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Abstract—Given an undirected graphG = (V, E) with positive  shortest path directed acyclic graph@f(defined in the next
edge weights (lengthsyr: £ — R*, a set of terminals (sinks) section), it is easy to see that an MSA 6f is an MSPSA

N C V, and a unique root noder € N, a shortest path Steiner of G. Both the MSA and the MSPSA problems are NP-hard
arborescencéhereafter an arborescence) is a Steiner tree rooted [4], [17]

at r spanning all terminals in N such that every source-to- . . .
sink path is a shortest path inG. Given a triple (G, N, r), the The rectilinear version of the MSPSA problem is called the

minimum shortest path Steiner arborescence (MSPSA) problem minimum rectilinear Steiner arborescence (MRSA) problem.
seeks an arborescence with minimum weight. The MSPSA prob- Given a set of terminal®/ (including the root- located at the
lem has various applications in the areas of physical design of origin), let GH(N) _ (VH(N)7 EH(N)) be the induced Hanan

very large-scale integrated circuits (VLSI), multicast network .
communication, and supercomputer message routing; various grid graph [15] of V. It can be shown that an MSPSA of

cases have been studied in the literature. In this paper, we propose (G (), N, 7) is an MRSA of V.
several heuristics and exact algorithms for the MSPSA problem  The MSPSA and MRSA problems have applications to

with applications to VLSI physical design. Experiments indicate performance-driven very-large-scale-integration (VLSI) phys-
that our heuristics generate near optimal results and achieve jca| gesign. Conget al. showed that rectilinear Steiner ar-
speedups of orders of magnitude over existing algorithms. o L . -
borescences outperform traditional heuristic Steiner minimum
Index Terms—Algorithm, physical design, Steiner arbores- trees for delay optimization in submicron process technology
cence, Steiner tree, VLS. by up to 66% [10]. Alexander and Robins applied theA
and IDOM algorithms to route timing-critical nets in field
|. INTRODUCTION programmable gate arrays (FPGA's) [1]. Cong and Madden
[11] proposed a multisource routing algorithm based on con-
structing minimum-cost, minimum-diameter arborescences.
Exact methods for the MRSA problem can be classified into
%) dynamic programming (DP), 2) integer programming, 3)
. ; . : ranch-and-bound (BNB)/enumeration techniques, and 4) min-
Steiner tree rooted at spanning all terminals iV such that cost max-flow (MCMF) technique. The DP-based approach

every source-to-sink path is a shortest pathdn Given a ' . :
triple (G, N, r), the minimum shortest path Steiner arbores > first used in the work of Ladeira de Matos [20] and

. .. “more recently in theRSA/DP algorithm by Leung and Con
cence (MSPSA) problem seeks an arborescence with mlnlmw] NastanZkyet al. [24] forrgulated trile MRgA problen?
weight. y )

The MSPSA problem is a special case of the minimur(r?nd its D-dimensional generalization) as an integer program

Steiner arborescence (MSA) problem, which has been Waﬁd solved it with implicit enumeration techniques. Cong and

studied in the literature (for example, [14] and [17]). Giver§eung presented théuree/BnB[9] and RSA/BNB [22] algo-

a triple (G, N, r) wherein G is a directed graph, the MSA rithms, both of which employ branch-and-bound techniques

o . : . tq effectively prune the search space. ldbal. [16] gave
problem seeks a minimum-weight Steiner tree spanning %/Jo exhaustive enumeration algorithms with(|N|?*) (k is
nodes inV with all edges directed away from If G/ is the 9

the number of “dominating” layers) an@(|N|23I™¥1) run-
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output has length no more than twice the optimal length, wifiroblem on SPDAG'’s (with proper orientation of the edges).
runtime beingO(|N| log |N]) if all terminals are located in Given a general graply, its SPDAGG’ can be constructed
the first quadrant an@(| N|? log | V|) in the general case. Thein O(|E| + |V| log |V|) time using Dijkstra’s algorithm with
runtime for the general case was improvedgN| log |V|) a Fibonacci heap [13]. We rank the nodeslofin order of
by Cdrdova and Lee [12]. In [10], Congt al. presented the increasing distance labels, and we usel < ¢ < |V] to
Atree algorithm based on making “safe moves.tllez and denote theith-ranked node, where, is the root andy)y| is
Sarrafzadeh [27] gave t®RDPT algorithm, which is based on the farthest node from the root (Dijkstra’s algorithm can be
optimally solving a restricted version of the MRSA problemmodified to output this ranking without increasing runtime or
More recently, Kahng and Robins gave a simple adaptationsgace complexity). The following discussion assumes that the
their iterated 1-Steiner algorithm to the MRSA problem [19]nput graphG is already an SPDAG, and we do not distinguish
and Leung and Cong presented #DeA algorithm, whose betweenG and G unless otherwise noted. For simplicity,
performance is very close to optimal in practice [23]. we further assume thajy,| is a terminal (otherwise, we can
The hypercube version of the MSPSA problem, also calldithd the maximum: such thatv; € N and remove nodes
the optimal communication tree or optimal multicast tree;,, - --, vjy;| and their incident edges frof, since none of
problem in the literature, has been studied by Gétodl. [4], them are in any source-to-sink shortest path).
[5], Lan et al. [21], and Sheu and Su [26]. The problem is Given (v, v') € E, v is called aparentof +" and+’ a child
NP-hard [4], and heuristics include theN heuristic [21], the of v. We useC; to denote the set of children ef in G. That
COVER heuristic [4], and the more receghSu heuristic [26]. is, C; = {v|(v;, v) € E}. Given two nodew, v € V, we say
There has been relatively little research on the generdlis reachablefrom v, denotedv < +/, if and only if there
MSPSA problem. In [1], Alexander and Robins presentegkists a (directed) path i¥ from v to +/, andv < +/ if and
the path folding PFA) algorithm, an adaptation of thRSA only if v < ¢ andwv # v'. If v < ¢/, thenv ~» ¢/ denotes
heuristic; and theDOM algorithm, which iteratively adds the a shortest path from to v/ in G (v/ is called a child ofv
best Steiner node as a terminal (analogous to the Iteratedhe arborescence). Unless otherwise noted, in the following
1-Steiner algorithm). They further showed that the MSPSwe assume;, v/, v € V and1 <4, 5, k < |V].
problem cannot be approximated within a factoBglog |N|)
times optimal unless deterministic polylog space coincides m
with nondeterministic polylog space. ] o
In this paper, we propose three heuristics and two exactVe begin by reviewing the MRSA problem. Recall that
algorithms for the MSPSA problem in the following ord&z ( @ rectilinear Steiner arborescence is a Steiner tree in the
= exponential-time exact algorithm = polynomial-time Manhattan plane spanning all terminals A such that each
heuristic): source-to-sink path is a rectilinear shortest path. In [25],

