailable or meaningless timing analyzes and constraints, lead
reca!culated from the placement, analogous to _hOW SHY wasted resources (too many buffers inserted); and (3) mini-
thesized clock and scan structures are treated in mOd?ﬁ&ing area or power subject to RAT constraints as in [15], [16]
flows. ) ) ) ) cannot guarantee that slew constraints will be met.
* In buffering for electrical correctness, it suffices to use cjgck-Tree Buffering:Work on buffered clock trees has fo-
a single buffer and/or inverter type with reasonable drivg;sed on delay [22] and skew minimization [9], [19]. Tellez and
strength. One buffer type has been shown to be sufficiegirrafzadeh [24] considered minimal buffer insertiomouated
to yield good results in timing optimization [4]. (Opti-clock trees with skew and slew constraints. They argued that
mization of buffer drive strengths can also be performeslew upper-bounds can be met by upper-bounding the lumped
during later power/timing optimization phases.) capacitive loads of the buffers, and gave a linear time algo-
+ Since one just wants to quickly fix violations withoutrithm for buffering a routed clock tree with a single noninverting
using too many resources, minimizing the total wire anouffer type under these constraints. We differ from [24] in sev-
buffer area is a suitable objective. A simplified objectiveral respects. 1) We seek simultaneous routing and buffering,
is to minimize the number of inserted buffers, whiclwhile [24] considers only the problem of buffering an already
also minimizes the number of placement perturbatiomguted clock tree. 2) Besides noninverting buffering, we also
required to accommodate the buffers. consider buffering with a single inverting buffer type, which re-

These observations motivate the problem addressed in mﬁgres h_andling additional sink polarity gonstraints (the numbgr
paper, informally formulated as follows: of inverting buffers on each source-to-sink path must be consis-

Minimum-Buffered Routing Problem (MBRPBiven a net tent with the given polarity of the sink). 3) Clock trees in [24]

N, sink input capacitances, and an (inverting) buffer type, ﬁr{gquire bounded buffer skew—this constraint is not necessary

a minimum-cost (polarity obeying) buffered routing tree 1ér In our application.
such that the capacitive load of each buffer and of the sourceBis

. Our Contributions
at most a given upper bound.

Our contributions are as follows.

A. Previous Work » We give linear-time algorithms for optimal buffering of a
The vast amount of research on buffer insertion can be given routing tree with a single (inverting or noninverting)
buffer type2

roughly divided into three categories.

Fanout Optimization During Logic Synthesi§Vorks in this
category (see, e.g., [6], [8], [17], [23]) seek buffered routing .
topologiesand focus on timing optimization. Since placement ~ duarantee a factor smaller than 2 unless RP and give
information is not available at the logic synthesis stage, the ~&n algorithm with approximation factor slightly larger
delay models used in these works consist mainly of gate delay than 2 for typical buffers. For the case of a single inverting
and statistically inferred interconnect delay. In contrast, our ~ buffer type, we give an algorithm with approximation
work is targeted to the early postplacement phases of the design factor slightly larger than 4.

» For simultaneous routing and buffering with a single
noninverting buffer type, we prove that no algorithm can

cycle. » We give local-improvement and clustering based MBRP
Timing-Driven Buffer Insertion During Routingiorks in heuristics with improved practical performance, and
this category concentrate on bufferitigning-critical nets, e.g., present a comprehensive experimental study comparing

maximizing the required arrival time (RAT) at the source, often  the runtime/quality tradeoffs of the proposed MBRP
with no bounds on the number of buffers, power consumption, heuristics on test cases extracted from recent industrial
or area. The seminal work of Van Ginneken [25] proposed a dy- designs.

namic programming approach to finding the optimum buffering

of an already routed net, using identical buffers and at mdSt Organization of the Paper

one .buffer per wire. Lilliset al. [1,5]' [16] e>.<tended the dyf We formally define MBRP in Section Il. Then, in Section I,
namic programming approach by incorporating slew effects e describe two exadinear-time algorithms for buffering

the delay model and performing simultaneous buffer insertign _. . : ; : .
T . . iven routing tree: a greedy algorithm for buffering with a
and wire sizing; they also considered formulations that seek og g 9 y alg 9

minimize area or power consumption subject to meeting givereA different algorithm for noninverting buffers was previously given in [24].
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noninverting buffer type and a dynamic programming alggolarities), input capacitancg for every sinks € S, buffer
rithm for buffering with an inverting buffer type. In Section IVinput capacitance”,, unit-length wire capacitanc€’,, and

we analyze the approximation complexity of MBRP and givimad upper-bound’y > 2C,,* find a buffered routing tree
provably-good approximation algorithms for both inverting” = (r,V, E, B) for N such that

and noninverting buffer types. We give local-improvement and a) ¢(D,) < Cy for everyb € B U {r};

clustering heuristics with improved practical performance in b) (for inverting buffer type) the parity of the number of
Section V, and present experimental results comparing the run-  puffers on each path from the source to any positive sink
time/quality tradeoffs of the proposed heuristics in Section VI. is the same, and Opposite from the parity of the number of
We conclude in Section VII with directions for future research. buffers on the paths from the source to any negative sink;

c) cost(T) = |B|+1is minimum among all buffered routing

Il. PROBLEM FORMULATION trees satisfying conditions a) and b).
We start with basic definitions and notations. léthe anet
* A routing treefor the netN is a treeT’ = (r, V, E) rooted In this section, we present two algorithms for optimally
atr such that each sink f is a leaf inT'. buffering an already routed net using a single inverting or

+ A buffered routing treefor the net N is a tree noninverting buffer type. The running time of each algorithm
T = (r,V,E,B) suchthafl’ = (r,V, E) is arouting tree is linear in the number of sinks and the number of inserted
for N andB is a set of buffers located on the edge§'cf  buffers.

» Foranyb € BU{r}, thesubtree driven by, also referred
to as thestageof b [24], is the maximal subtre®, of T A. Single Noninverting Buffer Type
whichis rooted ab and has no internal buffers. A buffered - oy algorithm for buffering a given routing tree with a single
routing treel’ = (r, V, E, B) has|B|+1 stages, including noninverting buffer type is a generalization of a greedy algo-
asource stagelriven by the source. rithm for partitioning node-weighted trees due to Kundu and

Load Model: We use thdumped capacitive loadhodel, in  Misra [14]. Like in [14], we traverse the tree in bottom-up order,

which the load of a buffeb is given by inserting “fully loaded” buffers, i.e. buffers that drive a subtree
with total capacitance equal &@;. If no fully loaded buffer can
c(Dy) = Z Ce T Z Co- be inserted then we must have reached a nodéth subtree

