VLSI DESIGN © 1999 OPA (Overseas Publishers Association) N.V.

1999, Vol. 10, No. 1, pp. 99-116
Reprints available directly from the publisher
Photocopying permitted by license only

Published by license under

the Gordon and Breach Science
Publishers imprint.

Printed in Malaysia.

Analytical Engines are Unnecessary in Top-down

Partitioning-based Placement*

C.J. ALPERT?, A. E. CALDWELL®, T. F. CHAN®, D. J.-H. HUANG¢,
A. B. KAHNG®' 1. L. MARKOV® and M. S. MOROZ?®

2 IBM Austin Research Laboratory, Austin, TX 78758;
SUCLA Computer Science Dept., Los Angeles, CA 90095-1596;
¢UCLA Mathematics Dept., Los Angeles, CA 90095-1555;
4 Silicon Perspective Corp., Santa Clara, CA 95054;
¢ UCLA Anderson Graduate School of Management, Los Angeles, CA 90095

(Received 7 September 1998; In final form 20 November 1998)

The top-down “quadratic placement’” methodology is rooted in such works as [36, 9, 32]
and is reputedly the basis of commercial and in-house VLSI placement tools. This
methodology iterates between two basic steps: solving sparse systems of linear equations
to achieve a continuous placement solution, and “legalization” of the placement by
transportation or partitioning. Our work, which extends [5], studies implementation
choices and underlying motivations for the quadratic placement methodology. We first
recall some observations from [5], e.g., that (i) Krylov subspace engines for solving
sparse linear systems are more effective than traditional successive over-relaxation
(SOR) engines [33] and (ii) that correlation convergence criteria can maintain solution
quality while using substantially fewer solver iterations. The focus of our investigation is
the coupling of numerical solvers to iterative partitioners that is a hallmark of the
quadratic placement methodology. We provide evidence that this coupling may have
historically been motivated by the pre-1990’s weakness of min-cut partitioners, i.e.,
numerical engines were needed to provide helpful hints to weak min-cut partitioners. In
particular, we show that a modern multilevel FM implementation [2] derives no benefit
from such coupling. We also show that most insights obtained from study of individual
min-cut partitioning instances (within the top-down placement) also hold within the
overall context of a complete top-down placer implementation.

Keywords: Quadratic placement, multi-level min-cut partitioning, hierarchical top-down place-
ment

* This work was supported by a grant from Cadence Design Systems, Inc., and is an extension of work reported in Proc. ACM/
IEEE Design Automation Conference, 1997 [5]. See http://visicad.cs.ucla.edu for more information.
tCorresponding author.

99

100 C. J. ALPERT et al.

1. INTRODUCTION

In the physical implementation of deep-submicron
ICs, placement solution quality is a major deter-
minant of whether timing correctness and routing
completion will be achieved. The first-order objec-
tive is to place connected modules close together, to
reduce total routing and lower bounds on signal
delay. This implies a minimum wirelength based
placement objective. Because there are many layout
iterations (including those between placement and
global/detailed routing, performance optimiza-
tions, technology mapping and logic synthesis) and
because fast (constructive) placement estimation is
needed within the floorplanner, an ideal placement
tool will offer fast, consistent, and high-quality
results. Due to its speed, “global” perspective, and
ability to address wirelength-based objectives, the
quadratic placement methodology (cf. such antece-
dents as [36, 14,9, 33]) has been widely adopted in
industry.

In this work, we revisit the quadratic placement
methodology and develop insights into its effective
implementation, particularly in light of recent algo-
rithmic developments for partitioning. Our paper is
organized as follows. After defining notation,
Section 2 synthesizes a generic model of the quad-
ratic placement methodology. The key elements of
our model are: (i) top-down hierarchical place-
ment, and (ii) use of a sparse linear systems solver,
coupled with a min-cut iterative (FM-type) parti-
tioner, to obtain any given partition within the
top-down placement process. Section 3 discusses
effective implementation of the quadratic place-
ment methodology. We briefly review previous
results [5] that suggest use of Krylov-subspace sol-
vers, along with correlation convergence criteria
within the solvers, to improve efficiency. We then
focus on the coupling between the linear system
solver and the min-cut partitioning step as the key
to implementing quadratic placement: issues in-
clude the type of wirelength-based objective
addressed by the solver, how the solver result is
used by the partitioner, and the type of partition-
ing engine employed. In Section 4, we use a high-

quality placement testbed to experimentally assess
our various hypotheses. Our most significant
results show that the solver-partitioner coupling
may have historically been motivated by the pre-
1990’s weakness of min-cut parameters, i.e., nu-
merical engines were needed to provide helpful
hints to weak min-cut partitioners. In particular,
we show that a modern multilevel FM implemen-
tation [2] derives no benefit from such coupling.
We also contrast the abilities of linear-wirelength
and squared-wirelength solver objectives to drive
partitioners to good solutions. Finally, we show
that insights obtained from study of individual
min-cut partitioning instances (within top-down
placement) apply to the overall top-down place-
ment results as well. We conclude the paper in
Section 5 with a list of ongoing research directions,
and some comments on the relevance of the
quadratic placement methodology to future design
methodology requirements.

2. A SYNTHESIS OF THE QUADRATIC
PLACEMENT METHODOLOGY

2.1. Notation and Definitions

A gate-level netlist is represented for placement
by a weighted hypergraph. The n vertices corre-
spond to modules, with vertex weights representing
module areas or routing requirements. Hyperedges
correspond to signal nets, with hyperedge weights
representing criticalities and/or multiplicities. The
two-dimensional layout region is represented as
an array of legal placement locations. Placement
seeks to assign all modules of the design to legal
locations, such that no modules overlap and chip
timing and routability are optimized. The place-
ment problem is a type of NP-hard quadratic
assignment.

The numerical techniques used within the quad-
ratic placement methodology apply only to graphs
(hyper-graphs with all hyperedge sizes equal to 2).
Therefore, we must assume some transformation of
hypergraphs to graphs via a net model. Throughout

QUADRATIC PLACEMENT 101

the discussion and experiments reported below, we
use the standard clique model for nets of degree 10
or less, and the directed star model for nets of degree
larger than 10, to preserve sparsity. For a given
multipin signal net with k pins, the graph edges that
represent the net may be constructed in several
ways, e.g., a directed star model of k — 1 edges, an
unoriented star model, or an unoriented clique
model of (k(k—1)/2) edges (see [3] for a review).
The resulting weighted graph representation G =
(V,E) of the circuit topology has edge weights
a; derived by “superposing” all derived edges in
the obvious manner. The standard undirected
clique model [25] assigns all clique edges weight

(/¢ —1).!

DEeFINITION The 7 x n Laplacian matrix Q = (g;)
has entry ¢, equal to —ay; for i#j and diagonal
entry g; equal to Y ., a;, i.e., the sum of edge
weights incident to vertex v,.

Certain vertices are fixed, typically due to pre-
placement of I/O pads or the inducing of terminals
around a block’s periphery during top-down place-
ment. All other vertices are movable. The one-dimen-
sional placement problem seeks to place movable
vertices onto the real line so as to minimize an
objective function that depends on the edge weights
and the vertex coordinates. The n-dimensional
placement vector x = (x;) denotes the physical loca-
tions of modules vy,...,v, on the real line, i.e., x;
is the coordinate of vertex v;. Let ¢ be the number
of movable modules and let f= n— ¢ be the num-
ber of fixed (“pad’’) modules. Without loss of gene-
rality, the ¢ movable modules are vy, ..., v, and the
f fixed modules are v.,4,..., v, The modules can
always be permuted prior to optimization to ensure
this condition is satisfied.

Squared Wirelength Formulation Minimize the
objective

,(x) = Zaij(xi - Xj)2 such that
i>j

Xeil, .- -, Xn are fixed.

This function can also be written as

®,(x) = (1/2)x"Qx.

We are interested in quadratic placers that solve
the two-dimensional placement problem with a top-
down approach, i.e., one-dimensional placement
in the horizontal direction is used to divide the
netlist into left and right halves, after which one-
dimensional placement in the vertical direction
is used to subdivide the netlist into quarters, etc.?

2.2. Essential Structure of a Quadratic Placer

We now state the essential components of the quad-
ratic placement methodology. Our primary goal
is to establish the coupling between (i) numeri-
cal methods for sparse linear systems and (ii) min-
cut optimizations or other means of ‘“‘spreading”,
or “legalizing”, a continuous placement solution.
We illustrate our discussion by referring to the
PROUD algorithm of Tsay et al. [32, 33].