« (A) RSA/G (Section Ill): an efficient adaptation of theR@o et al. presented th&kSA heuristic, which constructs an
greedyRSA heuristic in '[25]. arborescence in a bottom-up fashion starting Wit subtrees,
. (0) RSA/BNBIG (Section IV)" an optimal exponential- each consisting of a terminal i¥. RSA iteratively mergesa

; ) pair of subtree roots andv’ such thafv, ') is as far from the
time branch-and-bound variant 8SA/G (analogous 10 gqyrce as possible, whefe, ') is the point on the bounding
the RSA/BnB algorithm in [22]);

box of v andv’ that is closest ta. The algorithm terminates
* () RSA/DP/G (Section V). a fast implementation ofwhen only one subtree remains.
RSA/BnB/G based on dynamic programming (analogous A straightforward generalization oRSA to the MSPSA

. THE RSA/G ALGORITHM

to the RSA/DP algorithm [22]); problem is as follows. Lef’ be the set of active root nodes
* (A) k-IDeA/G (Section VI): a “scaled-down” near optimal (initially P = N). Then, iteratively find a node € V' such
version of RSA/BnB/G: that 1) there exist’/, v/ € P (v/ # ¢") with v < ¢/ andv =<

v and 2)A(v) is maximized among all such nodes satisfying

1). Then, for each/ € P with v < ¢/, construct a shortest
athv ~» ¢' and remove)/’ from P. Last, insert into P. This
focess is repeated unfit = {r}. Alexander and Robins gave

a straightforward implementation of this approach, called the

path folding algorithm BFA) [1]. Because the&FA algorithm

requires frequent computation of the least common ancestor

of pairs of nodes in the SPDAG [up ©(|V||N|?) times], its

l. PRELIMINARIES overall time complexity iSO(|N||E| + |V||N|? log |V]).

Given G = (V, E), we define thedistance labebf v € V, We adopt a slightly different approach, visiting the nodes

denotedA(v), to be the shortest path distance wfrom » " V' in decreasing rank order (i.e., starting fraspy-|) and

in G. The shortest path directed agychc subgraph (SPDAG)actally, any arborescence is a subgraphsf = (V' E"), where

of G is denoted@ = (V’, E'), with V/ = V and the v e v” C V' ifand only if v is on a shortest path fromto somet € IV,

directed ed ’ E' if and onlv if ’ E and and(v, ') € E” C E'ifand only ifv, »' € V" and(v, v') € E’. In other

A(v’) A(z?)e(—%z:;}(l ev,) Clearly an)i/ arég;evs():eice 6Fis words, G'' is the union of all the shortest paths from the root to the sinks.
- — ). ,

- Although G can be substantially smaller th&#, to simplify the discussion,
a subgraph of’; hence, we focus on solving the MSPSAwe focus onG' and .

e (A) k-IAIG (Section VII): a natural dual ot-IDeA/G that
implements thaDOM heuristic [1] efficiently.
Experiments indicate that our heuristics generate near o
mal results and achieve speedup®mfersof magnitude over
existing arborescence algorithms.
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Fig. 1. An example run of thRSA/G algorithm. The upper left figure shows Fig. 2. An example run of th&®SA/BnB/G algorithm, based on the pre-

an SPDAG with nine nodes and three terminals (one of which is therjpot vious example. LikeRSA/G, RSA/BnB/G visits the nodes in decreasing
wherein each node is labeled with its distance franThe upper right figure rank order. We label the node; with the unique element (if any) of
shows the ranking of the nodes (based on the distancesRawd will visit  the setZ; after »; is visited. Two branches are created @, since

the nodes in decreasing rank order. We label the ngdeith the unique it is an SMO, one corresponding tekipping and one tomerging Both
element (if any) of the set; after v; is visited. The execution isvs, v7  branches are executed, and the branch with the lowest total weight is the
(TMO), vs, vs, v4 (N0 action),vs (SMO, v3 ~» vy andwvs ~ vg), v2 (N0  optimal arborescence (the merging branch in this example). For the merging
action), vy (TMO, vy ~ v3). The P; are as follows:Py = , Ps = {vg}, branch, theP; and A; are as follows:Ps = P> = {vs}, Pi = {vi}.

P = P6 = Ps = Py = {vr,vs}, Ps = Po = {vs}, A = {v1}. Az = As ={vg ~ vy, v3g ~ vs}, A1 = {v1 ~ v3, v3 ~ v7, v3 ~ vs}.

The A; are as follows:Adg = As = A7 = 4 = A5 = Ay = 0, For the skipping branch?; = P> = {v7, vs}, Pi = {vi}. A3 = A3 =0,

Az = Ay = {vz ~ v7, v3 ~ vg}, A1 = {v1 ~v3, v3 ~ o7, v3 g}, Ay = {v1 ~ V7, v~ Vs

8

maintaining gpeer setonsisting of all the subtree roots whose  pyof:

ranks are higher than the rank of the current node. Weltise

and A;, respectively, to indicate the peer set and the partially? € Xi < v; <v and v € Py

constructed arborescence after visitigg(and before visiting v, eCsty; v and ve Py

vi—1)- Let X; = {v|v; < v andv € Py} be the subset of & € Ci sty 2 v, vE P andv € Pryy (%)
P reachable fromy; just beforev; is visited). There are three .
possible scenarios:

¢ terminal merger opportunity (TMO); € N;
« Steiner merger opportunity (SMO); ¢ N and|.X;| > 1;
» otherwisey; ¢ N and |X;| < 1. where (x) denotes the application of Theorem 1 (note that

If either TMO or SMO applies, wemerge all the nodes ¢+ 1 < J) in the = direction. -

in X, (if any) into v; and update the peer set and the Theorem 3:|Y;| < 1for 1 <4 < |V].

arborescence, respectively, i.€, = P,y — X; + {v;} and Proof; We prove this inductively. The theorem holds for

Ai = Aiy1 + {v; ~ vjv € X;}. Otherwise, P, = Py, ¢ = [V[ sinceYjy) = {uy}. Assume thafYiy,| < 1 for

and A; = A, (neither the peer set nor the arborescend®Mei; we will show that this impliegY;| < 1. According to

is changed). The algorithm starts with;y/,; = @ and the algorithm, in the case of TMO or SMO (whergc NV or

Pyi;1 = 0 and terminates onc®, and A; are computed; |-Xi| > 1), we havel; = Piy; — X; + {vi} and, therefore,