€Dy v€leaves(Dy) capacitance greater thar, such that the capacitance of each

Load Constraints: As noted in [24], bounded slew rate carfhild branch is strictly less thaﬁU. In this case we greedily in- .
be ensured by upper-bounding the lumped capacitive loadS§it the most loaded buffer, i.e., the buffer at the top of the child

each bufferh € B and of the source driver. Formally, we Pranch with highest capacitance. _ _
require that Before formally describing the algorithm we need to intro-

duce two more definitions. L&t = (r, V, E) be a routing tree.
¢(Dy) < Cy foreveryb € BU {r}. A vertexp of T' is calledcritical if p is a bottom-most point df’
such thatl}, cannot be driven by a single buffer. Formalhis
Cost Functions: The cost of a buffered routing trdéis mea- critical if ¢(7,) > Cy andc(T,) < Cy for every childu of p.
sured by the total wire and buffer area. Denoting the area Afheaviest child: of p is one which accumulates more capaci-
each buffer bya, the combined cosbf the buffered routing tance than any other child pf Formally,u is a heaviest child of
T = (r,V, E, B) can be expressed as follows: pif e(Ty) + cuyp) > o(Ty) + ¢y ) for every other child of p.
The algorithm (see Fig. 1) finds critical vertices by a post-
() order traversal of the input tree. Then, for every such critical
The wire area of' depends on the wirelength in each metal Iayé’rerteXp’ the algorithm repeatedly inserts buffers on the edge

and the number of vias. During early post-placement phasesc8 nggtlngoto its hgawestc;hﬂd, untis no Iopge_r critical. For.
plicity of analysis we give here a recursive implementation

the design cycle the wire area still cannot be estimated ve :
accurately, since layer assignment and via information is n%tthe algorithm. . . L
Remark: The runtime of the algorithmin Fig. 1&(|S|-| B|)

yet available. Therefore, we assume that each stage requ'ées the t i t d f hi ted buff A
the same amount of routing resources and define the simplifi gice he ree1s traversed once lor each inserted bu en. An

routing cost as the number of stages in the buffered rodfing opt_lmaIO(|S| +|B|) time implementation inserts all puﬁers n
ie a single bottom-up traversal; see [3] for the full details.

Theorem 1:The algorithm in Fig. 1 finds an optimum
cost(T) = |B| + 1. (2) buffering of the input tred” with the given noninverting buffer
type.
Thus, in this paper we adopt the simplified cost measure (2): The proof of the theorem follows from the following two
Minimum-Buffered Routing Problem (MBRP®Biven a lemmas, corresponding to the two possible cases in Step 3 of
net N with sourcer and set of sinksS (with prescribed the algorithm.

combined_cost(T) = wire_area(T) + |B| - a.

3We assume that buffers have a single input and a single output and thus ar&Ve require tha€',, > 2C, since otherwise buffering is impossible for some
inserted only on the edges t. trees.
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Input: Routing tree T = (r,V,E) for net N with source r and sinks S, sink
input capacitances c, load upper-bound Cy
Output: Optimum buffering of T with ¢(Dp) < Cy for each b € {r}UB

to the root r

1. Find a critical vertex p by a post-order traversal of T
2. Find a heaviest child, u, of p
3. Insert a buffer b on the edge (i, p) such that

C(up) = min{Cy — ¢(Tu),c(up)}
4. Recursively find an optimum buffering B' of T\ T
5. Return B = B' U {b}

Fig. 1. Routed Net Buffering (RNB) algorithm.

to the root r

SR Fig. 3. Whenb' is located on a different branch (shaded area) than that of the
Le(T) + c{u,p) ! heaviest child:, ¢«(T.) + ¢(u.p) > ¢(Dyr). Hence{ B, \ {'}) U {b} is an
i 1 optimum buffering ofT" containingb.

T |

Lemma 3: If the input to the algorithm in Fig. 1 is a binary
; routing tree, then the load of each inserted buffer is at least
i Cy /2.
Lemma 3 will be used in proving the approximation guar-
i antee for the algorithms in Section IV. It also gives a way to
satisfy the simultaneous lower- and upper-bound constraints on
| buffer loads referred to in Footnote 1, since every routing tree
S N— T © 2 O T Q... Yoo Y. can be converted to a binary tree by inserting zero-length edges.

Fig. 2. Since(T,) = Cy, the treeT, (shaded area) must contain a bufferg Single Inverting Buffer Type
b’ in any optimum bufferingB.p¢. (Bope \ {b’}) U {b} is then an optimum ] . ) ) . . )
buffering of 7' containingb. Optimal buffering with a single inverting buffer type is more

complex than buffering with a noninverting buffer type. The
f greedy approach does not work in this case, and we must use
dynamic programming. In bottom-up order, the algorithm (see
Fig. 4) computes two solutions for each subtred’oone for
positive and one for negative topmost buffer input polarity.
Then, after choosing the best output polarity for the source, it
determines the position of the buffers by a top-down traversal.
a‘[he running time of the algorithm is linear assuming that the
degree of the routing treg is bounded; in the rectilinear plane
this assumption holds for all standard routing tree constructions,
including the minimum spanning tree, the minimum-length
Steiner tree, and approximations of the latter one.

For simplicity, we give the algorithm for binary trees, i.e.,
we assume that all vertices other than the source (which is the

Proof: Let the optimum buffering of” consist of the set root of the tree) and the sinks (which are leaves) have outde-

of buffersB,,,+. Sincep is critical, T;, must contain at least one9ree 2. Without loss of generality, we assume that sink input
buffer b’ of 5 .. We claim that(Bp A\ {¥'}) U {b} is an op- capacitances are all equal to 0—nonzero sink capacitances can
timum bufferinpg ofT’. The claim foII%ws asinLemmallif is be com_pensated by_ increasing the length of the eo_lge_s incident
located inT},. Otherwise, the claim follows by observing that (i)to the ;mks. By spallng, we also assume t_hat the unit wwelength
by optimality, there is no buffer aB, on the path connecting capacitance(,,, is equal to 1. The algorithm associates with
W topin T, and (i) (T.) + cupy < c(Dy), sinceu is the each leak of the treeT two labels I+ (v) andl~ (v), such that
heaviest child of = one of them belongs tf#), Ci;] and the other is 0. The labels

Notice that the capacitive load of each buffer inserted in Stgf)(”) andi™(v) represent the penalty capacitance incurred in
3whenc(, ) > Cu —(T,) is exactlyCy, i.e., these buffers are assuml_ng that the sink has the opposite polarity. Initially, for
“fully filled.” Although this is not true for the buffers inserted each sinks,
whenc, ) < Cu — ¢(T.), it is easy to see that in this case N 0, ifo(s)=+
inserted buffers have a capacitive load of at l€asy k, where I7(s) = { C’U otherwise
k is the degree op. In particular, when the routing treg is 7
binary, we obtain Lemma 3. andl=(s) = Cy — 17 (s).

Lemma 1:If p is a critical vertex ofl’ andw is a child o
p with Cy — ¢(Ty) < cyp), then there exists an optimum
buffering of T’ containing a buffeb located on the edgg:, p)
such that, ;) = Cy — ¢(T.,) (see Fig. 2).

Proof: Let the optimum buffering of’ consist of the set
of buffers B,,¢. The subtree of’ rooted atb must contain at
least one buffel’ from B, since it has total capacitance equ
to Cyy. The lemma follows by observing th@B,,. \ {b'}) U {b}
is a feasible buffering df".