Like other works, PROUD considers the
squared wirelength objective ®,(x) = (1/2)x™Qx.
An unconstrained formulation is obtained by opti-
mizing the objective function ®,(x) for ¢ movable
modules while satisfying f fixed pad constraints,
but without discrete slot constraints. (The term slot
constraint, originated by Cheng and Kuh [9], refers

Some other clique models have been proposed, e.g., the model of [33] assigns all clique edges weight 8/k*. We have obtained
similar results for the clique model of [33] as well as for a directed star model.

2«“Decomposition” of the two-dimensional placement problem into independent one-dimensional placement problems is used in
the quadratic placement methodology to yield smaller linear systems. Notice that for the quadratic objective, the Euclidean problem
decomposes cleanly into coordinates (by Pythagoras’ theorem) while the Manhattan problem does not. (Hence, we presumably are
minimizing squared Euclidean wirelength.) For the linear objective, the Euclidean problem does not decompose while the Manhattan

objective does.

102 C. J. ALPERT et al.

to the fact that a legal placement must locate
modules within the two-dimensional array of allow-
ed locations (slots). E.g., the first-order slot con-
straint forces the sum of module coordinates to
equal the sum of slot coordinates.) The objective
function can be written as

1 cc C] C
2,0 = 3 xe%] [gﬂ g;]]
1

=3 (XLT‘Qccxc + XZchxf + X}chxc + X}Qﬁxf)

where x, denotes the vector of fixed module
positions and x. denotes the vector of movable
module positions; the Laplacian Q is partitioned
into four corresponding parts Q.., Q.5 Qs and Q4
with QLTf = Q.

In this formulation, the optimal positions of
all movable modules are inside the convex hull of
the fixed module locations [33]. Hence, we can
consider the minimization problem for ®,(x) over
this convex hull. Since ®,(x) is a strictly convex
smooth function over a compact set (in ¢-dimen-
sional Euclidean space), the unique minimum
objective function value is attained at the extremal
or a boundary point; the nature of the problem
implies that it will be at the extremal point. To
find the zero of the derivative of the objective
function ®,(x), we solve the ¢ x ¢ linear system

V&,(x) = QXc + Quxr =0
which can be rewritten as

Qccxc = _chxf (1)

This development is similar to that of other
“force-directed” or ‘“‘resistive network™ analogies
(see, e.g. [36,27,14,9]. The essential tradeoff is
the relaxation of discrete slot constraints, along
with the changing of the “true” linear wirelength
objective into a squared wirelength objective, to
obtain a continuous quadratic objective for which
a global minimum can be found. The typical
resulting “‘global placement” concentrates mod-
ules in the center of the layout region. Hence, the
key issue is how the ‘“‘global placement” (actually,
a ‘“‘continuous solution obtained using an incor-
rect objective’’) should be “spread” or “legalized”
into a solution to the original discrete problem.

Two approaches have been used to obtain a
feasible placement from a “‘global placement”. The
first approach is based on assignment, either in one
step (to the entire two-dimensional array of slots)
or in two steps (to rows, and then to slots within
rows) [14]. The second and more widely-used ap-
proach is based on partitioning: the global place-
ment result is used to derive a horizontal or vertical
cut in the layout, and the continuous squared-
wavelength optimization is recursively applied to
the resulting subproblems (see [36,27,9,24]). The
main difficulty is making partitioning decisions on
the extremely overlapped modules in the middle
of the layout. The obvious median-based partition-
ing (find the median module and use it as a
“splitter’’) is sensitive to numerical convergence cri-
teria. Thus, FM-type iterative improvement strateg-
ies ([22,13]; see [3] as well as the discussion of
Section 3 for a review) are commonly used to refine
the resulting partitioning (see, e.g. [24]). Since the
typical objective for iterative improvement parti-
tioning is some form of minimum weighted cut,* the
quadratic placement methodology can be seen to be
quite similar in structure to top-down min-cut

3Formally, denote the # modules of the netlist hypergraph H(V,E) as V = {v,v,...,v,}. A net e€ E is a subset of ¥ with size
greater than one. A bipartitioning P = {X, Y} is a pair of disjoint clusters (i.e., subsets of V') X and Y such that XU Y = V. The cut of
a bipartitioning P = {X, Y} is the number of nets which contain modules in both X and Y, i.e., cut(P) = |{e|eN X #0,eN Y #0}|.
Let 4 (v) denote the area of ve V and let 4 (S) = I,c5 4 (v) denote the area of a subset S C V. Given a balance tolerance r, the min-cut
bipartitioning problem seeks a solution P = {X, Y} that minimizes cut(P) subject to (A (V')1 —r)/2) < A(X), A(Y) < (A (V)1 +1r)/2).

QUADRATIC PLACEMENT 103

placers, with initial cuts induced from (one-dimen-
sional) placements under the squared-wirelength
objective.*

We summarize the essential structure of a quad-
ratic placer as consisting of:

e a sparse linear systems solver;

e a min-cut iterative (FM-type) partitioner; and

e a top-down hierarchical min-cut framework
wherein for any given partitioning instance the
solver results are used to induce an initial solu-
tion for the iterative partitioner.

3. EFFECTIVE IMPLEMENTATION
OF THE QUADRATIC PLACEMENT
METHODOLOGY

In this section, we list five major degrees of
freedom in the implementation of the quadratic
placement methodology. For two of these degrees
of freedom — the use of modern Krylov-subspace
solvers with pre-conditioners, and correlation con-
vergence criteria — we refer the reader to earlier
work of [S]. The remaining three degrees of free-
dom - linear wirelength vs. squared-wirelength
objectives, the solver-partitioner interface, and the
use of modern (multilevel) FM partitioners — are
the focus of detailed experiments in Section 4
below.

Of course, we realize that there are many other
degrees of freedom in the implementation of a
“quadratic placer”, e.g., the number of partitioning

trials made at a given level of the top-down
placement, the integration of metaheuristics such
as cycling and overlapping [19], etc. In our
experience, tuning these degrees of freedom is an
important activity, requiring substantial effort.
However, we have chosen to concentrate on what
we believe are the more fundamental issues for
quadratic placement implementation. In particu-
lar, our line of investigation is motivated by the
recent advances in algorithm technology for iter-
ative partitioning. Our main question is: Do modern
partitioners really require seeding from (one-di-
mensional placements computed by) numerical
solvers? Our discussion sets the stage for experi-
mental evidence showing that implementation
choices for quadratic placement are dominated
by the strengths of modern multilevel partitioners.
We find that the “quadratic placement method-
ology” no longer benefits significantly from the
use of linear systems solvers that minimize quad-
ratic wirelength objectives.

3.1. Use of Krylov-subspace Solvers
with Preconditioners

Recall that quadratic placement requires solving
sparse linear systems with dimensions on the order
of the number of movable modules in a given one-
dimensional placement instance. The time com-
plexity of an iterative solver depends on both the
cost of a single iteration (which is constant during
the solution of a given system) and the number of

“The PROUD placer [33, 32], which we have cited as a prototype for the quadratic placement methodology, is more careful than
previous works in how it applies partitioning during the top-down min-cut process. Suppose that a vertical cut has been made along
some centerline, so that the left and right halves must each be split by horizontal cuts. PROUD applies a “block Gauss-Seidel”
analogy, as follows. Modules in the left half are ordered vertically, followed by terminal propagation (projection) to the centerline.
The projected terminals then influence the vertical ordering of the modules in the right half. The modules of the right half are then
fixed and projected to the centerline, where they influence a new vertical ordering of the left half. Eventually, both orderings converge
and can be split to induce subproblems. In this way, PROUD affords more global interaction between siblings in the hierarchy (see
also the “cycling and overlapping” metaheuristics discussed in [19]).

More generally, we recognize (i) that intermediate steps involving assignment or transportation may also be used to derive
hierarchical subproblems from the initial global placement; (ii) that while top-down bipartitioning is the standard approach,
hierarchical subproblems may also be derived by top-down quadrisection; (iii) that iterative partitioners can use more sophisticated
(placement-based) objectives than the traditional weighted min-cut, and (iv) that any number of metaheuristics can be used within the
general top-down framework to improve routability, timing, etc. (such recent works as [34,19] exemplify such possibilities).
Nonetheless, we have chosen to synthesize a quadratic placement methodology based on FM-type iterative bipartitioning: this is the
cleanest (and most typical) framework for the solver-partitioner interaction in quadratic placement.