Ay is returned. An example is shown in Fig. 1. The timé¥i| = [{vi}| = 1. Otherwise,u; ¢ N and|.X;| < 1, and so

complexity depends on how fast; is computed, and the We haver; = Piyy and|Y;| = [Yip,[ < 1. O

following three theorems show that this can be done efficiently, These theorems lead to a very efficient scheme to deter-
Theorem 1: Giveni, j with j <4, v; € P; = v; € I}, for Mine X;. First, Theorem 3 indicates thaf has either zero

anyj < k < i. or one element. Therefore, we can use constant per-node

Proof: For any nodey;, 1 < i < |V, either 1) there does Mémory to store the set; at the nodev; after visiting

not exist anyk such thatu; € P, or 2) there exists’ < ¢ vi- Second, Theorem 2 implies thaf; can be computed

such thaw; € P for all # < k <4 andwv; & P, for all k < by first tqklng thej union ofY; for each childv; of v;

or k > i. Therefore, if there existg < i such thaty; € p;, and then intersecting witt#;,. We can perform the union

it is necessary that case 2) applies, andisa P, for any k an_d intersection operations in time Ilne_a_r_ln t_he number of

such that’ < j < k < 4, wherei’ < j. [ children? and so the time complexity of visiting is O(|C;|).
Theorem 2:Let Y; = {v|v; = v andv € P;} be the subset

of P reachable fromy; immediately aftery; is visited. Then 3This is achieved by properly indexing the sinks and Steiner nodes. Note
that this is possible despite the fact that there can be many more nodes in the
X; = (U,Ujeciyrj) n -Pi-i—l-

peer set thafC;|.

Sdy,eCistveY; and ve Py
SVEUyeqY; and ve Py
SVE (U'UjECiY}) n ‘Pi-i-l
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TABLE |
THE RSA/G ALGORITHMS. (&) TMO or SMO AnD (b) OTHERWISE
Function RSA/G(G, N, deleted)
Given an SPDAG G = (V, E) with ranked nodes, a set of terminals N € V,
and the array marking permanently deleted nodes, return the arborescence
according to the RSA/G algorithm.
Globals: Y
i V[+1;
P — b
A — 0
while i > 1 do
1—1—1;
X (Uv]'EC,Y}) N P)
ifv; € N or (|X| > 1 and deleted[i] = false) then
(@) Y — {vi};
P—P—-—X+ {’U,’};
A—A+{v,~v]|veX}
else
(b) Y — X;

return A;

The overall time complexity iizjvl O(|C;]) = O(|E|), or  Furthermore,v”” is called amaximal merging poin(MMP)
O(|E| + |V] log |V]) including Dijkstra’s algorithm, which of v and+’ if and only if +" is an MP ofv and+’ and no
is significantly better than the(|N||E| + |V||N|* log |V|) descendant of” is an MP ofv and+’. Note that any pair of
complexity of thePFA algorithm [1]. Our algorithm, called nodes inG has at least one MP.

RSA/G, is summarized in Table |. Note that we describe a more Theorem 4: Given an arborescenc, if there exists some
general version oRSA/G, which allows some Steiner nodesSteiner nodev with two or more children and; is not an
to be marked as permanenttieleted(discussed in the next MMP of every pair of children ofy, there exists4’, which
section). The algorithm will not perform any Steiner mergdias a lower cost thari.

at such locations. The default version REA/G simply sets Proof: _ _ _
deleted[i] = false for all i. Assume the contrary, that is optimal but a Steiner node

v with two or more children is not an MMP of some children
v', v". Then there exists a nodesuch thaty < ¥ andv < v/
IV. THE RSA/BNB/G ALGORITHM and? =< v”. The new arborescencd/ = A — {v ~ v/, v ~
U o 0, 0 W, B ) with A = A= v v D] <
Recently, Leung and _Cong presented an exponentlal-tlrp |, yields a reduction in total tree length—a contradiction.
branch-and-bound algorithm calledSA/BnB that solves the = Tparefore, it suffices to consider Steiner mergers at MMP's

MRSA problem optimally [22]. They observed that tRSA only. Let Z; beY; if |¥;| = 1 and @ otherwise; then we have
heuristic is suboptimal precisely because Steiner mergers g{g following theorem.

greedy and (sometimes) suboptimal. To obtain an optimaltheorem 5: |Z| <1for1<i<|V|. O
solution, they suggested trying obbth merging and skip- e can simply useX! = (Uy,ec: Z;) N Piyy [which also
ping at SMO's. The algorithm, calleBSA/BnB, essentially takesO(|C;|) time to compute] instead of; in the algorithm.
enumerates the entire sequence of choices betwemging The RSA/BnB/G algorithm is summarized in Table II, and its
andskippingat each SMO, and [22] showed that this methogptimality is proven in Appendix A. An example is shown
enumerates at least one optimal arborescence. in Fig. 2. The set of skipped nodes resulting in the lowest
Like RSA, RSA/BnB can also be generalized to the MSPSAree length is marked as permanentigleted and finally
problem. LikeRSA/G, RSA/BnB/G visits nodes in decreasingRSA/G() is called (with the set of deleted nodes) to return
rank order and performs merger if the current nadés a the arborescence.
TMO. If v is an SMO, howeverRSA/BnB/G tries outboth
merging and skipping and returns the better solution. V. THE RSA/DP/G ALGORITHM
Unfortunately, the generalization is not as trivial as before. | eung and Cong [23] showed that each subproblem in the
This is because Theorem 3 no longer holds: after an SMOriscursive call to theRSA/BnB algorithm can becompletely
skipped atv; (meaning there exist, v € P41 with v; < v characterized by a tripleP, K, C), which can be defined and
andv; < ¢/, but they are not merged af), |Y;| > |[{v, v'}| = solved recursively. As a result, a hashing-based DP technique
2. can be applied to avoid computing any given subproblem more
Given two nodew, v' € V, v € V is called amerging than once. The algorithm, call®&SA/DP, is significantly faster
point (MP) of v and+/ if and only if v/ < v andv” < ¢/. than RSA/BnB and capable of solving 250-terminal MRSA
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TABLE 1l
THE RSA/BnB/G ALGORITHM. (&) TMO. (b) SMO. (c) QHERWISE
Function RSA/BnB/G/aux(i, P)
Globals (set by RSA/BnB/G()): G, N, Z, deleted
X (UUjEC,Zj) N P,
if i = 1 then
return (0,5 x [vi ~ v]);
else if v; € N then
@ Z; — {ui}s
(D,C) «— RSA/BnB/G/aux(i — 1, P — X + {v:});
return (D,C+ 3"  x [vi ~ v|);
else if | X| > 1 then
() Zi —{vi};
(Dm, Cp) < RSA/BnB/G/aux(i — 1, P — X + {v;});
Cm — Cm + e x lvi ~vl;
Zi — b
(Ds,Cs) < RSA/BnB/G/aux(i — 1, P);
Dy, — D, U {vi};
return |Cp,| < |Cs| ? (D, Cr) : (Ds, Cs);
else
(© Zi — X;
return RSA/BnB/G/aux(i — 1, P);

Function RSA/BnB/G(G, N, k)
Given an SPDAG G = (V, E) with ranked nodes and a set of terminals N € V
return the arborescence according to the RSA/BnB/G algorithm.