Lemma 2:If p is a critical vertex ofl" andc¢, ;) < Cy —
¢(T,,) for the heaviest child of p, then there exists an optimum
buffering of 1" that contains a bufférplaced immediately below
p on the edg€u, p) (see Fig. 3).
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For each tree leaf, define thestemof v to be the edge con- Input: Binary routing tree T = (r,V,E) for net N with source r and sinks S,
nectingo to its parent. Also, define fork of 7' to be a set of Sink input capacitances c; and polarities s, upper-bound Cy
four vertices(u, v, T1, 2172), wherez; andz, are two leavesy Output: Optimum buffering B of T consistent with sink polarities such that
is the common parent of, andz,, andu is the parent ofy,  ¢(P») <Cu forevery b€ {r}UB
The bottom-up phase of the algorithm consists of two main pr )
ceduresReduce_stemandCollapse_fork The procedur&e-

.T'=T
2. For each s € S do:

duce_stensimply reduces the length of the stem of a leaftil If 65 = + then I* (s) = 0, else I* (s) = Cy
it becomes strictly less thati;. The procedure also counts the I=(s) = Cy —I*(s)
number of buffers inserted on the stemvofeferred to as ™ (v) Reduce_stem(s)

andn~ (v), depending on the polarity of the topmost buffer. 3. While there is a fork («,v,x;,x2) in T’, Collapse_fork(u, v, x1 ,x2)

The procedureCollapse_fork replaces a forw, v, z1,2z2) 4. Insert buffers in T in top-down order:
with the single edgéu, v), computes the appropriate labels fo Let v be the single remaining leaf vin 7', and p € {+,—} s.t. *(v) =0
v, and modifies the number of buffers inserted on the edg Insert n*(v) buffers on the edge (r,v)
(U7 :171) and(v, :172) as needed. The Iabelsmﬂepend on the la- For each fork (r,v,x1,x2), in reverse ordejr of collapsing, do: ' .
bels ofz; andz, and the length of the edgés, z1 ) and(v, x). Insert n(x;) buffers on edges (v,x,), i =1,2, where 0 = pif n(v) s
To guarantee optimalitgollapse_fork checks all possibilities oddand 6= —uif n(v) is even

. . 5. Return the set B of inserted buffers
of inserting buffers on the stenfs, z1) and(v, z2). Among the
feasible bufferings of these two stems it chooses the one Wop

: . . . .. Procedure Reduce_stem(v)

the least buffers inserted, breaking ties according to the resid | wt(v) =n-(v) =0 // Initialize # of buffers on v's stem
capacitance. Note that after the stefnsz;) and(v, z2) have 5 whie Huw) > Cu do:
been reduced, the maximum number of buffers that may be For each 6 € {+,—}, n°(v) = n°(v) + 1
serted on each stem is at most 2. Thus, no more than 9 ce Yuw) = luw) — (Cu—Cp)
need to be checked @ollapse_fork, depending on whether 0, Swap [~ (v) with I*(v)  // Switch topmost buffer polarity
1, or 2 buffers are inserted on each stem. In fact, since insert
2 buffers in each of the two stems is always a dominated so Procedure Collapse._fork(u,v,x1,x2)

tion, we never need to check more than 8 cases. // Check all feasible bufferings of the stems (v,x1) and (v,x2)
Theorem 2:The algorithm in Fig. 4 finds an optimum 1. For each (i, j) € {0,1,2} x {0,1,2} and 6 € {+,—} do:
buffering of the input treel” with the given inverting buffer 15 = max{0,lyx,) +1°(x1) —i- (Cu — Cp)}
type. + max{0,/y,) +1°(x2) = j- (Cu — Cp)}
If If, < Cy then I, = IF + (i+ j)Cu
Else lf’j =o0 /I i+ j buffers are not sufficient
IV. APPROXIMATING MBRP /1 Choose the topmost buffer positions
2. For each 6 € {+,—} do:
The approximation factor of an algorithrh for a minimiza- 1°(v) = min{IZ}i, j = 0,1,2}
tion problemP is the worst-case performance 4f Formally, (i°,J°) = argmin{[7|i, j = 0,1,2}

the approximation factor of is defined aiA(I))/(OPT(I)% // Find minimal label and normalize the opposite polarity label
where the supremum is taken over all instancesthe problem 3. j(y) = min{1+ (v),1-(v)}

P, A(I) is the output value of the algorithat on input/, and If I=#(v) > I*(v) 4 Cy, then (i #, j~F) = (i*, j*), I"*(v) = I*(v) + Cy
OPT(I) is the optimal value for the instande In this section  ; increment # of buffers for both stems and restore v's labels

we prove that, unless - NP, no algorithm can guarantee 4. For each o € {+,~} do:

factor smaller than 2 for MBRP with single (inverting or non: n%(x1) = n%(x1) + % n°(x2) = n®(x1) + j°

inverting) buffer type. On the positive side, for any> 0, we 1°(v) =1°(v) = (i°+ j°)Cu

give a fact0r2(1 + 5)(1 + (1/(CU/(Cb - 2)))) apprOXimation // Reduce minimal label of v to 0, remove leaves x; and x;, and reduce v’s stem
algorithm for MBRP with single noninverting buffer type and ¢s. 1, ,, = 1,.,) + #(v), I7#(v) = I7#(v) = I*(v), I*(v) =0

factor4(1 +¢)(1 + (1/(Cy /(Cy, — 2)))) approximation algo- 6. 7' =71\ {x;,x}

rithm for MBRP with single inverting buffer type. 7. Reduce_stem(v)

A. Approximation Complexity of MBRP Fig. 4. Routed Net Inverting Buffering (RNIB) algorithm.

Theorem 3: For anye > 0, approximating MBRP within a
factor of 2 — ¢ is NP-hard. a rectilinear Steiner tree of length at mdstfor the terminals
Proof: The proof is by reduction from the rectilinearin R if and only if the above MBRP instance has optimum cost
Steiner minimum tree (RSMT) problem, which is NP-haréqual to 1, and an{2 — ¢)-approximation algorithm for MBRP
[11]. An RSMT instance consists of a sktof terminals and a would find the optimum solution if this is the case. [ |
numberk, and the problem is to decide if terminals fihcan Remark: Fig. 5 gives an example showing that MBRP is in-
be interconnected via a rectilinear Steiner tree of lerigtbr  herently more difficult than the RSMT problem since, in gen-
less. Letr be an arbitrary terminal i and letS = R\ {r}. eral, the Steiner points for MBRP do not belong to the Hanan
Consider the MBRP instance in which all sinks have input carid, i.e., to the grid formed by the vertical and horizontal lines
pacitance 0C;, = 0; C, = 1, andCy = K. Then, there exists passing through terminals. In this example the input capacitance
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Input: Net N with source r and set of sinks S, sink input capacitances cs and
polarities o, upper-bound Cy

Output: Buffered routing tree T = (r,V,E,B) for N consistent with sink
polarities such that c(Dp) < Cy for every b € {r} UB

O

source L 7
3
1
@
source (1 7
2
(b)

O

7
6

3
O —0——0

Fig. 5.
grid edge. (b) Best buffered routing on the Hanan grid for the same net.