104 C.J. ALPERT et al.

iterations needed until iterates adequately approxi-
mate the true solution. The theory of iterative
methods shows that the number of iterations
needed to obtain a good approximation in norm
depends on the spectrum of the matrix involved [15].
Hence, the idea of a preconditioner — a way to
transform the original system to an equivalent one
with “improved” spectrum. Because most imple-
mentations of preconditioners entail additional per-
iteration cost, one must carefully examine the
overall efficiency of solver/preconditioner combi-
nations on particular classes of instances: more
expensive iterations must be balanced against the
number of iterations saved.

The work of [5] experimentally compares itera-
tion counts and CPU times for various combina-
tions of solvers and preconditioners when solving
typical systems arising within the quadratic place-
ment methodology. These studies were motivated
by the observation that works such as [33] use the
1950’s-era SOR iteration to solve the linear system
in Eq. (1), despite many improved methods for solv-
ing sparse symmetric linear systems having been
developed in recent years. (See [7] for pseudocodes
of solvers and preconditioners, as well as a taxo-
nomy of the types of systems to which these itera-
tions apply; [15] gives theoretical analysis).” The
authors of [5] test comparable implementations of
solver-preconditioner combinations using the
PETSc library [6], and conclude that BiConjugate
Gradient Stabilized (BiCGS) is among the best
solvers. Though it does not guarantee convergence,
BiCGS is good even for degenerate (not necessarily
symmetric) matrices and provides more robust
convergence than conjugate gradient (CG). For
preconditioners, Incomplete LU-factorization and
the Successive Over-relaxation family (including
SSOR) are particularly successful. In verifying the

superiority of BiCGS, performance of SOR and
SSOR was evaluated with the best value of w
parameter, which was determined to be w = 1.95
(for SOR/SSOR solvers) and w = 1.0 (for SOR/
SSOR preconditioners) over a range of problem
instances.

3.2. Linear-wirelength vs. Squared-wirelength
Objectives

In Section 2.2 above, we saw that the continuous
placement formulation with squared wirelength,
objective has a unique optimum solution that can
be found by solving a sparse linear system. How-
ever, while being convenient to work with, the
quadratic objective does not correspond to any
intuitive physical quantity. Compared to the linear
objective, the quadratic objective more heavily
weights long connections and less heavily weights
short connections. To see this, consider the exam-
ple of two wires with respective lengths 2 and 10.
According to the linear objective, the relative cost
of the long versus the short wire is 10/2 = 5, but
according to the quadratic objective, the relative
cost of the long versus the short wire is 100/4 =
25 — i.e., the cost ratio of long to short wires is
much higher under the quadratic objective.
Several works have suggested that the follow-
ing linear wirelength objective is superior for
placement:
Linear Wirelength Formulation Minimize the Ob-
jective

P(x) = Za,jlxi — xj| such that
i>j
Xcil,- .-, X are fixed.

Mahmoud et al. [26] and Sigl et al. [31] demon-
strate the superiority of the linear wirelength

SBriefly, iterative methods for solving large systems of linear equations can be classified as stationary or non-stationary. Stationary
methods include Jacobi, Gauss-Seidel, Successive Over-relaxation (SOR) and Symmetric Successive Over-relaxation (SSOR). They
are older, easier to implement and computationally cheaper per iteration. Non-stationary methods include Conjugate Gradient
(CG), Generalized Minimal Residual (GMRes) and numerous variations. These are relatively newer and harder to implement, but
afford much faster convergence. Additional computational expense per iteration is normally justified by much smaller numbers of
iterations. Solvers which provide smooth convergence can be also used as preconditioners. Direct solvers present a different source of
preconditioners for iterative methods, with examples being incomplete Cholesky (ICC), LU-factorization and incomplete LU-

factorization (ILU).

QUADRATIC PLACEMENT 105

objective for analog and row-based placement,
and Riess et al. [30] show that a one-dimensional
placement which minimizes linear wirelength can
lead to excellent netlist bipartitioning results.
Optimizing the linear wirelength is less straight-
forward. For example, there can be multiple opti-
mal solutions (consider a single movable module
connected to two fixed pads by edges of equal
weight — this module can be optimally placed any-
where between the two pads). The set of optimal
placements is again closed and contained within the
convex hull of fixed pad locations (see [33]). Thus,
direct minimization of the linear wirelength objec-
tive can be achieved by linear programming, but
this is usually computationally expensive. Conse-
quently, most placers that address the linear
wirelength objective find a solution by iteratively
solving several quadratic formulations. We use the
GORDIAN-L placer [31] to illustrate this techni-
que. (Note that the set of constraints that GOR-
DIAN-L can handle is more general than described
here. In particular, GORDIAN-L can handle
center-of gravity constraints whereby the coordi-
nates for any subset of modules must be centered
around a prescribed center. However, the techni-
que described here for optimizing a linear objective
by transforming it into a quadratic objective is
independent of the types of constraints applied.)
The objective ®; can be rewritten as

2
ay(x; — x;
E ailx; — xj|—E ————-———-———”l('_x_’l) .
j

i>j i>j

If the |x;—x term in the denominator were
constant, then a quadratic objective would result
which can be solved via the above technique.
GORDIAN-L first solves the system ®,(x) to
obtain a reasonable approximation for the |x; — x;|
terms. Call this solution x”. GORDIAN-L then
derives successively improved solutions xL,x%,...
until there is no significant difference between x*~!
and x*. From a given solution x*~!, the next

solution x* is obtained by minimizing

. ay(xF — x")
() ;lxk 1 xk 1|
=(;Egij'(x{'c_xj]'()2
i,j)e

where g,] = a/|xf~" — xf~!|. Note that the coeffi-
cients gy are adjusted between iterations. The
iterations terminate when the factors (x¥ — xk) no
longer change significantly. (It turns out that this
approach is actually a special case of a method
due to Weiszfeld [35]; see [5] for a detailed discus-
sion.) Below, we will experimentally study the ef-
fects of the choosing the linear-wirelength, vs. the
squared-wirelength, objective for one-dimensional
placement within the quadratic placement method-
ology. In particular, we will consider the effects
on individual cutsizes as well as on total placement
wirelength.

3.3. Correlation Convergence Criteria

Any iterative solver builds a sequence of iterates
that converges to the solution x of Eq. (1). In the
quadratic placement methodology that we have
described, the one-dimensional placement informa-
tion is used to “‘seed”, i.e., construct an initial
solution for, the partitioner. How soon the itera-
tion can be stopped will affect the CPU efficiency of
the overall implementation. Typically, iterative sol-
vers have stopping criteria, or convergence tests,
that are based on some norm of the residual vector
for an iterate,® which is taken to represent error
with respect to the true solution. In practice, most
norms are equivalent, and various heuristics (check
convergence every j iterations, check differences of
iterates rather than residual vectors, etc.) can re-
duce the time spent on convergence tests.
Constructing an initial min-cut partitioning
solution from one-dimensional placement solution
wastes information, particularly if nothing is
retained but memberships of vertices in “left” and
“right” initial partitions. If the final iterate will
be sorted and split to induce an initial solution for

When solving the system Ax = b, the residual vector for a given iterate x is b — Ax¥.

106 C. J. ALPERT et al.

the min-cut partitioner, then the iteration should
terminate as soon as further changes will be ines-
sential to the partitioner.” Determination of “in-
essential” fundamentally depends on the strength
and stability of the partitioner, as will be discussed
in the next subsection. However, regardless of what
partitioner is used, solver iterations should certain-
ly stop when the left and right groups stabilize. The
work of [5] proposed a number of correlation
convergence criteria, based on permutations, that
may be useful in efficiently measuring such stabili-
zation. Instead of residual norms, correlation con-
vergence criteria use correlations and rank correla-
tions between successive iterates to compute their
similarity. Convergence is detected when such a
measure becomes sufficiently close to 1, and itera-
tions are stopped. (Note the analogy to residual
norms which are used in traditional convergence
criteria, but tend to 0 rather than to 1.) In Section 4
below, we provide evidence that simple and efficient-
ly-computed measures of correlation or rank cor-
relation between successive iterates indeed yield
useful correlation convergence criteria.