(D,C) «— RSA/BnB/G/aux(]V|, 0);

foreach v; € V do deleted{i] — (v; € D) ? true : false;

return RSA/G(P, N, deleted);

problems optimally in one hour. The reader may refer to [28pnditionallyinserted into the hash table (denotegin the

for more details. algorithm) to be solved later. To be more precise, given a
This result can be generalized to the MSPSA problem, msw tupleT = (P, v;, C, S), it is inserted into the hash table

each subproblem in the recursive callR8A/BnB/G/aux can if either 1) a tuple of the forn¥” = (P, v;, C’, 5’) already

also be completely characterized by a tripfé v;, C), where exists in the hash table, add > C (in such case, the tuplF

v; IS the node to be visitedP is the current peer set (i.e.,will be replaced byT’) or 2) no such tupld” exists. Note that

P = F,14), and C is the cost of the partially constructedconditional insertion guarantees that at most one tuple of the

arborescence so far. We also calthe rank of the triple. form (P, v;, —, —) exists in the hash table at any given time.

In addition to the characterization, we need to be able to 1)If the expansion of a tupld’ leads to the creation of a

determine the seX; (the subset of’ reachable from;) given tupleT”, it is necessary thdf” has a lower rank thaf” since

an arbitrary triple( P, v;, C) and 2) determine whether;, is nodes are visited in decreasing rank order. By expanding tuples

an MMP. To solve 1), we first completely characterize thia decreasing rank order, we guarantee tR&A/DP/G will

“<” relation, which requiregV|? bits andO(|V|?> + [V||E|) expand at most one tuple of the for¥, v;, —, —) for each

preprocessing time (quite reasonable for an exact algorithrpgir (P, v;).° In other words, no subproblem is solved more

Let W; ; = {vlvi < v andv € P;}. Then X; is simply than once.

W iy1. To solve 2), it suffices to look at eadlr; ;1 such The time complexity of the algorithm is dominated by

thatv; € C;. Then,v; is an MMP if and only if none of the expansion of tuples. Since there are at m®X! pairs of

W, i+1 has more than one element. the form (P, v;) for eachv; € V, and each expansion
The algorithm, called RSA/DP/G, is summarized in takesO(|C;|) time at nodev;, the overall time complexity

Table Ill. Our implementation ofRSA/DP/G characterizes is O(3 C;|2Mh = O(|E|2IMD.

each subproblem with a tuple®, v, C, S), where S is the

set of nodes at which Steiner mergers o¢ClRSA/DP/G VI. THE k-IDeA/G ALGORITHM

visits nodes in decreasing rank order in the fashioR®A/G. Since RSA/BnB/G tries out both skipping and merging at

If the current node is an SMO, the branching and mergirgyery SMO, it requires exponential runtime in the worst case.

subproblems are characterized as two tuples, which are théa now describe a simple heuristic variant REA/BnB/G,

5This is because no other tuple of the same form exists in the hash table
4Strictly speaking, onlyP ands are needed to characterize the subproblerh) at the time of expansion of the tuple (a property of conditional insertion)
to be solved(' is used for pruning purpose asdfor regenerating the optimal and 2) in subsequent execution (all tuples generated later will have a lower
solution once determined. rank).

v, €V
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TABLE 11l
THE RSA/DP/G ALGORITHM. (a) TMO. (b) SMO. (c) @HERWISE
Function RSA/DP/G(G, N)
Given an SPDAG G = (V, E) with ranked nodes and a set of terminals N € V
return the arborescence according to the RSA/DP/G algorithm.
compute the “<” relation;
H — {({U|V|}1 IVI’ 0, 0)}a
i V]
while i # 0 do
(%) find T = (P,i,C,S) € H such that { is maximized,;
H— H-{T};
X — 0
foreach v; € C; do
W e« {v|v; <vandve P}
if [W| > 1 then goto (x);
X — X+ W,
repeat
if v; € N then
@) P—P—-X+{v};
C e C4 Ty It~ ol
ie—1—1;
else if | X| > 1 then
(b) H—Ho{(Pi-1,C S}
H e Ho{(P =X+ {uhi=1,0+%,cx I~ o, SU{n));
goto (x);
else
(©) te—1i—1;
(P,i,C,S) — the only element left in H;
foreach v; € V do deleted[i] — (v; € S) 7 false : true;
return RSA/G(P, N, deleted);

which allows up tok SMO'’s to be skipped along any path inMSpA (G, NU{v}, r)|, where| MSpA (G, N, r)|is the length
the branch-and-bound diagram. The best set of skipped nodéshe minimum spanning arborescenceféfin G rooted at
are is marked as permanentiigleted,and the algorithm is ». NV is then replaced by U {v} in the next iteration until no
repeated until there is no further improvement. The heurisirther improvement is possible. The algorithm is a straight-
tic, called k-IDeA/G (iteratedk-deletion for arborescence), isforward adaptation of the iterated 1-Steiner approach [18] to
described in Table IV. At the end of each iteration, the s#te graph arborescence problem, and the time complexity is
of < k skipped nodes resulting in the lowest tree lengt®(|N||E| + [V||N|?).
is marked as permanentigeleted(a deleted node remains We now propose a heuristic inspired by the above approach,
deleted throughout, and the ¥ SMO'’s skipped in the current with a strategy similar tok-IDeA/G. Recall thatk-IDeA/G
iteration do not include previously deleted nodes). The procesgn be viewed as a restricted version of tRSA/BnB/G
is repeated until no further improvement is obtained. Laglgorithm, in which at mosk Steiner mergers arskipped
RSA/G() is called (with the set of permanently deleted node§)ur proposed algorithm, called-IA/G (which stands for
to return the arborescence. iteratedk-arborescence), is a symmetrical restricted version of