Input: Net N with source r and set of sinks S, sink input capacitances c;,
upper-bound Cy

Output: Buffered routing tree T = (r,V,E, B) for N such that ¢(Dp) < Cy for
every b€ {r}UB

1. Find a buffered routing tree T' = (r,V',E’, B') using the STB algorithm
2. For each b € B' U{r}, in the order given by a postorder traversal of 7", do:
Replace b with two inverters b and b~ such that
- the parent of b~ is b* and /- p+) =0
- the parent of b is the parent p of bin T' and lp+ ,) = [(,p)
For each 6 € {+,—} add to T a Steiner tree rooted at b° and spanning
all sinks with polarity ¢ in Dy,
=T \Dp
3. Return T

(a) Four terminal net and optimum buffered routing using a non-Hanan
Fig. 7. Steiner Tree Inverting Buffering (STIB) algorithm.

Input: Net N with source r and set of sinks S, sink input capacitances cs,
upper-bound Cy

Output: Buffered routing tree T = (r,V, E, B) for N such that ¢(Djp) < Cy for
every b € {r}UB

1. Find an o-approximate Steiner tree T for {r}US

2. Transform T into a binary tree in which all sinks are leaves by duplicating
internal nodes of degree > 3 and sinks of degree > 1 and adding zero-length
edges between duplicated nodes

3. Add buffers to T using the RNB algorithm (see Fig. 1)

Fig. 6. Steiner Tree Buffering (STB) algorithm.

of each sink and of the buffers is 1, the unit wirelength capac
tanceC), is 1, and the buffer load upper-bou@d is eight. Any
routing along the Hanan grid must use at least 3 buffers, wh
the optimum buffered routing, which uses a non-Hanan ed
has only two buffers.

B. Approximating MBRP With Single Noninverting Buffer Typ

In this section we show that optimal buffering of an appro»
imate rectilinear Steiner minimum tree over the terminals (s
Fig. 6) comes within a constant factor of the MBRP optimun
Below, the output of a polynomial-time RSMT algorithm with
approximation factor of will be referred to as an-approxi-
mate Steiner tree

1.T=0,B=0
2. T' = Steiner tree for SU {r}, rooted at r
3. While ¢(T") > Cy do:
Find the position of the first buffer b inserted by the RNB algorithm in 7’
If ¢(T}) < Cy then
/I Fill b’s capacitive load by joining a subtree to 7},
For each node i which is neither ancestor nor descendant of b, do:
Compute T, by joining 7; to Ty, where p is either b or the point
closest to parent(b) on the shortest path between i and Ty,
whichever of the two is closer to parent(b)
If ¢(T}) < Cy then
Set b'(i) at distance (Cy — ¢(T))/Cy from p towards parent(b)
Set gain(i) = ¢(T})/Cw — distance(b,’ (i))
End if
End for
Find i* with maximum gain and join 7\ to T,
Move buffer b to position 5'(i*)
End if
B=BU{b},T=TUT,, T' =T'\T,
End while
4. Return T UT', with buffer set B

Fig. 8. Cut&Connect algorithm.

Theorem 4: The algorithm in Fig. 6 approximates the MBRP

with single noninverting buffer type within a factor pfv(1 +

In the optimum buffering of/,,,¢, each of the OPT stages has

(1/(Cu/(Cy — 2)))) for every net with total sink capacitance capacitance of at most;. Since the total capacitance of the

of at leastC}.5

buffered treel,,; is CAP + (OPT — 1)C},, we get thaOPT -

Proof: Let OPT be the number of stages in an optimunf’v > CAP + (OPT —1)Cy, i.e.,

buffered routed nef,,, and letC AP be the capacitance of
Topt before buffering, i.e.,

CAP = ch +C, -
seS

> L

e€Topt

SIn practice, the total sink capacitance is greater fiarfior almost all mul-

CAP — C,

OPT >
- Cy—GCy

®3)

Let CAP’ be the capacitance before buffering of theyp-
proximate Steiner tree constructed by the algorithm in Fig. 6.
ThenCAP'—s < a(CAP—s),wheres = ) __s ¢, isthetotal
input capacitance of the sinks. Since we assumesthatCy,
this givesCAP’ < aCAP — (a—1)s < a(CAP — Cy) + Cy,

tipin nets. Also, the ratie”, /C,, is typically much greater than 2 (recall that .
Cv/Cy» > 2 to guarantee that every tree can be buffered). In our benchmark€"’
Cy /C, varies between 12 and 200, which corresponds to an approximation

factor betweer2.1a and2.005« in Theorem 4.

CAP' — Cy < a(CAP — ). 4)
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Fig. 9. Example execution of the Cut&Connect heuristic, whére = 14,

Input: Net N with source r and set of sinks S, sink input capacitances c;,
upper-bound Cy

Output: Buffered routing tree T = (r,V,E,B) for N such that ¢(Dp) < Cy for
every be {r}UB

1.T=0,B=0
2. T' = Steiner tree for SU{r}, rooted at r
3. While ¢(T") > Cy do:
// Find a critical node with maximum subtree capacitance
Find v € T’ with maximum ¢(7;) s.t. ¢(T;) < Cy and ¢(T,,ppy(y) > Cu
// Fill the load of the subtree by connecting neighboring sinks
subtree_load = ¢(T)); S =T,NS; T =TUT,
g =sinkin §\ S closest to S'; p = sink of §' closest to ¢
While subtree_load + Cyl(p ) +cq < Cy do:
subtree_load = subtree_load +Cyl(p 4) + ¢4
§'=8U{ghT=T+(p,q9)
g =sink in S\ §' closest to §'; p = sink of §' closest to ¢
End while
Place buffer b at distance (Cy — subtree_load)/C,, from p, towards g
B=BU{b}; S=(S\S)u{b}
T' = Steiner tree for SU{r}, rooted at r
End while
4. Return TUT', with buffer set B

Fig. 10. Clustering algorithm.

Finally, inequalities (3)—(5) give

A CAP' - C, Cy-0C
t

1
<9 . <2a-(1 .
opt = CAP—-C, Cp—2-C, = ( +%)

]

Since the rectilinear Steiner tree for a given set of terminals
can be approximated in polynomial time to within any desired
accuracy using Arora’s PTAS [5], Theorem 4 gives the fol-
lowing.

Corollary 1: For anye > 0, the MBRP with single nonin-
verting buffer type can be approximated within a factoz@f+
€)(1+(1/(Cu/(Cy~2)))) intime O(|S| (log |S]) /) +| B)).