3.4. The Solver-partitioner Interface

A fourth degree of freedom in implementing the
quadratic placement methodology is the ‘“‘solver-
partitioner interface”, namely, the manner in
which an initial solution for min-cut partitioning
is constructed from a given solver iterate. The key
decision concerns how much information to retain
from the iterate when “‘seeding” the partitioner.
Above, we noted that the usual practice is to sort
coordinates of the iterate, then pre-seed some
percentage of modules (corresponding to the most
extreme coordinates) into the left and right initial
partitions. Many implementation choices must be
faced, e.g., whether the pre-seeded modules should
be locked or unlocked within the partitioner; how
to construct initial assignments for the remaining
(not pre-seeded) modules; whether the pre-seeding

should be based on module areas or module
cardinalities; efc. In our experiments below, we
apply the following procedure to create the initial
bipartitioning solution.

e The midpoint of the iterate is determined, such
that the sums of module areas on either side of
the midpoint are as close to equal as possible.

o Fixed pads are assigned to left or right parti-
tions according to whether they are to the left or
right of the midpoint in the iterate.

e On the left (right) side of the midpoint, a
prescribed seeding percentage of the modules
with smallest (largest) coordinates are pre-seeded
(but not locked) into the left (right) partition.
The percentage is computed on each side accord-
ing to module cardinality, rather than module
area. In the experiments below, we study seeding
percentages of 0%, 25%, 50% and 100%.

e Remaining (not pre-seeded, not pad) modules
are randomly assigned to the left and right parti-
tions, such that the resulting partitioning is bal-
anced. More precisely, we randomly order these
remaining modules, then assign each in turn
to the partition that currently has smaller total
module area.

3.5. Use of Modern (Multilevel) FM Partitioners

Recall that a motivation of our present investiga-
tion is that the use of numerical linear systems
solvers that minimize quadratic wirelength may be
a historical accident, resulting from the pre-1990’s
weakness of min-cut partitioners. The standard FM
bipartitioning approach consists of iterative im-
provement based on the Kernighan-Lin algorithm,
using the improvement of Fiduccia-Mattheyses
[13]. The FM algorithm begins with some initial
solution {X, Y} and proceeds in a series of passes.
During a pass, modules are successively moved
between X and Y until each module has been moved
exactly once. Given a current solution {X”, Y'}, the

"This precept also applies when the iterate is used to “seed” the partitioner. For example, one can seed the initial partitioning
solution with only a percentage (say, 20%) of vertices having the most extreme coordinates (with all other vertices randomly
assigned), because these vertices are more likely to be “correctly” assigned. The GORDIAN and GORDIAN-L placers use such a

strategy [24, 31].

QUADRATIC PLACEMENT 107

previously unmoved module ve X'(or Y') with
highest gain (= cut({X' —v, Y’ +v}) — cut({X, Y }))
is moved from X' to Y'. After each pass, the best
solution {X”, Y’} observed during the pass becomes
the initial solution for a new pass, and the passes
terminate when a pass does not improve the initial
solution.

Recent work [1,2,17,18,20,21] has illustrated
the promise of multilevel approaches for partition-
ing large circuits. Multilevel partitioning recursive-
ly clusters (“coarsens”) the instance until its size
is smaller that a given threshold, then unclusters
(‘“‘uncoarsens’’) the instance while applying a parti-
tioning refinement algorithm.Work in multilevel
partitioning was originally prominent in the scienti-
fic computing literature for partitioning finite-ele-
ment graphs [18, 21, 28]. Hendrickson and Leland
[18] developed a very efficient multilevel partition-
ing algorithm, included in their Chaco package.
Metis, another multilevel partitioning package tar-
geted to finite-element graphs, was developed by
Karypis and Kumar [21]. In the VLSI CAD com-
munity, previous multilevel works include[1, 10, 17,
20] and [2]. As shown in [20] and [2], multilevel
implementations of the FM approach give the
strongest and most stable results yet reported in
the VLSI partitioning literature. Thus, our fifth
degree of freedom assesses the use of multilevel
FM versus traditional FM implementations.

4. EXPERIMENTAL RESULTS

4.1. Experimental Step

Our top-down placement testbed includes the fol-
lowing elements.

e Plain FM and multilevel FM bipartitioning
engines. The plain FM implementation uses a
LIFO gain bucket organization for improved
performance [16]. The multilevel FM implemen-
tation uses a CLIP-FM core [11] and follows
the description of [2] with respect to use of
heavy-edge matching for coarsening [20, 2] and
the value of the matching ratio (r = 0.33) for
coarsening/uncoarsening.

o Numerical iterations to minimize the squared-
wirelength and linear-wirelength objectives. To
minimize squared wirelength, we use a BiCon-
jugate Gradient Stabilized (BiCGS) solver with-
out preconditioner, following the conclusions of
[5]. To minimize linear wirelength, we apply the
Weiszfeld iteration described in [4], using the
same BiCGS solver. For this objective, we also
use an ILU preconditioner since linear-wire-
length minimization is inherently harder than
squared-wirelength minimization.

e A top-down quadratic placer framework. With-
in this framework, relevant implementation
choices are:

— Final (non-overlapping) module placements
are evaluated by the sum of net bounding
box half-perimeters.

— Nets are modeled as weighted graph edges
for the numerical solvers using the standard
clique model for nets of degree 10 or less, and
the directed star model for nets of degree
greater than 10.

— Pads (or block terminals) are kept fixed in the
positions originally specified by the designer.

— For multi-pin nets with pins outside the cur-
rent partitioning instance, straightforward
terminal propagation is used.

We use for standard-cell test cases from indus-
try, which we read in Cadence LEF/DEF 4.5 format
(see Tab. I).

Our basic experiment explores the various de-
grees of freedom from the previous section, as
follows.

e For each bipartitioning instance with > 50 mod-
ules we use a solver to obtain a one-dimensional

TABLE I Parameters of four standard-cell test cases from
industry
Test cases

Test case Pad cells Core cells Nets

Case 1 1083 5840 7637
Case2 182 8829 11962
Case3 711 12146 10880
Case4 185 20392 25634

108 C. J. ALPERT et al.

placement minimizing either squared or linear
wirelength. For smaller instances, we do not
produce placements and instead use a random
initial solution in the bipartitioning.

e We use the linear placement to pre-seed an ini-
tial bipartitioning solution, either fully (100%),
partially (50% or 25%) or not at all (0%).

e We use either LIFO FM (FM) or ML CLIP-FM
(MLFM) to obtain a minimum-cut exact bisec-
tion (using exact module areas, with tolerance
equal to the largest individual module area in
the instance). Note that when MLFM is used, its
coarsening phase is constrained by the pre-
seeding. Pre-seeded modules are not allowed to
be matched to modules pre-seeded in the oppo-
site partition.

e Exhaustive enumeration of all possible place-
ments is used for end-cases having 5 modules or
fewer.

e Each minimum-cut bisection is the best result
from 5 multi-starts, with randomization in the
initial assignment of non-pad/non-seeded mod-
ules, and in the heavy-edge matching based
coarsening stage of MLFM.

Runtimes for our placer on a 300 MHz Sun
Ultra-10 are given in Table II. We emphasize that
a tuned implementation would be much more
efficient, e.g., in practice solvers would not be run
with such rigorous convergence criteria. For the
top-level bipartition instances alone, the quadratic
solver required 11 seconds (178 iterations) and 45

TABLE II Total CPU times for our placer (300 MHz Sun
Ultra-10) on smallest and largest test cases, under various
configurations, with 100% pre-seeding

Analytical
Partitioner placer Case 1 (sec) Case 4 (sec)
LIFO FM Quadratic 110 660
Linear (Weiszfeld) 180 767
ML CLIP-FM Quadratic 156 820
Linear (Weiszfeld) 205 802

seconds (154 iterations), for Case 1 and Case 4
respectively. The 5 starts of LIFO FM required 2
and 11 seconds, and the 5 starts of ML CLIP-FM
(including all clustering operations) required 4 and
20 seconds, for Case 1 and Case 4 respectively.