We can show that the functiolDeA/G/aux() (one itera- RSA/BnB/G in which at mostk Steiner mergers arallowed
tion of the k-IDeA/G algorithm) hasO(|E||N|¥) time com- More preciselyk-IA/G also visits the nodes in decreasing rank
plexity, where k is the number of allowed deletions (theorder. If the current node is a TMO, the terminal merger is
complexity analysis is detailed in Appendix B). The exa@ways performed. I is an SMO, both merging and skipping
perimental result (see Section VIII) shows that in practicére tried unless Steiner mergers have already been performed
k-IDeA/G almost always terminates after only a few iterationglong the path, in which case the SMO is skipped.
Hence, the average-case time Comp|exity€QDeA/G is also Like the RSA/G and thek-IDeA/G heUriStiCS,k‘-|A/G first
O(|E||N|¥). In practice, even théO|E||N|)-time 14DeA/G ComputesX; when nodey; is visited, then takes appropriate
heuristic generates solutions that are essentially optimal an@gdion based ofX;. With RSA/G andk-1DeA/G, the bounds on
sufficient for most practical purposes. |Y:| and|Z;|, respectively shown in Theorems 3 and 5, allow

X, to be computed efficiently i0(|C;|) time usingO(|V])
VII. THE k-IA/G ALGORITHM space. Unfortunately, fok-IA/G, no similar theorem applies.

The IDOM heuristic of Alexander and Robins [1] iterativelylnstead, for eacly; € V, let us useR; to denote the subset of

finds a nodev € V — N maximizing |[MSpA(G, N, r)| — | sinks inN interested inmerging intoy; if v; is a Steiner node.
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TABLE IV
THE k-IDeA/G ALGORITHM. (&) TMO. (b) SMO, NpE DELETED. (€) SMO, XIPPING ALLOWED. (d) SMO, KIPPING EXHAUSTED. (€) OTHERWISE

Function IDeA/G/aux(i, P, k)
Globals (set by IDeA/G()): G, N, Z, deleted
X « (U‘UjEC|Zj) NP,
if i = 1 then
return (0,5, ¢ x |vi ~ v]);
else if v; € N then
(@) Zi — {’U,‘};
(D,C) «— IDet/G/aux(i — 1, P — X + {v; }, k);
return (D,C+ 37 x |vi ~ v]);
else if | X| > 1 then
if deleted[] = true then
(b) Zi — 0;
return IDeA/G/aux(i — 1, P, k);
else if k£ > 0 then
(© Zi — {v;};
(D, Crm) — IDed/G/aux(i — 1, P — X + {v; }, k);
Cm - Cm + ZUEX |’U,‘ ~r 'U[;
Z; — b
(Ds,Cy) «— IDeA/G/aux(i — 1, P,k — 1);
Dy — Dy U{v;}
return |Cp,| < |Cs| ? (D, C) = (Ds, Cs);
else
@ 2 ()
(D,C) «— 1DeA/G/aux(i — 1, P — X + {v;}, k);
return (D,C+ 3"« |vi ~ v]);

else
return IDeA/G/aux(i — 1, P, k);

Function IDeA/G(G, N, k)
Given an SPDAG G = (V, F) with ranked nodes, a set of terminals N € V,
and the maximum number of nodes k to be deleted, return the arborescence
according to the k-IDeA/G algorithm.
Cbest «— 00;
foreach 1 < i < |V| do deleted[i] « false;
repeat
(D,C) « IDea/G/aux(|V1{, 0, k);
if C < Chest then
Cbest — C)
foreach v; € D do deleted[i] < true;
else
return RSA/G(P, N, deleted);

Given a nodey € N, let dyiy(v) = minyen,/<u |/ ~» v|.  is called instead ofA/G/aux(); this function simply computes
Then, R; = {vjv € N, v; < v and |v; ~» v| < dyin(v)}. the sum of the distances between each remaining terminal or
In other words, a terminad is interested in merging into a Steiner node and the closest “downstream” terminal. Note that
“downstream” potential Steiner nodeg (such that; < v) if v;  1A/G/0(¢, P) can be implemented to run i®(d) time [we

is closer tov than any ofv’s potential parents iV. Thed,,;, consider all the remaining sinks to loeletedafter returning

and R; can be computed and maintained@{|E| |[N|) time from 1A/G/0()]. IA/G() calls IA/G/aux() repeatedly until no
and O(|V| |N|) space; a givenX; can then be computed byfurther reduction in tree length is obtained. LaBSA/G() is
taking the intersection ak; and P;1, which requiresD(|P|) called to return the arborescence; at this paMtincludes all
time. the Steiner nodes.

The completé:-IA/G algorithm is described in Table \k- We can show that thea/G/aux() function (one iteration
IA/G calls the functioniA/G/aux() to find the best (maximum of the k-IA/G algorithm) hasO(|V|*|N|) time complexity,
reduction in tree length) set ofk Steiner nodes, and addswhere k is the number of allowed Steiner mergers (the
them to the terminal seV. Whenk = 0, the functionlA/G/0() complexity analysis is detailed in Appendix C). As a result,
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TABLE V
THE k-IA/G ALGORITHM. (a) TMO. (b) SMO, MERGING ALLOWED. (C) SMO, MERGING EXHAUSTED. (d) OTHERWISE

Function IA/G/0(Z, P)
Globals (set by IA/G()): G, N, dpmin
C «0;
foreach v € P do C «— C + dpin (v);
foreach v; € N,1 < j <ido C — C +dmin(vj);
return (0, C);

Function I4/G/aux(z, P, k)
Globals (set by IA/G()): G,N, R
X — RN P;
if £ = 0 then
return IA/G/0(i, P);
else if i = 1 then
return (0,3 . » lvi ~ vl]);
else if v; € N then
() (S,C) «+— 18/G/aux(i — 1, P — X + {vi}, k);
return (S,C+ Y cx lvi ~ v|);
else if |k > 0] then
(b) (Sm,Cm) «— IA/G/aux(i — 1, P — X + {vi}, k— 1);
(Sm’ Cm) — (Sm U {Ui}’ Cm + Zvex |'U,' ~ UD;
(Ss,C,) — IA/G/aux(i — 1, P, k);
return |Cp,| < |Cs] 7 (S, Cm) : (Ss, Cs);
else
(c), (d) return I4/G/aux(i — 1, P, k),