C. Approximating MBRP With Single Inverting Buffer Type

A naive solution to handling sink polarities is to make the

¢, = 0,andC,, = 1.(a) The original routing tree after applying RNB. (b) polarity of all sinks the same by inserting one inverter for each

The modified routing tree after cutting the leftmost terminal and “filling” the

first buffer. (c) The optimal buffered routed tree with a single buffer.

sink of the minority polarity, and then use noninverting buffers
to route the signal from the source. In the worst case this solution
may require as many ds$/|/2 inverters, plus the noninverter

Let A be the number of stages in the buffering produced by th@ffers needed to drive a Steiner tree spanning all terminals. A
algorithm. Sincel’ is a binary tree, by Lemma 3 every buffer in-petter solution is to construct two separate Steiner trees, one for

serted by the algorithm in Fig. 1 has a minimum load’gf/2.

the positive sinks and one for the negative sinks, buffer them

Furthermore, the total capacitance of the source stage and ofd@mally with noninverting buffers using the RNB algorithm,

stage driven by the last inserted buffer is greater than(oth-
erwise the source can drive alone both stages). THUs,’ +
(A-1)C, > A-(Cy/2),ie,

CAP' — C, CAP' — C,
AL =2 . 5
<~ —-G,1q (5)

and then insert a single inverter at the top of one of them.

If an inverting buffer occupies less than half the area of a non-
inverting buffer with the same driving strength, an even better
solution is provided by algorithm in Fig. 7. In this algorithm, we
construct a routing tree for all sinks, buffer it with noninverting
buffers, and then make it consistent with sink polarities by re-
placing each noninverting buffer by two inverters.
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Input: Net N with source r and set of sinks S, sink input capacitances c; and polarities o, upper-bound Cy
Output: Buffered routing tree T = (r,V,E,B) for N consistent with sink polarities such that ¢(Dp) < Cy for every b € {r}UB

1. Find a buffered routing tree 7' = (r,V',E', B') using the STB algorithm
2. For each b € B' U{r}, in the order given by a postorder traversal of T’, do:
If b drives sinks or non-swappable inverters with both polarities then
For every swappable “—” inverter g~ driven by b, reconnect g~ as a child of its sibling g™
Replace b by two siblings, which are swappable inverters b* and b~ with polarity “+”, resp.
Delete b’s stage D), from T', then add to T a Steiner tree rooted at b* having as leaves all “—” sinks and non-swappable inverters in Dj,
and a Steiner tree rooted at b~ having as leaves all “+” sinks/inverters in D},

“__»

Else, if b drives no sink or non-swappable inverter with “—" polarity, then
For every swappable “—" inverter g~ driven by b~, reconnect g~ as a child of its sibling g
Replace b by a non-swappable inverter b~ with “—” polarity, delete b’s stage from T’ and add it to T

Else // b drives no sink or non-swappable inverter with “4-” polarity
For every swappable “+” inverter g* driven by b, reconnect g* as a child of its sibling g~
Replace b by a non-swappable inverter b with “+” polarity, delete s stage from T’ and add it to T
3. Return T

Fig. 11. Steiner Tree Inverting Buffering with Swapping (STIB-S) algorithm.

Input: Net N with source r and set of sinks S, sink input capacitances ¢, and polarities 65, upper-bound Cy
Output: Buffered routing tree T = (r,V,E, B) for N consistent with sink polarities such that ¢(Dp) < Cy for every b € {r}UB

1. Find an a-approximate Steiner tree T for {r}US
2. Transform T into a binary tree in which all sinks are leaves by duplicating internal nodes of degree > 3 and sinks of degree > 1 and adding
zero-length edges between duplicated nodes
3. For each node v of T, in postorder, do:
Repeat forever
If $*(v) > Cy — Cp and S~ (v) > Cy — Cp then insert an inverter with appropriate polarity in the highest position on the branch with maximum
capacitance among Br;f, Brf , Bry,, Br,, , where u; and uj are v’s children
If S*(v) > Cy then insert inverter with “— polarity in the highest feasible position on the maximum capacitance branch among Br;f,, Br;},
If S~(v) > Cy then insert inverter with “+” polarity in the highest feasible position on the maximum capacitance branch among Br, , Br,
Else exit repeat loop
5. Return T

Fig. 12. Steiner Tree Inverting Buffering with Load Filling (STIB-LF) algorithm.

Theorem 5:The algorithm in Fig. 7 approximates the
MBRP with single inverting buffer type within a factor of at
mostda(l + (1/(Cy /(Cy — 2)))).

Proof: First we show thaf” is a feasible solution. Indeed,
by construction, each inserted inverter drives sinks or inverters
of the same polarity. Also, the load of each inverter inserted in
T is at mostCy, since this load is never larger than the load of
the corresponding stage;, of 1”.6 (@) )

The key observation is that the optimum number of in-
verting buffers,OPT, is no less than the optimum number OFig'1.3' Inverterinsertipnwit_hthe a!gorithm in_Eig.lZ. (?) '!:re_e before inverter
noninverting buffersO PT". Let A’ and A be the number of insertion. (b) Tree after inserting an inverter driving the “—" sinks.
buffers inserted by the algorithms STB and STIB, respectively.

Then, by Theorem 44 < 2 - A’ < 4a(l + (1/(Cy/(Cy —
2)))OPT" <da(l+(1/(Cu/(Cy - 2))))OPT. u V. MBRP HEURISTICSWITH IMPROVED PRACTICAL

Using Arora’s PTAS [5], Theorem 5 gives the following. PERFORMANCE

Corollary 2: For anye > 0, the MBRP with single inverting . ,
buffer type can be approximated within a factori6f + ¢)(1+ A Noninverting Buffer Type
(1/(Cy /(Cy — 2)))) intime O(|S|(log |S|)°1/2) +|B|). Theorems 3 and 4 imply that the STB algorithm is essentially

By Theorem 3, no approximation algorithm with a factothe best possible from the point of view of worst case approxi-
better than 2 exists for MBRP with single inverting buffer typemation guarantee. In this section we describe two MBRP heuris-
Closing the gap between Corollary 2 and this hardness resultics which, by changing the topology of the Steiner tree, improve
an interesting open problem. upon the STB algorithm on practical instances.

o _ L The first heuristic, called Cut&Connect (see Fig. 8), modifies

For simplicity we assume that the buffer input capacitafigds less than

any sink capacitance. The algorithm in Fig. 7 can be modified such that tf“%e Steiner tree ConStrUCted by S_TB in a bottom-up fashion,
assumption is not necessary. starting from the sinks and working toward the root. When
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TABLE |
NUMBER OF BUFFERS WIRELENGTH (mm), AND RUNTIME (CPU s)FOR THE RNB, QUT & CONNECT, AND CLUSTERING
HEURISTICS FORNONINVERTING BUFFER INSERTION

Benchmark || MST+RNB [ MST+Cut&Conn. [ MST+Cluster | Lower
#term. Cy || # WL time [ #b WL time | #b WL time | bound
500 17 25 0381 16 26 0.83 16 25 0.94 15