4.2. Experimental Data

For each experiment configuration and test case,
we examine both the final placement result as well
as the results of the top-level bisection step. In the
context of the top-level bisection, we save 20 dif-
ferent iterates of the squared-wirelength minimi-
zation (BiCGS engine) to pre-seed partitioners in
separate experiments. These 20 iterates are chosen
uniformly spaced in the interval between the first
and final solver iterates (the stopping criterion is
for successive iterates to differ by less than
1 x 1078 times the norm of the residual). For each
of these iterates, each partitioning engine, and each
level of pre-seeding, Figures 1 through 4 show the
best cuts achieved in 5 random starts, averaged
over 5 separate trials. Oscillations in the Figures,
particularly for MLFM results, are due to the ran-
domizations inherent in the experimental setup.
For linear-wirelength minimization only a one
iteration is available, as Weiszfeld typically conver-
ges in a single iteration. The best cutsizes obtained
when this iterate is used for pre-seeding (100%,
50%, 25% and 0% pre-seeding) are given in the
captions of each Figure.

Tables III through VI document the similarity
of each iterate of the squared-wirelength mini-
mization to the next iterate and to the final iterate,
using correlation and rank correlation measures
[29]. We additionally report the similarity of the
resulting partitioning solutions to the solution
achieved using the final iterate. Here, the similarity
measure is Hamming distance, i.e., the minimum
number of modules that must be moved to trans-
form one solution into the other.®

8More precisely, we treat each bipartitioning solution as a 0—1 vector, so the Hamming distance between two partitioning
solutions is a measure of how dissimilar two solutions are. If X = x; and Y = y; are two bipartitioning solutions, their Hamming
distance is _;_; |x; — yi|. If this quantity is larger than »/2 then the coordinates in Y are flipped and the quantity is recomputed.

QUADRATIC PLACEMENT 109

Case 1 (FM) Case 1 (ML)

FIGURE 1 Best cut after pre-seeding with solver iterates for Case 1. The x-axis is the index of the iterate, and the y-axis is the
cutsize. When pre-seeding with the final (converged) Weiszfeld iterate, the best cuts were 485, 492, 550 and 571 for FM
(0%, 25%,50% and 0% pre-seeding); and 315, 339, 328 and 307 for MLFM (0%,25%, 50% and 0% pre-seeding).

Case 2 (FM)

1100 360

350
1000

340
900 |

330
800 320 |

310
700

300
600

280 |
500 280

o 5 10 15 20 26] 5 10 15 20 25

FIGURE 2 Best cut after pre-seeding with solver iterates for Case 2. The x-axis is the index of the iterate, and the y-axis is the
cutsize. When pre-seeding with the final (converged) Weiszfeld iterate, the best cuts were 737, 745, 687 and 605 for FM
(0%,25%,50% and 100% pre-seeding); and 303, 310, 302 and 315 for MLFM (0%,25%,50% and 100% pre-seeding).

Case 3 (FM) Case 3 (ML)

286

FIGURE 3 Best cut after pre-seeding with solver iterates for Case 3. The x-axis is the index of the iterate, and the y-axis is the
cutsize. When pre-seeding with the final (converged) Weiszfeld iterate, the best cuts were 515, 492, 465 and 340 for FM
(0%, 25%,50257,250,262 and 251 for MLFM (0%,25%, 50% and 100% pre-seeding).

In our study of complete placement results, final solver iterate, and report the sum of net
within each experimental configuration we pre- bounding box half-perimeters in the final place-
seed each partitioner call with the corresponding ment. These results are given in Table VII.

110

Case 4 (FM)

EEEEE

°

C.J. ALPERT et al.

Case 4 (ML)

FIGURE 4 Best cut after pre-seeding with solver iterates for Case 4. The x-axis is the index of the iterate, and the y-axis is the
cutsize. When pre-seeding with the final (converged) Weiszfeld iterate, the best cuts were 737, 754, 643 and 590 for FM
(0%,25%,50% and 100% pre-seeding); and 318, 328, 337 and 331 for MLFM (0%, 25%, 50% and 100% pre-seeding).

TABLE III
wirelength minimization

Correlation convergence studies for the top-level bisection of Case 1 and pre-seeding with early iterates of the squared-

Case 1-quadratic wirelength

Corr. Rank Corr. Rank. Hamming distance to final
COIT. corr. LIFO FM ML CLIP-FM

Iterate to next to final 0% 25% 50% 100% 0% 25% 50% 100%
1 0.98974 0.938893 0.843959 0.811998 1220 1100 1514 2594 832 723 1447 1576
2 0.998518 0.989313 0.887373 0.877041 1414 1170 1512 456 446 1069 1367 1543
3 0.996944 0.98943 0.902439 0.893202 1193 1117 1426 555 750 802 1459 1590
4 0.998996 0.992139 0.921435 0.909269 870 1264 1457 501 237 768 1179 980
5 0.999269 0.997498 0.932654 0.924666 1233 1427 1139 217 992 149 1025 971
6 0.998947 0.996191 0.941326 0.930699 1186 1276 1308 210 479 284 1443 984
7 0.999457 0.997867 0.951809 0.939749 940 1331 1481 354 99 961 1464 1028
8 0.999324 0.99767 0.958524 0.945523 1724 1189 1155 304 397 116 1447 937
9 0.999328 0.998888 0.965899 0.951144 770 1089 1267 126 209 687 1529 923
10 0.999833 0.999403 0.972098 0.954903 806 1480 1499 391 757 276 1065 1085
11 0.999643 0.998387 0.975049 0.957211 1440 1253 1149 136 156 69 1452 191
12 0.999698 0.998566 0.978848 0.96131 2065 1670 1157 155 546 606 1485 1627
13 0.999885 0.999276 0.982403 0.965475 1442 1395 1326 422 604 714 1475 273

14 0.99995 0.999491 0.98427 0.967885 1446 898 1133 213 997 91 1519 1692
15 0.999777 0.997455 0.985507 0.96939 1391 1278 957 197 301 1045 1532 901
16 0.9999 0.998801 0.988169 0.97446 1503 1368 1187 115 117 802 1437 216
17 0.99981 0.996813 0.989733 0.97735 1404 1021 1090 115 334 499 1472 184
18 0.999923 0.999515 0.991954 0.983116 1455 1372 1457 128 310 595 1101 1530
19 0.999944 0.999332 0.99318 0.984812 1049 1074 1296 205 110 977 1593 1638
20 0.999952 0.999312 0.994174 0.98658 1598 1109 1537 205 598 101 1129 1625
Final - - 1 1 0 0 0 0 0 0 0 0

4.3. Discussion

We first note that fully pre-seeded (100%) runs are
still somewhat randomized as we do not pre-seed
partitioning instances of size 5 through 50 (small
instances with 5 or fewer cells are solved optimally
with an enumerative approach). Figures 1 through
4 justify the traditional quadratic placement

methodology, in the sense that a (LIFO) FM
partitioner clearly benefits from pre-seeding by a
quadratic (squared-wirelength) solver. We see that
full (100%) pre-seeding reduces the FM cutsize by
as much as 35%, compared to no pre-seeding
(0%). On the other hand, MLFM cutsizes are
clearly not improved, and in some cases are worse
when pre-seeded with results from the quadratic

QUADRATIC PLACEMENT 111

TABLE IV Correlation convergence studies for the top-level bisection of Case 2 and pre-seeding with early iterates of the squared-
wirelength minimization

Case 2-quadratic wirelength

Corr. Rank Corr. Rank. Hamming distance to final
COrT. corr. LIFO FM ML CLIP-FM

Iterate to next to final 0% 25% 50% 100% 0% 25% 50% 100%
1 0.99445 0.705295 0.614096 0.392017 2378 2972 3731 4192 2367 299 2246 3861
2 0.995601 0.960569 0.638045 0.682129 2548 2228 2570 2145 2832 3315 2384 2668
3 0.998306 0.987488 0.659515 0.745051 2833 2165 2606 1449 278 791 2283 3895
4 0.998757 0.992223 0.675138 0.773531 3471 3478 2690 1251 1750 4019 2204 3757
5 0.998027 0.995468 0.689994 0.793538 3814 2470 2841 1311 1926 4402 917 3159
6 0.998181 0.997799 0.710364 0.81365 3756 2398 3064 1261 1689 3407 1832 3825
7 0.998545 0.998154 0.729696 0.826896 3752 2899 2291 1302 2710 339 2635 3864
8 0.999051 0.999162 0.750016 0.842943 3110 3243 2521 1382 2519 4388 2355 3791
9 0.999169 0.998872 0.7666 0.854092 2904 2628 2823 1219 2297 3307 2607 3847
10 0.999185 0.9993 0.785464 0.869296 2399 2743 2388 1028 2752 3866 2416 3829
11 0.998488 0.998786 0.803803 0.881228 2507 2923 2714 968 2529 3803 1829 3916
12 0.998938 0.999046 0.829433 0.897179 1906 3037 1883 1013 2434 402 2374 3616
13 0.998435 0.998875 0.851125 0910766 2717 2379 2637 894 1985 4338 994 3833
14 0.998147 0.998721 0.87616 0.925172 2755 2721 2670 655 1656 3732 4062 1429
15 0.997945 0.998286 0901718 0.939449 3107 2961 2549 902 1650 4372 2516 3162
16 0.997114 0.998252 0.925989 0.954149 2546 2510 1937 981 617 3846 2313 1387
17 0.998156 0.998953 0.95073 0.96779 2459 2642 1862 688 523 4389 2429 1495
18 0.998083 0.998727 0.967119 0.976922 2755 2307 1321 685 583 3264 3312 101
19 0.998301 0.99869 0.980637 0.98533 3324 2662 1682 478 2702 4061 2318 1224
20 0.999164 0.999046 0.999164 0.999046 2454 2606 2036 59 1744 3993 2737 1266
Final - - 1 1 0 0 0 0 0 0 0 0