Function IA/G(G, N, k)
Given an SPDAG G = (V, E) with ranked nodes, a set of terminals N € V,
a root 7 € N, and the maximum number of Steiner merger k, return the
arborescence according to the k-IA/G algorithm (with the side effect that N
also contains the Steiner nodes at the end).
compute R, d;n;
Cbest — 005
repeat
(S,C) «— 1a/76/aux(|V|, {vin1 }, k);
if C < Clest then
C’best — C;
foreach v € S do N — N U {v};
update R, dpin;
else
foreach v; € V do deleted[7] — (v; € N) ? false : true;
return RSA/G(G, N, deleted);

the overall complexity of thé-1A/G algorithm isO(|E||N|+ ment and compared against tR€A and IDOM algorithms
i|[V|¥|N|), wherei is the number of iterations. The extraof Alexander and Robins, which were proven to be highly
O(|E||N|) complexity is due to the one-time computation oéffectively for FPGA routing [1]. All experiments were per-
dmin and R and the subsequent updates. Sinee O(|N|) in  formed on a SPARC-5, and all central processing unit (CPU)
the worst case [the average case is al¥QN|), as shown times are for this machine. We performed experiments in
in the next section], we have an overall time complexityhe style of [1], whose goal was to compare the runtime
of O(|E||N| + [VI¥|N[?). This compares favorably with ang solution quality of different Steiner and arborescence
the IDOM algorithm of Alexander and Robins, which has ggorithms on a typical FPGA routing instance with various
complexity of O(|E| [V| + [V]|N]?). levels of congestion. Routing was done on a 2020 grid
graph, wherein edge weights model the congestion induced
_ by previously routed nets. Three different levels of congestion
A. Comparison | were modeled: a) no congestion (no prerouted nets), b) low
We implemented all algorithms and heuristics proposed @ongestion (ten prerouted nets), and c) medium congestion
this paper using GNU €+ in the SUN UNIX environ- (20 prerouted nets); see [1] for more details. For each net

VIIl. EXPERIMENTAL RESULTS
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Fig. 3. Comparison I. (a) The average wire length of various arborescence algorithnsDOM, RSA/G, 1-IDeA/G, 141A/G, andRSA/BnB/G) as a percentage

above thelkmB wire length under the conditions of 1) no congestion, 2) low congestion, and 3) medium congestion. (b) The average radius (maximum
source-to-sink path length) akmB-constructed Steiner as a percentage above optimal.

size (6—12), 50 random nets were generated and routed onithes congestion levels, and Fig. 3(b) gives the average radius

weighted graph that modeled the given congestion (congéstaximum source-to-sink path length) ¢€MB-constructed

tion was newly generated for each net). We compared tBéeiner as a percentage above the maximum Manhattan source-

IKMB Steiner algorithm (one of the best performing grapto-sink distance. When there is little or no congestion, arbores-

Steiner algorithms in the literature) with several arboresceneences and Steiner trees have very similar total tree length. As

algorithms, includingPFA and IDOM from [1], our optimal the congestion level increases, however, arborescences tend

algorithms RSA/BnB/G and RSA/DP/G, and our heuristics to have longer tree length but shorter radius when compared

RSA/G, 11DeA/G, and 1#A/G. For each net, we normalizedto Steiner topologies. All of the six arborescence heuristics

the tree length produced by each heuristic to thatkaiB, We tested RFA, IDOM, RSA/G, 14DeA/G, and 1tA/G) gave

and the maximum source-to-sink path length of each heuris$ignilar solution quality (arborescences generated are less than

was normalized to optimal. 0.5% suboptimal on averag®&pnd this is the reason why we
Fig. 3(a) gives the average tree length of various arbores-

cence algorithms (as percentage above thaMB) under var-  SPlease refer to [8] for a detailed comparison.
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Fig. 4. Comparison Il. (a) The percentage of trials when each heuristic is a winner. (b) The average runtime in CPU seconds.

did not distinguish the tree lengths among different algorithnggiality when the problem size is large (note that the data
in Fig. 3(a). However, their runtimes differ drastically despitéor PFA, IDOM, RSA/BnB/G, andRSA/DP/G were incomplete
such similarity in performance, which we will study in thebecause they exceeded the run-time limit of 20 s for large

next subsection. designs).
For a given routing instance, a heuristic is calledianer

_ if it generates a solution with the lowest tree length among
B. Comparison II all heuristics tested (note th&®SA/BnB/G and RSA/DP/G

We also “stress tested” our algorithms and heuristics e not included). Fig. 4(a) shows the percentage of trials
running them on a grid that is four times larger (%040), when each heuristic is a winner;IeA/G and 2iDeA/G are
with a medium congestion level (20 prerouted nets). The sigensistently as good as or better than the other heuristics.
of the nets tested ranges from three to 150, and for each Remntimes are shown in Fig. 4(b). Average CPU times for both
size, 50 random nets were generated and routeRFByIDOM, 1-IDeA/G and 14A/G were less than one second and for 2-
RSA/BnB/G and RSA/DP/G, RSA/G, 14A/G, 11DeA/G, and IDeA/G were less than four seconds, even for the largest test
2-DeA/G. This comparison highlights runtime and solutiortases. Moreover, our heuristics are orders of magnitude faster
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Fig. 5. Comparison Il. (a) The average number of iterations ftwelvG, 2-4DeA/G, and 1tA/G. (b) The average as percentage of the number of terminals.

than PFA and IDOM, even on instances of modest size [fothree or higher) Steiner nodes in the arborescence, which is

example, on 15-sink instances|deA/G averages 53X (291X) a linear or near linear function dfV|. Hence, the effective

faster thanPFA (IDOM)], a result consistent with the earlierrun-time complexities of 1peA/G and 14A/G are O(|E||N|)

comparison between the time complexities. Thus, substan&&d O(|E||N| + [V||N|?), respectively.

run-time improvement over existingFA- and IDOM-based ~ From these experiments, we conclude tR&iA/G and 1-

FPGA routing algorithms is expected with our new heuristic2eA/G are the two best arborescence algorithms to use in
We also observe that IDeA/G is superior to 1A/G in (€rms of runtime and solution quality.

both quality and runtime. Fig. 5 shows that on average, 1-

IDeA/G requires significantly fewer iterations thanlAlg; C. Comparison IlI

1-IDeA/G finished in six iterations or less (practically constant) Last, we also studied graph-based routing in a regime that
on all our test cases, while IMG requires a nearly linear models the presence of obstacles. In a layout region of size
number of iterations. This is not surprising since the numbg000 x 4000, we randomly generate a setroterminals N

of iterations of 1KA/G is one plus the number of (degreeand a set o2n rectanglesk (length and width are both within
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Fig. 6. Comparison lll. (a) Average tree length (as percentage above thiampj. (b) Average runtime in CPU seconds.

[400, 600]). We then construct the Hanan grid gra@k r  of the heuristics is very similar). The arborescences are on
induced by the points and the corners of the rectangles, trererage 6-17% longer than the Steiner trees constructed by
construct a new grap&’ by deleting any edges @y r that IKMB but have much smaller maximum source-to-sink path
lie within rectangles inR.” For eachn, 3 < n < 10, ten lengths; runtimes are orders of magnitude smaller. Last, Fig. 7
random examples with all terminals reachable from each otterows a 30-terminal, 30-rectangle example and the solution
were generated and routed usikIB, RSA/G, 11DeA/G, and generated by 1beA/G in 0.49 CPU seconds.