1000 8 25 081 8 26 0.82 7 26 0.83 7

330 | 2000 4 25 0381 4 28 0.83 3 26 0.81 2
4000 2 25  0.81 1 26 0.82 1 25 0.78 0

8000 0 25 081 0 25 0.82 0 25 0.78 0

500 34 68 097 34 69 0.97 33 69 2.05 32

1000 17 68 097 16 69 0.96 16 70 1.32 15

830 | 2000 8 68 097 8 71 0.96 8 72 1.06 6
4000 3 68 097 3 68 0.96 3 68 0.95 2

8000 1 68 097 1 68 0.96 1 68 0.88 0

500 56 45 102 54 50 1.33 51 46 327 49

1000 28 45 1.02 26 53 1.43 24 46 1.93 23

1900 | 2000 13 45 1.01 12 51 1.33 12 47 1.36 11
4000 6 45 1.02 6 47 1.18 S 46 1.06 5

8000 2 45 1.01 2 45 1.05 2 45 0.94 1

500 74 58 1.07 70 65 1.61 64 59 4.93 62

1000 33 58 1.06 32 62 1.43 31 59 2.65 29

2400 | 2000 17 58 1.06 17 64 1.87 15 59 1.73 14
4000 8 58 1.07 8 60 1.45 7 58 1.29 7

8000 4 58 107 3 60 1.35 3 59 1.07 2

500 147 89 115 144 98 1.73 134 92 10.39 128

1000 70 89 1.14 67 99 1.99 63 91 5.40 61

2600 | 2000 33 389 114 32 99 1.72 31 91 3.02 30
4000 17 89 1.14 16 96 1.92 15 90 1.96 14

8000 8 89 1.15 8 92 1.61 7 91 1.39 6

500 244 266 2.63 236 285 9.27 222 272 106.83 184

1000 116 266 2.63 113 283 11.54 106 272 46.90 88

12000 | 2000 56 266 2.63 55 279 12.42 52 271 21.25 42
4000 28 266 2.64 28 290 13.32 25 269 10.59 20

8000 13 266 2.63 13 274 8.10 12 268 5.82 9

500 1418 1396 4.39 | 1395 1551 21.62 | 1305 1476 1172.75 1197

1000 674 1396 4.39 656 1524 30.36 613 1444 540.28 575

22000 | 2000 330 1396 4.39 319 1506 49.58 298 1437 257.99 282
4000 164 1396 4.39 159 1471 95.40 146 1426 121.24 139

8000 80 1396 4.39 78 1448  106.98 72 1420 60.33 68

500 806 990 6.59 778 1068 39.13 729 1016 890.01 591

1000 388 990 6.58 374 1071 58.55 350 1011 424 .81 283

34000 | 2000 191 990 6.58 153 1058 89.04 171 1009 208.79 138
4000 95 990 6.57 92 1065 147.62 84 1002 103.59 68

8000 45 990 6.57 44 1036 113.80 42 1000 49.25 33

finding a bufferb whose load is smaller thafl;, the heuristic B. Inverting Buffer Type
tries to fill b’s load up toCy by cutting a subtree from some
other part of the tree and reconnecting it to the closest pointBoth algorithms in this section are improved versions of the
in T;. If the resulted modified stage of the bufferhas the STIB algorithm in Section IV-C. The improvement in the first
capacitive load still no more thafi;;, then such reconnect isalgorithm (see Fig. 11) is based on the following observations:
accepted, otherwise the reconnect is reversed. If needed, the STIB algorithm replaces each buffer inserted by the STB al-
position ofb may be adjusted to ensure that its load remains @@rithm by a pair of inverters, but if all sinks driven by a buffer
mostCy (see Fig. 9(a) and (b)). have the same polarity then a single inverter replacement is suf-
Similar to Cut&Connect, the Clustering heuristic (seéicient. Furthermore, new saving opportunities can be created
Fig. 10) repeatedly chops off buffer stages from a Steiner trf@ higher levels byswappingthe two inverters in an inserted
over terminals. The Clustering heuristic is essentially a greefigir such that the most appropriate polarity comes on top.
algorithm which tries the reconnected vertex with the largestA significant limitation of the STIB-S algorithm is that it in-
gain. There are two main differences between Clustering asekrts inverters only at locations of buffers inserted by the STB
Cut&Connect. The first difference is in the way buffer loadalgorithm. In order to avoid leaving too much unused driving
are filled: Clustering always adds one sink at a time, whileapacity, the STIB-LF algorithm in Fig. 12 computes the place-
Cut&Connect adds whole subtrees. For example, Clusterimgnt of inverters in bottom-up order as the highest position
constructs the tree in Fig. 9(c), while Cut&Connect cannoivhich can still drive all positive (respectively negative) sinks
The second difference is in the fact that Clustering recomputeslow, thus in effect “filling” the load of each inverter as close as
the Steiner tree after chopping off each buffer stage. Trpessible to the its full capacity. Similar to the STIB and STIB-S
recomputation improves solution quality, but also leads toadgorithms, whenever an inverter is inserted by the algorithm in
much higher time complexity, 0®(|B|T;smt), WhereT,.,: Fig. 12 the driven sinks/buffers are connected to the inverter by
is the time needed to compute a Steiner tree. To achievaluplicating paths of the routing tree (see Fig. 13).
competitive running time, our implementation of Clustering In the algorithm in Fig. 12, we use some additional nota-
uses minimum spanning trees as approximate Steiner trees.tion. For every node of a treeT, let D} (D) be the tree
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TABLE I

NUMBER OF BUFFERS WIRELENGTH (mm), AND RUNTIME

(CPU s)FOR RNIB, STIB-S, AND STIB-LF HEURISTICS

ON TESTCASESWITH ALL SINKS OF THE SAME POLARITY

Benchmark MST+RNIB

MST+STIB-S MST+STIB-LF

#term. | Cy # WL time

#b WL  time #b WL time

500 34 25 099

1000 16 25 099
330 | 2000 8 25 098
4000 4 25 099
8000 0 25 099

26 31 0.96 21 36 097

11 30 0.96 9 32 097
6 27  0.96 5 30 097
3 27 0.96 3 28 097
0 25 0.96 0 25 097

830 | 2000 16 68 108

50 92 1.04 50 106 1.06
26 93  1.04 22 100 1.05
12 89 1.04 11 103 1.05
5 90 1.04 4 90 1.05
2 76  1.05 2 76  1.05

1900 [ 2000 || 26 45 1.09

80 51 1.07 61 55 1.06
40 50 1.07 30 53 105
19 49 1.07 14 51 1.05
9 47 1.06 7 50 1.05
3 48 1.06 3 48 1.06

2400 | 2000 34 58 115

109 66 1.09 79 71 112

47 65 1.09 35 68 1.11
25 62 1.09 18 65 112
11 61 1.09 9 63 111
6 61 1.09 5 62 1.11

2600 | 2000 || 66 89 116

500 292 8 1.17 215 107 1.12 165 118  1.11
102 102 1.12 76 111 112

49 101 1.12 36 108 1.11
25 98 1.12 18 104 1.11
12 97 1.13 9 99 1.12

12000 | 2000 112 266 2.02

500 484 266  2.02 354 305 1.82 276 328 1.83
168 298 1.82 128 317 1.82

82 288 1.81 62 303 1.83
41 286 1.81 29 299 1.83
19 282 1.81 14 292 1.82

500 f| 2832 1396 323 [ 2069 1706 2.69 | 1664 1912 2.72
1000 || 1344 1396 3.14 974 1646  2.67 756 1807 2.72