TABLE V Correlation convergence studies for the top-level bisection of Case 3 and pre-seeding with early iterates of the squared-
wirelength minimization

Case 3-quadratic wirelength

Corr. Rank Corr. Rank. Hamming distance to final
COIT. corr. LIFO FM ML CLIP-FM
Iterate to next to final 0% 25% 50% 100% 0% 25% 50% 100%
1 0.977774 0.805804 0.607565 0.638514 3169 3114 3475 3871 3813 4266 1450 2905
2 0.990913 0.979015 0.690443 0.830686 1851 3700 2971 3886 277 3879 2984 2469
3 0.993253 0.995148 0.744298 0.875779 2723 3525 3683 3680 2838 2646 2838 1111
4 0.995701 0.996973 0.789769 0.898059 2669 3334 2955 2882 258 3948 1429 4361
S 0.997248 0.998161 0.825311 0.915763 2788 3745 3404 2546 453 4350 376 4414
6 0.997744 0.998767 0.852773 0.929199 3120 2974 3619 3044 187 4004 1405 4376
7 0.998409 0.999132 0.87671 0.940352 2868 3725 2866 3121 887 293 3486 791
8 0.998692 0.999151 0.895874 0.94939 2716 3143 3631 3069 2735 3264 1453 4331
9 0.998422 0.999177 0.912526 0.957789 2774 4148 3215 2682 3140 3955 1690 1224
10 0.998945 0.999413 0.92911 0.96547 2405 3593 2976 2827 3954 329 2857 2616
11 0.999375 0.999638 0.941674 0971347 2508 3380 2999 2927 279 3923 1309 3004
12 0.998969 0.999268 0.950603 0.975456 3610 3974 3658 2954 3151 4377 1052 4036
13 0.99946 0.999728 0.961839 0.981017 2960 3512 3512 3155 4379 3844 3311 4170
14 0.999278 0.999556 0.96884 0.984048 2417 4267 3679 3056 4039 2638 1727 253
15 0.999619 0.999797 0.976438 0.98757 2775 3662 3285 2899 345 3765 1535 3960
16 0.999688 0.999816 0.981134 0.98958 2939 2911 3852 2992 1570 2494 1254 4397
17 0.999829 0.999903 0.985025 0.991328 3259 3432 4040 3157 3147 2953 1785 4400
18 0.999607 0.99973 0.98757 0.992461 2073 3582 3606 3214 2702 4010 1400 260
19 0.999868 0.999921 0.991186 0.994243 3657 3548 4144 3195 3139 2930 3185 4387
20 0.992901 0.995008 0.992901 0.995008 3184 2973 3892 3230 2713 318 3067 3748

Final - - 1 1 0 0 0 0 0 0 0 0

112

C. J. ALPERT et al.

TABLE VI Correlation convergence studies for the top-level bisection of Case 4 and pre-seeding with early iterates of the squared-
wirelength minimization

Case 4-quadratic wirelength

Corr. Rank Corr. Rank. Hamming distance to final
corT. Corr. LIFO FM ML CLIP-FM
Iterate to next to final 0% 25% 50% 100% 0% 25% 50% 100%
1 0.982226 0.627657 0.449465 0.500442 10060 1694 2664 7230 3736 3491 274 3843
2 0.997357 0.955058 0.501609 0.822398 4321 3456 4176 3972 1165 141 91 549
3 0.996133 0.997686 0.528977 0.897615 3985 2479 4134 1951 3697 2972 3744 495
4 0.998251 0.998819 0.565941 0.911946 6956 5965 3863 2073 672 147 3235 2387
5 0.997302 0.99901 0.594907 0.922433 8704 3442 3410 3312 3799 128 197 492
6 0.997553 0.99931 0.633184 0.932492 6606 4215 3142 3434 3721 186 3244 522
7 0.997205 0.999182 0.670902 0.940816 4795 2242 3975 1379 1185 3472 321 525
8 0.996913 0.999497 0.713008 0.949826 7036 3866 4573 1038 1050 118 307 673
9 0.997377 0.999591 0.755451 0.95665 9381 4113 4587 818 3655 106 63 618
10 0.997351 0.999652 0.793298 0.962594 7964 4774 2866 908 506 119 105 2360
11 0.996165 0.999566 0.829006 0.967859 6906 3039 4214 891 3643 116 257 517
12 0.997065 0.999662 0.868215 0.97342 7586 2797 4029 1819 3700 171 3237 499
13 0.997577 0.999622 0.898789 0.977999 4857 5310 3685 1749 3669 3060 88 294
14 0.998607 0.999793 0.92385 0.982489 4596 5907 3705 1696 3698 3643 2554 313
15 0.998706 0.999715 0.94039 0.985462 7030 2051 4050 1044 259 98 3775 343
16 0.998054 0.999573 0.954994 0.988675 6853 3956 3746 951 713 141 277 340
17 0.998796 0.999746 0.970299 0.992146 5066 2175 3856 1446 3630 206 282 3348
18 0.999387 0.999803 0.980137 0.994402 5102 2505 2538 1108 3696 137 190 2338
19 0.999211 0.999756 0.986279 0.996104 4929 1803 4577 880 631 153 78 2388
20 0.999047 0.999685 0.999047 0.999685 7567 3330 3763 657 1111 210 116 413
Final - - 1 1 0 0 0 0 0 0 0 0
TABLE VII Average final wirelength results for top-down placement of Case 4
Ave final WL for % seeded
Partitioner Analytical placer 0% 25% 50% 100%
CASE 1
LIFO FM Quadratic 2.461 2.580 2.699 2.871
Linear (Weiszfeld) 2.468 2.539 2.752 3.105
ML CLIP-FM Quadratic 2.329 2.365 2.395 2.443
Linear (Weiszfeld) 2.329 2.358 2.370 2.452
CASE 2
LIFO FM Quadratic 7.463 7.535 7.114 6.390
Linear (Weiszfeld) 7.463 7.574 7.111 6.414
ML CLIP-FM Quadratic 5.250 5.344 5.353 5.365
Linear (Weiszfeld) 5.250 5.219 5.235 5.345
CASE 3
LIFO FM Quadratic 3.970 3.917 3.874 3.633
Linear (Weiszfeld) 3.970 3.976 3.853 4.129
ML CLIP-FM Quadratic 3.139 3.172 3.168 3.233
Linear (Weiszfeld) 3.139 3.152 3.202 3.320
CASE 4
LIFO FM Quadratic 9.436 9.297 9.503 8.921
Linear (Weiszfeld) 9.436 8.575 8.724 8.523
ML CLIP-FM Quadratic 6.860 6.948 6.953 7.047
Linear (Weiszfeld) 6.860 6.859 6.767 6.878

solver. For all test cases MLFM with 0% pre-
seeding is clearly superior to FM with 100%
pre-seeding. This confirms that with modern
partitioners, pre-seeding from analytical place-

ments only hurts solution quality.

With regard to the use of a linear-wirelength
minimizer, we observe that the FM partitions are
still generally better with more pre-seeding, but
that the improvement versus pre-seeding with the
quadratic solver is somewhat unpredictable (in

QUADRATIC PLACEMENT 113

two cases, FM results are distinctly worse when
pre-seeded with the Weiszfeld solution).” The
MLFM partitioner is still hurt by pre-seeding, but
the linear-wirelength pre-seeding is less damaging
than the squared-wirelength pre-seeding. Again,
our main conclusion is that a modern multilevel
partitioner no longer requires pre-seeding by an
analytical solver, particularly for large instances.