1-A/G. Fig. 6 shows the average tree length as a percentage

above that olKMB, along with the runtime (in CPU seconds)

for each of the four heuristics (again, the solution quality IX. CONCLUSION

We have presented several efficient heuristics and exact

"The graphG' has been proven to contain pair-wise shortest paths betweg[gorithms for the MSPSA problem, improving upon previous
all terminals [7] and to contain an optimal rectilinear Steiner tree [6]. The

guestion of whethef7 necessarily contains an MRSA s still open, thougHNork in both r!mt'me and _SOIUt'On q_ua“ty' We have alsp
the answer is likely positive. presented detailed complexity analysis as well as extensive
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the assumption tha#ly; is optimal. Therefore Ag, C A%,
and A%, satisfies OC(Br).

Second, we shall show thatv; ~» v; € A} — Apg,. such
that: > ¢p,. Assume the contrary—that suef ~ v; exists.
Note that the optimality of4}; implies that: < 5. Therefore,
iBT Si<iB=>iBT Si<iBT+1I>iIiBT = Vi = VB
This is impossible, however, since no nodes in the peer set
dominatev,. after the terminal merger ats,. As a result, no
such pathy; ~~ v; exists, and4j; satisfies OC@Br). O

Lemma 2:If B is optimal andvp is a Steiner merging
point, either 1)B), is optimal and4?; satisfies both OGB;;)
and OCZB,,) or 2) Bs is optimal andA% satisfies both
OC].(Bs) and OCZBs)

Proof: If vg € A%, then using an argument similar to the
previous proof, we can prove thal; satisfies both OCBy)
and OCZBr), and soBr is optimal.

If vg & A%, Aj satisfies OC{Bs) since Ag, = Ag C
Aj. To show thatAj satisfies OC@Bgs), we assume the
contrary thatdv; ~ v; € A — Ap, such thati > ip,.
Using the same argument as before, we haye< i < ip =
v; = vpg. This is contradictory, however, sineg; ¢ A%. O
Theorem 6: There exists at least one leaf node in the BNB
ggram in theRSA/BnB/G algorithm that is optimal in tree

5

b

B

Fig. 7. A 30-terminal, 30-rectangle example, and thi®dA/G solution.

experimental results that suggest that our algorithms are mag
effective in practice than other arborescence algorithms.
believe that applications to performance-driven global routing,
FPGA routing, and non-VLSI domains such as multica
routing are all promising.

Proof: It follows from the facts that the root node of
the BNB diagram is optimal Ky 1 = @ and A}y 41 = 0)
and that each optimal node has at least one child node that is

optimal. O
APPENDIX A
OPTIMALITY OF RSA/BNB/G
APPENDIX B
We shall prove the optimality dRSA/BnB/G in the fashion COMPLEXITY OF k-IDEA/G

of [22]. Let B denote a generic node in the BNB diagram and . . . .

vg, B, Ap be the node to be visited, the rank of the node, an Cons!dgr the recursive funCt'd'DeA/G/.aux()’ b _doe_s

the partial arborescence constructed immediaaétisr visiting the r_najorlty of the wqu and whose‘ t.|me complexity is a

v, respectively (note thats = v, and Ap = A;,_y). If function of the 'tr|ple(z, d, k), where{ is the rank of the

vp is a TMO, By denotes the child node & in the BNB current nc_)de,d is the number of nqdes remov_ed frorr_l the
—ip—1). If vp is an SMO,B,, and peer set in the subsequent execution (recursion), farnsl

the number of SMQO’s that can be skipped in the subsequent

execution. Letfe ~(4, d, k) denote its time complexity. The

Iexecution ofIDeA/G/aux(), excluding the recursion, is domi-

nated by the computation aX;, which takesO(|C;|) time.

In the following, we simply say that it takeS; time without

diagram (note thaig,.
Bgs denote the two child nodes &f corresponding to merging
and skipping, respectively (note that, = ig, = i — 1).

We say thatB is optimalif and only if there exists an optimal
arborescenced’; that satisfies the following two optimality

criteria: - : . -
.. loss of precision. Table VI gives the recursive definition of
* [OCLB)] Ap C Aj; fa, n(i, d, k) according to the different possible scenarios for
* [OC2(B)] #i such that > ip andv; v v; € A —Ap. > 1,d >0, andk > 0. The base case of the algorithm is
These two criteria guarantee that 1) the current partial arbords- v (1, d, k) = |C;|. Note that all of these complexities are
cence is optimal and 2) it is possible to generate an optinditectly inferred from the algorithm. The following theorem
arborescence even though only nodes with a lower rank thaounds the complexity of g, ~ (4, d, k).

1 Will be visited in the remaining execution. Theorem 7:For any ¢ > 1, d > 0, and k > 0,
Lemma 1: If B is optimal andvp is @ TMO, By is optimal  f¢ n(4, d, k) < o;(d + 2/2)*, wherea; = 21<j<i Gl
and A% satisfies both OQ1B;) and OCZBy). Proof: We use induction oni. For ¢ = 1

Proof: First of all, we shall show thatlp, = Ap + fo n(i, d, k) = |Ci| < |C;|[(d+2)/2]* for anyd > 0, k > 0.
{ve, ~ vlv € X;, } C Aj. Assume the contrary—thatAssume thaffe, n (i, d, k) < o3[(d+2)/2]" fori =m—1 >
this is not the case. Then there must exist~ v € A% 1; we shall prove thatfg n(m, d, k) < o,[(d + 2)/2]*
such thatv € XiBT and ¢ < ip,.. We can construct an holds for all of the scenarios described in Table VI. Note that
arborescenced; = A% — {v; ~ v} + {vs ~ v}, and we it suffices to prove the result for scenarios b) and c), since the
have | A5 = |A%] + A(v;) — A(vug) < | A%, contradicting proofs for a), d), and e) are subsumed by that for b).
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TABLE VI
THE COMPLEXITY OF THE IDeA/G/aux FUNCTION FORANY ¢ > 1,d > 0, AND k > 0 (“—" D ENOTES DON'T CARE)

Description v; € N7 | deleted[:]7 | [X;] > 17 k> 07

(a) | TMO true - - — —

(b) | SMO, NODE DELETED false true — —

(¢) | SMO, SKIPPING ALLOWED false false true true

(d) | SMO, SKIPPING EXHAUSTED false false true false

(e) | OTHERWISE false false false —
Description fen(i,d k)=

(a) | TMO Cil+ fan(i=1,d—[|X],k)