22000 | 2000 660 1396  3.09 476 1583  2.68 360 1709 271

4000 328 1396 3.07 236 1550 2.68 175 1646 271
114 1509 2.68 8 1585 2.71

500 || 1606 990 431 | 1173 1133  3.68 899 1233 372
1000 774 990 4.26 563 1109 3.67 427 1190 3.72

34000 | 2000 382 990 422 274 1087  3.67 206 1157 371

8000 || 90 990 421

138 1067  3.66 103 1130 3.71

67 1068 367 | 48 1104 371

rooted atv which is the union of all paths from to the pos-
itive (respectively negative) driven sinks/buffers/inp, and de-
note by S*(v)(S~(v)) the total capacitance b (respec-
tively D), e.9.,.5ST(v) = ¢, if vis positive sinkand™ (v) = 0
if v is a negative sink. Also, leBr;F = D + (v, parent(v))
if St(v) > 0 andBr*(v) = 0 otherwise, and, similarly,
Br; = D; + (v,parent(v)) if S~(v) > 0andBr~(v) =0
otherwise.

VI. EXPERIMENTAL RESULTS

computing the initial minimum spanning tree. For all datasets,
Cy = 0.177 fF/um, Cy, = 37.5 fF, while sink input capaci-
tances are varying betwee@rd4 fF and200 fF.

Table | gives the results obtained by the three heuristics
for noninverting buffering. For comparison, Table | includes
a lower bound on the optimum number of buffers, calculated
according to (3) with RSMT length estimated using the
edge-based heuristic of [7]. The lower-bound estimates the
number of buffers by assuming that (a) the tree is shortest
possible, and (b) each buffer is fully loaded. Since the optimum

We have implemented the RNB and RNIB algorithms foroﬁaolution is unlikely to meet these two conditions simultane-
timally buffering a given tree with a single noninverting, reously, the lower-bound may significantly under-estimate the
spectively inverting, buffer type, the Cut&Connect and ClugPtimum number of buffers.
tering heuristics for MBRP with single noninverting buffer type, Results in Table | show that, on the average, the Cut&Con-
as well as the STIB-S and the STIB-LF heuristics for MBRRect heuristic inserts 5.81% fewer buffers than the RNB algo-
with single inverting buffer type. Tables I-lll give the resultsithm, while increasing the wirelength by 6.52%. The Clustering
obtained by these heuristics on eight large nets extracted fraeuristic inserts 10.43% fewer buffers than RNB on the average,
recent industrial designs. For all heuristics, the initial tree igith an average wirelength increase of only 2.02%. In fact, Clus-
a minimum spanning tree over the terminals. The runtime tisring solutions are almost always better than Cut&Connect re-
in CPU seconds on a SUN Ultra 60 and includes the time feultsbothin number of inserted buffers and total wirelength. As
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TABLE 1lI
NUMBER OF BUFFERS, WIRELENGTH (mm), AND RUNTIME (CPU s)FORRNIB, STIB-S,AND STIB-LF HEURISTICS ONTESTCASESWITH RANDOM SINK
POLARITIES. SPLITMST VARIANTS CORRESPOND TONDEPENDENTLY BUFFERING MINIMUM SPANNING TREES FOR THEPOSITIVE AND NEGATIVE SINKS

Benchmark MST+RNIB SpItMST+RNIB MST+STIB-S | SpGIMST+STIBS || MSI+STIBLF | SpHtMST+STIB-LF
Ferm. | Cy #5 WL Gme| #b WL tme| #b WL fme| #b WL tme| #b WL tme| #b WL fme

500 177 25 0.99 45 42 194 34 43  0.98 34 55 193 25 46 0.97 31 60 1.91
1000 177 25 099 21 42 194 17 45 0.98 17 50 193 12 45 097 15 53 1.90
330 | 2000 177 25 0.99 9 42 195 9 46 0.98 7 46 193 5 46 097 7 49 1.90
4000 177 25 0.99 5 42 1.94 5 46 0.98 5 45 193 3 46 097 5 45 190
8000 177 25 0.99 1 42 194 1 46 0.98 1 42 194 1 46 0.97 1 42 190

500 420 68 1.07 99 117 2.00 67 115 1.05 79 161 1.96 56 120 1.06 81 184 1.99
1000 420 68 1.08 49 117 2.00 35 121 1.05 39 161 1.96 27 123 1.05 38 177 1.99
830 | 2000 420 68 1.07 25 117 1.99 17 122 1.05 19 155 1.96 14 123 1.05 19 165 1.99
4000 420 68 1.08 13 117 2.00 7 122 1.05 10 146 1.96 7 123 1.05 10 156 1.99
8000 420 68 1.07 5 117 199 3 123 1.05 5 133 197 3 123 1.06 5 133 2.01

500 984 45 1.10| 131 67 206( 113 76 1.06 95 75 2.00 70 76 1.08 75 82 2.00
1000 984 45 1.10 63 67 2.06 57 76 1.06 46 75 2.00 34 76 1.07 35 78  2.00
1900 | 2000 984 45 1.10 31 67 2.06 27 76 1.05 23 72 199 17 76 1.07 18 75 2.00
4000 984 45 1.10 13 67 2.06 13 76 1.05 11 71 1.99 9 76 1.08 9 71 2.00
8000 984 45 110 5 67 2.06 5 76 1.05 5 67 1.99 3 76 1.08 5 67 2.00

500 || 1245 58 1.15| 163 83 2.09( 149 96 1.09] 120 96 2.06 93 97 1.09 91 105 2.04
1000 || 1245 58 1.15 79 83 2.09 67 97 1.09 59 92 2.06 41 97 1.08 44 99 2.03
2400 | 2000 || 1245 58 1.15 37 83 2.09 35 97 1.08 28 91 2.06 20 97 1.09 21 95 2.03
4000 || 1245 58 115 17 83 2.09 17 97 1.09 13 89 2.07 11 97 1.08 11 92 2.03
8000 || 1245 58 1.15 9 83 2.09 9 97 1.09 7 85 2.06 5 97 1.09 7 85 2.03

500 || 1359 89 1.19| 323 130 212 295 146 1.12| 237 154 207 179 150 1.12| 183 173 2.07
1000 || 1355 89 1.19| 153 130 2.11 141 149 1.11| 111 149 2.07 83 150 1L.11 85 163 2.06
2600 | 2000 || 1355 89 1.19 75 130 2.11 67 150 1.11 56 147 2.07 40 150 1.12 41 159 2.06
4000 || 1355 89 1.19 37 130 2.10 35 150 112 29 144 206 21 150 1.11 20 150 2.06
8000 || 1355 89 1.19 17 130 2.12 17 150 1.11 13 135 2.07 11 150 1.12 11 141 2.06