The Hamming distance studies in Tables III
through VI show that pre-seeding with early itera-
tes leads to partitioning solutions that are structu-
rally similar to those achieved with later iterates.”
We also see that correlation and rank correlation
to the next iterate increase steadily. Since using
later iterates does not usually improve cutsize, this
suggests that correlation convergence measures can
be used for early termination of numerical solvers.
Finally, we observe that linear-wirelength minima
do not seem strongly correlated with squared-
wirelength minima.

We conclude this section by discussing the total
wirelength results for complete placements obtained
with each of the experimental configurations. From
Table VII, we see that conclusions obtained for
individual bisection instances still apply to com-
plete placements: (i) FM is weaker than MLFM;
(ii)) FM benefits from 100% pre-seeding (but not
always from 25% pre-seeding) but MLFM does
better with no pre-seeding than with pre-seeding
from quadratic placement; and (iii) MLFM per-
forms somewhat better when partially pre-seeded
with the placements produced by the Weiszfeld
algorithm, while FM does not benefit from such
pre-seeding. Overall, the worst results were achieved
by FM with no pre-seeding, with partial pre-seeding
by a squared-wirelength solver, or with full pre-
seeding by a linear-wirelength solver. The best
results were achieved by MLFM with no pre-seed-
ing or with linear-wirelength based pre-seeding.

5. CONCLUSIONS AND FUTURES

We have synthesized the motivations and structure
for a generic “quadratic placement’ methodology,
and developed a testbed that allows exploration of
several key implementation decisions. Our experi-
ments compare different combinations of partition-
ers, analytical solvers, and pre-seeding strategies
within the solver-partitioned interface. We observe
that:

e Traditional pre-seeding with a quadratic
(squared-wirelength) engine does not improve
either cutsize or placement results if a strong
partitioner (e.g., ML Clip-FM) is used.

o If pre-seeding is used, earlier iterates are often
as good as later iterates, and correlation conver-
gence tests based on correlation and rank cor-
relation between iterates can save CPU time by
detecting when the relative order of module loca-
tions stabilizes.

e Pre-seeding with a linear-wirelength engine may
be useful if issues such as stability and reprodu-
cibility of solution structure are considered-but
such a conclusion, if true, would require a more
elaborate experimental design to demonstrate.

These observations suggest that with the transi-
tion from classic FM partitioners to modern multi-
level partitioners, quadratic engines may no longer
be necessary in top-down placement, and may even
lead to a loss of solution quality when applied.

Our ongoing research encompasses the follow-
ing areas.

e We are improving our placement testbed to
enable “apples-to-apples” comparison with com-
mercial tools. This entails building infrastructure
for timing-driven layout (industry-standard tim-
ing models, timing constraints formats, delay
calculation and static timing analysis algorithms,

From the results of [30], we would expect superior performance from a Weiszfeld-seeded FM partitioner.

10The Hamming distances are occasionally surprisingly large, even though cutsizes are similar. We recognize that our experiments
do not address other issues, notably (i) the number of multi-starts required for stable solution quality, and (ii) reproducibility of
solution structure, that may yet reveal advantages of solver-based pre-seeding strategies. Since these issues move us into details
metaheuristics within the top-down placement, we defer them to future research.

114

etc.) as well as interfaces to leading routing en-
gines. Out existing placement capability is ex-
tremely competitive for wirelength minimization,
but routability analyses and legality-checking are
inferior to those in commercial systems, making
direct comparisons difficult.

e We are studying non-hierarchical alternatives
for the interface between analytical solvers and
the layout substrate. Several recent approaches,
based on novel formulations for both solver and
“legalizer”, appear promising.

e Finally, several drivers suggest looking beyond
the quadratic placement methodology. (1) Well-
known limits of quadratic placers include inabil-
ity to naturally model path timing constraints,
invariance of orderings to unequal horizontal
and vertical routing resources, and the require-
ment of pre-placed pads to “anchor” the ana-
lytical placement. (2) Future top-down design
methodologies will tend to have smaller random-
logic blocks in order to gain predictability; these
may not be large enough for a quadratic placer to
show its “global awareness” and runtime ad-
vantages. (3) The advent of block-based designs,
with synthesized glue logic spread out over dis-
connected regions, may lead to a design plan-
ning — block building—assembly flow that is also
ill-matched to quadratic placers. Thus, we must
also seek new placement approaches that can be
better suited to future placement contexts.

References

[1]1 Alpert, C.J., Hagen, L. W. and Kahng, A. B., “A Hybrid
Multilevel/Genetic Approach for Circuit Paritioning”,
Proc. ACM SIGDA Physical Design Workshop, April
1996, pp. 100-105.

[2] Alpert, C.J., Huang, D. J.-H. and Kahng, A. B., “Multi-
level Circuit Partitioning”, Proc. ACM/IEEE Design
Automation Conference, June 1997, pp. 530—533.

[3] Alpert, C.J. and Kahng, A. B. (1995). “Recent Directions
in Netlist Partitioning: A Survey”, Integration, the VLSI
Journal, 19(1-2), 1-81.

[4] Alpert, C. J., Chan, T., Huang, D. J., Kahng, A. B,
Markov, I., Mulet, P. and Yan, K., “Faster Minimization
of Linear Wirelength for Global Placement”, Proc. ACM/
IEEE Intl. Symp. on Physical Design, Napa, April 1997,
pp. 4-11.

[5] Alpert, C. J., Chan, T., Huang, D. J.-H., Markov, L
and Yan, K., “Quadratic Placement Revisited”, Proc.
ACM/IEEE Design Automation Conference, June 1997,
pp. 752-757.

(6]

M

(8]

]

(10]

(11

[12]

(13]

(4]

[15]
[16]

(17]

(18]

9]

[20]

[21]

[22]

[23]

C.J. ALPERT et al.

Balay, S., Gropp, W., Curfman Mclnnes, L. and Smith, B.,
“PETSc 2.0 User’s Manual”, Argonne National Labo-
ratory, 1995 http://www.mcs.anl.gov/petsc/petsc.html
Barrett, R., Berry, M., Chan, T. F. et al., “Templates for
the Solution of Linear Systems: Building Blocks for
Iterative Methods”, SIAM Press 1994, http://netlib2.
cs.utk.edu/linalg/html_templates/Templates.html

Bui, T., Heigham, C., Jones, C. and Leighton, T., “Improv-
ing the Performance of the Kernighan-Lin and Simulated
Annealing Graph Bisection Algorithms”, Proc. ACM/
IEEE Design Automation Conference, June 1989,
pp. 775-778.

Cheng, C. K. and Kuh, E. S. (1984). “Module Placement
Based on Resistive Network Optimization”, IEEE Trans.
on Computed Aided Design, 3, 218—225.

Cong, J. and Smith, M’L., “A Parallel Bottom-Up
Clustering Algorithm with Applications to Circuit Parti-
tioning in VLSI Design”, Proc. ACM/IEEE Design
Automation Conference, June 1993, pp. 755-760.

Dutt, S. and Deng, W., “VLSI Circuit Partitioning by
Cluster-Removal Using Iterative Improvement Techni-
ques”, Proc. IEEE Intl. Conf. on Computer-Aided Design,
November 1996, pp. 194-200.

Elman, H. C. and Chernesky, M. P. (1993). “Ordering
Effects on Relaxation Methods Applied to the Discrete
One-Dimensional Convection-Diffusion Equation”, SIAM
J. Numer. Anal., 30(5), 1268 —1290.

Fiduccia, C. M. and Mattheyses, R. M., “A Linear-Time
Heuristic for Improving Network Partitions”, Proc.
ACM/IEEE Design Automation Conference, June 1982,
pp. 175-181.

Fukunaga, K., Yamada, S., Stone, H. S. and Kasai, T.,
“Placement of Circuit Modules Using a Graph Space
Approach”, Proc. ACM/IEEE Design Automation Con-
ference, June 1983, pp. 465—-471.

Hackbush, W., Iterative Solution of Large Sparse Systems,
Springer Verlag, 1994.

Hagen, L. W., Huang, D. J.-H. and Kahng, A. B,
“Quantified Suboptimality of VLSI Layout Heuristics”,
Proc. ACM|IEEE Design Automation Conference, June
1995, pp. 216-221.