(b) | SMO, NODE DELETED Cil+ fon(i—1,d,k)

(¢) | SMO, SKIPPING ALLOWED Cil+ fen(i—1,d— |X|,k)+ fan(i —1,d,k— 1)

(d) | SMO, SKIPPING EXHAUSTED | |G|+ fo n(i —1,d— | X| k)

(e) | OTHERWISE Cil + fon(i—1,d, k)

In case b), we have
fGT(m7 d7 k) = |Crn| + fG, N(m - 17 d7 k)

d+2\"
S |Crn| +0nl—l <T>

d+2\*
S (|Crn| + Unl—l) <T>

m\ 75 .
In case c), we have
fa.nm, d, k) =|Cp| + fa,n(m—=1,d—|X|, k)
+ fa,n(m—=1,d, k1)

d—|X|+2\"
S |Crn| + Oom—1 <%)

d+2\*1
+ Om—1 <T>

d—2+2\"
S |Crn| + Om—1 <T)

d+2\""
+ Om—1 <T>

d\ (d+2\*"
S |Crn| + Oom—1 <§> <T>

d+2\*1
+ Om—1 <T>

d d+2\*"
— |Crn| + Om—1 <§ + 1) <T>

d+ 2
|Cnl|+anl 1< —; )

d+2\"
S (|Crn| + Unl—l) <T>

fd+2\"
=0m 2 .

Therefore, the induction step holds fbe= m for each of

the scenarios a)-e).

Theorem 8: The IDeA/G/aux() function (one iteration of the

O

k-IDeA/G algorithm) has complexity)(|E| |N|*), wherek is

the number of allowed deletions.

Proof: Note that any arborescence has at most— 1
Steiner nodes, and therefore, at mpsY + |[N| -1 -1 =
2|N| -2 nodes are removed from the peer set (onhemains
in P at the end). Therefore, the complexity of the function is at
most fo, (V1 2IN| =2, k) < oy {[(2IN] - 2) +2]/2}* =
O(|E]|NT®). O

APPENDIX C
COMPLEXITY OF k-IA/G

We use an analysis scheme similar to that presented for
k-IDeA/G. The complexity of the functiomA/G/aux() can be
expressed as a function of the triplg d, k), wherei is the
rank of the current node] is the number of nodes removed
from the peer set in the subsequent execution (recursion),
and k£ is the number of Steiner mergers allowed in the
subsequent execution. In what follows, gt (¢, d, k) be
the complexity of callinglA/G/aux(). The time complexity
of executinglA/G/aux() at nodew;, excluding the recursive
calls, isO(|P;+1]). However, we know thatP,;;| < d+1
since all nodes in the peer set (exceptwhich is added to
the peer set at the end) will have been deleted when the
recursion terminates. As before, we simply say thab/aux(),
excluding the recursive calls, takég- 1 time. Table VII gives
the (recursive) definitions ofq, n (¢, d, k) according to the
different possible scenarios, far> 1, d > 1, andk > 0.

The base cases of the algorithm age ~(1, d, k) = d+ 1
andge, (7, d, 0) = d+1. The following theorem bounds the
complexity of go v (4, d, k).

Theorem 9:For any i > 1, d > 0, and & > 0,
ga, Nt d, k) < k(2d+ 1).

Proof: We use induction oni. Note that it suffices
to prove the result for scenarios a), b), and c), since d)
is subsumed by c). The theorem holds for= 1 since
ge,~n(1,d, k) =d+1<i*2d+1) foranyd >0, k > 0. It
also holds fort = 0 sincegg, v (i, d, 0) =d+1 < ‘(2d+1)
for anyi > 1, d > 0. Assume thaye, n (i, d, k) < i*(2d+1)
foranyLdande|th1§L<m(d20,k 1).

In case a), we have

gG,N(mv d7 k) (d+ 1) +gG N( - 17 d— |X|7 k)
<(d+1)+ (m=1)*2(d - |X]) + 1]
<24+ 1)+ (m—1*2d+1)
=[1

+ (m —1)*)(2d + 1) < m*(2d + 1).
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TABLE VII
TIME COMPLEXITY OF THE IA/G/AUX FUNCTION FORANY ¢ > 1,d > 1, AND k > 0
Description v € N7 | |X;] > 17 k> 07
(a) | TMO true
(b) | SMO, MERGING ALLOWED false true true
(¢) | SMO, MERGING EXHAUSTED false true false
(d) | OTHERWISE false false —
Description gen(i d k)=
(a) | TMO (d+1) +gan(i—1,d-|X| k)
(b) { SMO, MERGING ALLOWED (d+1D)4+gen(i—1d—|X|,k—1)+gan(i—1,d k)
(¢) | SMO, MERGING EXHAUSTED | (d+ 1)+ gg n(i—1,d,k)
(d) | OTHERWISE (d+ D) +gen(i—1,dk)

In case b) we have, ik > 1

g, n(m, d, k) =(d+1)+gc,n(m—1,d—|X], k—1)
+ga,nvim—1,d, k)
<(d+1)+ (m—=1D*12(d = | X]) + 1]
+ (m = 1D*(2d+1)
< @d+D+m-DFY2d-44+1)
+ (m = 1D*(2d+1)
(m—1Ftd+1+2d-3
+ (m —1)(2d + 1)]
<(m-1DFYm+1)(2d+1)
(m—=1)*2(m — 1)(m + 1)(2d + 1)
(m — D 2(m?)(2d +1) < m*(2d + 1).

<

IN

If £ = 1 instead, then

ga, n(m, d, k) =(d+1)+gc, n(m—1,d—|X|, k—1)
+ge, nvim—1,4d, k)
S+ +(d-|X])+1
4 (m—1)(2d+1)
SA+D)+(d=2)+1+(m—=1)(2d+1)
=2md+m—1<2md+m=m(2d+ 1)
=m"(2d +1).

In case c), we have

(d+1)+gg,n(m—1,4d, k)
<(2d+1) + (m = 1)*(2d + 1)
<A+ (m=D*2d+1) <mF(2d+1).

9a, N(m7 d7 k)

Therefore, the induction step holds fbe= m for each of
the scenarios a)—d). O
Theorem 10: The IA/G/aux() function (one iteration of the
k-IA/G algorithm) has complexity(|V |*|N|), wherek is the
number of allowed Steiner mergers.
Proof: Since there are at mog{/V| — 1 nodes removed
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[21]

from the peer set (all terminals and Steiner nodes), the coff?l

plexity of the algorithm is equal t@g, n(
1, k) = [VI*[2@2[N]) + 1] = O([V*|N).

V],2|N| -1+
O
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