500 || 6000 266 224 | 583 381 295 4838 445 1.84| 425 437 274 335 449 184 336 476 2.76
1000 || 6000 266 2.24 | 285 381 293 | 233 448 1.83| 209 432 273 156 449 1.84 | 158 459 275
12000 | 2000 || 6000 266 2.23| 139 381 293 | 113 448 1.84| 100 416 2.73 76 449 1.84 76 440 274
4000 || 6000 266 2.25 65 381 293 57 449 184 49 409 274 36 449 1.84 38 431 275
8000 || 6000 266 224 31 381 2.94 27 449 1.84 22 406 2.74 19 449 1.84 18 420 275

500 || 11366 1396 3.96 | 3350 2008 4.11 || 2815 2289 2.71 [ 2456 2461 3.61 || 1849 2350 2.73 [ 2007 2764 3.63
1000 (| 11284 1396 3.94 | 1596 2008 4.03 || 1349 2337 2.71 | 1160 2369 3.61 875 2358 272 | 928 2605 3.63
22000 | 2000 || 11284 1396 3.95| 781 2008 3.98 || 661 2353 2.71| 565 2297 3.60 || 429 2360 2.73 | 442 2482 3.61
4000 || 11284 1396 3.96 | 383 2008 3.98 || 329 2358 271 | 280 2235 3.59| 211 2361 2.73| 211 2360 3.62
8000 || 11284 1396 3.96| 189 2008 3.99 || 161 2360 2.71 | 138 2160 3.59 106 2361 2.73 | 104 2281 3.61

500 |[ 17252 990 591 | 1983 1434 5.09 [ 1613 1657 3.68 | 1453 1659 4.47 || 1110 1670 3.72 [ 1163 1831 4.52
1000 || 17252 990 591 | 939 1434 5.03| 777 1665 3.68 | 687 1635 447 | 533 1671 3.72| 541 1776 452
34000 | 2000 || 17252 990 592 | 471 1434 506 | 383 1670 3.67 | 339 1594 447 | 256 1672 3.72| 261 1718 451
4000 || 17252 990 5.96 | 227 1434 5.04 | 191 1672 3.67| 163 1577 446 | 125 1672 372 | 127 1684 4.50
8000 || 17252 990 594 | 111 1434 5.02 91 1672 3.68 81 1548 4.46 63 1672 3.72 61 1619 451

expected, the Clustering heuristic—which recomputes a mincluded in comparison two variants of each heuristic: the first
imum spanning tree after each buffer insertion—has the sloweatiant buffers (or starts with) an MST spanniadf sinks,
runtime, being as much as 267 times slower than RNB and @4ile the second variant computes separate MSTs for the sinks
times slower than Cut&Connect. However, Clustering runtim& each polarity and buffers each tree independently. Such a
remains practical: even for the nets with tens of thousands“split” construction proves to be particularly important for
sinks Clustering takes just a little over one second of CPU tinRNIB buffering, since on the average half of the sinks require
per inserted buffer. an inverter when RNIB is run on the MST over all siriks.

We have compared the inverting buffering heuristics on twbhe split MST construction also helps the STIB-S heuristic in
sets of datasets. In one set (Table II) all sinks are assigned #@st cases, reducing the number of buffers by an average of
same polarity, while in the second (Table IIl) sink polarities aré21% compared to the running STIB-S on the MST over all
assigned at random. The results indicate that optimal invertifigks. Interestingly, however, the split MST constructiants
buffering of a minimum |ength Spanning or Steiner tree the STIB-LF heuristic in most cases, inCI’eaSing the number
be very far from optimal, and that heuristics for simultaneo® buffers by an average of 13.64% and the wirelength by
tree construction and buffering are particularly important in th@&44%. The STIB-LF heuristic on the MST for all sinks gives
case. the best results on the average, with 42.31% fewer buffers and

The results for uniform sink polarities given in Table Il shom;'3'90% wirelength increase compared to RNIB over the split

that the STIB-S heuristic inserts on the average 25.74% feWM.?T’ respectively 25.30% fewer buffers aqd 1.05% wirelength
buffers compared to the MST buffered optimally using RN|Bcrease compared to STIB-S over the split MST.

the STIB-S wirelength is larger than the MST wirelength by an
average of 13.38%. With the same or even smaller runtime, the
STIB-LF heuristic reduces the number of buffers by an averageln this paper we have addressed a minimum-buffered routing
of 57.23% compared to RNIB, with an average wirelength iproblem which asks for bounded input rise/fall time for all

crease of 20.84%. Th ber of i tersi ted by RNIB is al t th for the whol
. . . . . e number of inverters inserted by is almost the same for the whole
Table Il gives the results obtained by the inverting buffering,,e of driving strengths since most inverters are inserted to meet polarity, not

heuristics on testcases with random sink polarities. We havued cap, constraints.

VII. CONCLUSION AND FUTURE RESEARCH
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buffers and sinks. We have analyzed the approximation comnfig] T. Okamoto and J. Cong, “Buffered steiner tree construction with wire
plexity of this problem and given provably-good algorithms sizing for interconnect layout optimization,” iRroc. IEEE-ACM Int.

Conf. Computer-Aided Desigth996, pp. 44—49.

for buffering with a single inverting or noninverting buffer [19] S. Pullela, N. Menezes, J. Omar, and L. T. Pillage, “Skew and delay

type.

We have also proposed local-improvement and clustering  optimization for reliable buffered clock trees,” Rroc. IEEE-ACM Int.

20] S.Rzepka, K. Banerjee, E. Meusel, and C.Chenming Hu, “Characteriza-

heuristics with improved practical performance; experimenti Conf. Computer-Aided Desigi993, pp. 556-559.
e

conducted on industrial datasets show that our heuristics al

tion of self-heating in advanced vlsi interconnect lines based on thermal

efficient and insert a near-optimum number of buffers. finite element simulation,” .
A natural research direction is to extend the results in thig21l L. Scheffer, Personal Communication, Apr. 2000.

22] N. A. Sherwani and B. Wu, “Effective buffer insertion of clock tree for

paper to MBRP with multiple buffer/invertor types. Ifthe_buffer high speed VLS! circuits, Microelectronics 1. vol. 23, pp. 291-300,
library can be arbitrary the problem becomes considerably  1992.
harder than the single buffer type case considered in thig3] K.J.Singh and A. Sangiovanni-Vincentelli, “A heuristic algorithm for

the fanout problem,” iIRCM/IEEE Design Automation Conf.990, pp.

paper. For example, a direct reduction from the subset sum 357 360
problem shows that even finding the optimum buffering of aj24] G.E. Tellezand M. Sarrafzadeh, “Minimal buffer insertion in clock trees
routed two—pin net is NP-hard. Our Ongoing research addresses With skew and slew rate constraint$ZEE Trans. Computer-Aided De-

the case of libraries with small number of buffer types. We,5

sign, vol. 16, pp. 333-342, Apr. 1997.
L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree net-

also investigate multisource formulations, in which the buffer  works for minimal Eimore delay,” iroc. IEEE Int. Symp. Circuits and
solution should be legal for multiple rooted orientations of the ~ Systems1990, pp. 865-868.

tree,

and multi-constraint formulations, in which, e.g., input

capacitance and fanout must be upper-bounded simultaneously.
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