Hagen, L. W., Huang, D. J.-H. and Kahng, A. B., “On
Implementation Choices for Iterative Improvement Parti-
tioning Algorithms”, Proc. European Design Automation
Conferences, September 1995, pp. 144—149.

Hauck, S. and Borriello, G., “An Evaluation of Biparti-
tioning Techniques”, Proc 16th Conf. on Advanced
Research in VLSI, 1995, pp. 383-402.

Hendrickon, B. and Leland, R., “A Multilevel Algorithm
for Partitioning Graphs”, Proc. Supercomputing, 1995.
see also Tech. Rep. SAND93-1301, Sandia National Labo-
ratories, 1993.

Huang, D. J.-H. and Kahng, A. B., “Partitioning-Based
Standard-Cell Global Placement with an Exact Objec-
tive”, Proc. ACM/IEEE Intl. Symp. on Physical Design,
Napa, April 1997, pp. 18-25.

Karypis, G., Aggarwal, R., Kumar, V. and Shekhar, S.,
“Multilevel Hypergraph Partitioning: Application is VLSI
Domain”, Proc. ACM/IEEE Design Automation Confer-
ence, June 1997, pp. 526—529.

Karypis, G. and Kumar, V., “Multilevel Graph Part-
itioning Schemes”, Banerjee, P. and Boca, P., Editors,
Proc. Intl. Conf. on Parallel Processing, 1995, 3,
113-122.

Kernighan, B. W. and Lin, S. (1970). “An Efficient
Heuristic Procedure for Partitioning Graphs”, Bell Syst.
Tech. J., 49(2), 291-307.

QUADRATIC PLACEMENT 115

[24] Krishnamurthy, B. (1984). “An Improved Min-Cut Algo-
rithm for Partitioning VLSI Networks”, IEEE Trans. on
Computers, 33(5), 438 —446.

[25] Kleinhans, J., Sigl, G., Johannes, F. and Antreich, K.
(1991). “GORDIAN; VLSI Placement by Quadratic
Programming and Slicing Optimization”, IEEE Trans.
on Computer Aided Design, 10(3), 356 -365.

[26] Lengauer, T., Combinatorial Algorithms for Integrated
Circuit Layout, Wiley-Teubner, 1990.

[27] Mahmoud, I. I., Asakura, K., Nishibu, T. and Ohtsuki, T.
(1994). “Experimental Appraisal of Linear and Quadratic
Objective Functions Effect on Force Directed Method for
Analog Placement”, IEICE Transactions of Fundamentals
of Electronics, Communications and Computer Sciences,
E77-A(4), 719-725.

[28] Otten, R. H. J. M., “Automatic Floorplan Design”, Proc.
ACM/IEEE Design Automation Conference, June 1982,
pp. 261-267.

[29] Ponnusamy, R., Mansour, N., Chaudhary, A. and Fox,
G. C. (1994). “Graph Contraction for Mapping Data on
Parallel Computers: A Quality-Cost Tradeoff”, Scientific
Programming, 3(1), 73-82.

[30] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and
Flannery, B. P., Numerical Recipes in C: The Art of
Scientific Computing, 2nd edn., Cambridge: Cambridge
University Press, 1992.

[31] Riess, B. M., Doll, K. and Johannes, F. M., “Partitioning
Very Large Circuits Using Analytical Placement Techni-
ques”’, Proc. ACMJIEEE Design Automation Conference,
June 1994, pp. 646—651.

[32] Sigl, G., Doll, K. and Johannes, F., “Analytical Place-
ment: A Linear or a Quadratic Objective Function?”,
Proc. ACM|IEEE Design Automation Conference, June
1991, pp. 427-432.

[33] Tsay, R. S., Kuh, E. and Hsu, C. P. (1988). “Proud: A
Sea-Of-Gate Placement Algorithm”, IEEE Design and
Test of Computers, pp. 44— 56.

[34] Tsay, R. S. and Kuh, E. (1991). “A Unified Approach to
Partitioning and Placement”, IEEE Trans. on Circuits and
Systems, 38(5), 521-633.

[35] Vygen, J., “Algorithms for Large-Scale Flat Placement”,
Proc. ACM/IEEE Design Automation Conference, June
1997, pp. 746-751.

[36] Weiszfeld, E. (1937). “Sur le Point pour Lequel la Somme
des Distances de n Points Données est Minimum”, Tohoku
Mathematics J., 43, 355—-386.

[37]1 Wipfler, G. J., Wiesel, M. and Mlynski, D. A., “A
Combined Force and Cut Algorithm for Hierarchical
VLSI Layout, Proc. ACM/IEEE Design Automation
Conference, June 1982, pp. 671—-677.

Authors’ Biographies

Charles J. Alpert received the Ph.D. degree in
computer science at the University of California at
Los Angeles in 1996. He currently is a Research
Staff Member for the Computer Aided Design
Group at the IBM Austin Research Laboratory in
Austin, TX. His research interests include parti-
tioning, placement, noise avoidance, timing opti-
mization, and clock distribution. He received two

Best Paper Awards at the 1994 and 1995 ACM/
IEEE Design Automation Conferences. Dr. Alpert
is a member of IEEE and the program committee
for the International Symposium on Physical
Design.

Andrew E. Caldwell received the B.S. degree in
Computer Science from UCLA, and is currently a
Ph.D. student in Computer Science at the School
of Engineering Applied Science, UCLA. His re-
search interests include VLSI layout design, and
graph algorithms.

Tony F. Chan is currently chair of the mathe-
matics department at the University of California,
Los Angeles, where he has been a professor since
1986. Previously, he was on the faculty of the
Computer Science Department at Yale University.
His current research interests include the design of
efficient computational algorithms for large scale
scientific computing (e.g., multigrid and domain de-
composition algorithms, iterative methods, Krylov
subspace methods, and parallel algoritms), VLSI
circuit placement and PDE methods for image
processing. He is a member of SIAM, AMS, and
IEEE and is on the editorial boards of several
leading journals in computational mathematics,
including the SIAM J. Sci. Comp. and Numer. Algs.

Dennis Huang (S°93-M’98) received the B.S. de-
gree form the National Taiwan University, Taipei,
Taiwan, R.O.C., the M.S. degree from State Uni-
versity of New York, Stony Brook in 1991, and
Ph.D. degree from University of California, Los
Angeles in 1997, all in Computer Science.

Since 1991, he was a Research Assistant in the
Department of Computer Science, University of
California, Los Angeles. In summer of 1995, he was
with High Level Design Systems, Santa Clara, CA.
In 1997, he was with the Design Planning Group,
Synopsys, Mountain View, CA. Currently, he is
with the Layout Product Division, Avant! Corpora-
tion, Fremont, CA. His research interests are in the
areas of physical design on VLSI CAD, with
emphasis on circuit partitioning, placement, and
clock routing.

Andrew B. Kahng received the A.B. degree in
applied mathematics (physics) from Harvard Col-
lege, and the M.S. and Ph.D. degrees in computer

116 C. J. ALPERT et al.

science from the University of California at San
Diego. He joined the computer science faculty at
UCLA in July 1989, and is currently professor
and vice-chair for graduate studies. From April
1996 through September 1997, he was on sabbatical
leave and leave of absence from UCLA, as a Visit-
ing Scientist at Cadence Design Systems, Inc.
Professor Kahng has received NSF Research Initi-
ation and Young Investigator awards, and a DAC
Best Paper award. His research interests include
VLSI physical layout design and performance
analysis, combinatorial and graph algorithms,
and stochastic global optimization.

Igor L. Markov graduated from Kiev University,
Ukraine in 1993 and received his M.A. degree
in pure mathematics from UCLA in 1994. He

worked for parametric Technology Corporation in
1994 and is currently a doctorate student and in
Computer science and research assistant at UCLA.
He is a student member of AMS, ACM, IEEE and
IEEE Computer Society. Igor Markov is currently
working in several areas of VLSI physical layout de-
sign including hypergraph partitioning and place-
ment. He is interested in hypergraph algorithms,
analytical algorithms, continuous and combinator-
ial optimization.

Max S. Moroz is a Ph.D. student in decision
sciences at the Anderson Graduate School of
Management, UCLA. His research interests include
modeling business processes, graph algorithms,
and reusable software. He is a student member
of IEEE and INFORMS.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

o

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

