
24 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 1, JANUARY 1998

Efficient Algorithms for the Minimum
Shortest Path Steiner Arborescence Problem
with Applications to VLSI Physical Design

Jason Cong,Senior Member, IEEE,Andrew B. Kahng,Associate Member, IEEE,and Kwok-Shing Leung,Member, IEEE

Abstract—Given an undirected graphG = (V; E) with positive
edge weights (lengths)w: E ! <+, a set of terminals (sinks)
N � V , and a unique root noder 2 N , a shortest path Steiner
arborescence(hereafter an arborescence) is a Steiner tree rooted
at r spanning all terminals in N such that every source-to-
sink path is a shortest path inG. Given a triple (G; N; r), the
minimum shortest path Steiner arborescence (MSPSA) problem
seeks an arborescence with minimum weight. The MSPSA prob-
lem has various applications in the areas of physical design of
very large-scale integrated circuits (VLSI), multicast network
communication, and supercomputer message routing; various
cases have been studied in the literature. In this paper, we propose
several heuristics and exact algorithms for the MSPSA problem
with applications to VLSI physical design. Experiments indicate
that our heuristics generate near optimal results and achieve
speedups of orders of magnitude over existing algorithms.

Index Terms—Algorithm, physical design, Steiner arbores-
cence, Steiner tree, VLSI.

I. INTRODUCTION

GIVEN an undirected graph with positive
edge weights (lengths) , a set of terminals

(sinks) , and a unique root node , a shortest
path Steiner arborescence(hereafter an arborescence) is a
Steiner tree rooted at spanning all terminals in such that
every source-to-sink path is a shortest path in. Given a
triple , the minimum shortest path Steiner arbores-
cence (MSPSA) problem seeks an arborescence with minimum
weight.

The MSPSA problem is a special case of the minimum
Steiner arborescence (MSA) problem, which has been well
studied in the literature (for example, [14] and [17]). Given
a triple wherein is a directed graph, the MSA
problem seeks a minimum-weight Steiner tree spanning all
nodes in with all edges directed away from. If is the

Manuscript received June 20, 1997. The work of J. Cong was partially
supported by the National Science Foundation under NSF Young Investigator
Award MIP-9357582. This paper was recommended by Associate Editor M.
Sarrafzadeh.

J. Cong is with the Computer Science Department, University of California,
Los Angeles 90095 USA.

A. B. Kahng was with Cadence Design Systems, San Jose, CA 95134 USA.
He is now with the Computer Science Department, University of California,
Los Angeles 90095 USA (e-mail: abk@cs.ucla.edu).

K.-S. Leung was with Cadence Design Systems, San Jose, CA 95134 USA.
He is now with Magma Design Automation, Palo Alto, CA 94303 USA (e-
mail: ksleung@cs.ucla.edu).

Publisher Item Identifier S 0278-0070(98)02050-8.

shortest path directed acyclic graph of(defined in the next
section), it is easy to see that an MSA of is an MSPSA
of . Both the MSA and the MSPSA problems are NP-hard
[4], [17].

The rectilinear version of the MSPSA problem is called the
minimum rectilinear Steiner arborescence (MRSA) problem.
Given a set of terminals (including the root located at the
origin), let be the induced Hanan
grid graph [15] of . It can be shown that an MSPSA of

is an MRSA of .
The MSPSA and MRSA problems have applications to

performance-driven very-large-scale-integration (VLSI) phys-
ical design. Conget al. showed that rectilinear Steiner ar-
borescences outperform traditional heuristic Steiner minimum
trees for delay optimization in submicron process technology
by up to 66% [10]. Alexander and Robins applied thePFA
and IDOM algorithms to route timing-critical nets in field
programmable gate arrays (FPGA’s) [1]. Cong and Madden
[11] proposed a multisource routing algorithm based on con-
structing minimum-cost, minimum-diameter arborescences.

Exact methods for the MRSA problem can be classified into
1) dynamic programming (DP), 2) integer programming, 3)
branch-and-bound (BNB)/enumeration techniques, and 4) min-
cost max-flow (MCMF) technique. The DP-based approach
was first used in the work of Ladeira de Matos [20] and
more recently in theRSA/DP algorithm by Leung and Cong
[22]. Nastanskyet al. [24] formulated the MRSA problem
(and its -dimensional generalization) as an integer program
and solved it with implicit enumeration techniques. Cong and
Leung presented theAtree/BnB[9] and RSA/BnB [22] algo-
rithms, both of which employ branch-and-bound techniques
to effectively prune the search space. Hoet al. [16] gave
two exhaustive enumeration algorithms with ( is
the number of “dominating” layers) and run-
time complexities, respectively. Despite previous efforts, the
question of whether the MRSA problem can be solved in
polynomial time is still open.1

Rao et al. [25] presented theRSA algorithm, which was
the first known heuristic for the MRSA problem. TheRSA

1In 1985, Trubin [28] formulated the MRSA problem as an integer program
and claimed that its dual relaxation (which is a linear program) always contains
an integral solution; hence, the MRSA problem is polynomial-time solvable.
Such a claim was subsequently refuted in [25]. A more recent attempt to
reduce the MRSA problem to a variant of the MCMF problem [2] was
subsequently withdrawn by its author [3].

0278–0070/98$10.00 1998 IEEE



CONG et al.: EFFICIENT ALGORITHMS FOR THE MSPSA PROBLEM 25

output has length no more than twice the optimal length, with
runtime being if all terminals are located in
the first quadrant and in the general case. The
runtime for the general case was improved to
by Córdova and Lee [12]. In [10], Conget al. presented the
Atree algorithm based on making “safe moves.” Téllez and
Sarrafzadeh [27] gave thepRDPT algorithm, which is based on
optimally solving a restricted version of the MRSA problem.
More recently, Kahng and Robins gave a simple adaptation of
their iterated 1-Steiner algorithm to the MRSA problem [19],
and Leung and Cong presented the-IDeA algorithm, whose
performance is very close to optimal in practice [23].

The hypercube version of the MSPSA problem, also called
the optimal communication tree or optimal multicast tree
problem in the literature, has been studied by Choiet al. [4],
[5], Lan et al. [21], and Sheu and Su [26]. The problem is
NP-hard [4], and heuristics include theLEN heuristic [21], the
COVER heuristic [4], and the more recentShSu heuristic [26].

There has been relatively little research on the general
MSPSA problem. In [1], Alexander and Robins presented
the path folding (PFA) algorithm, an adaptation of theRSA
heuristic; and theIDOM algorithm, which iteratively adds the
best Steiner node as a terminal (analogous to the Iterated
1-Steiner algorithm). They further showed that the MSPSA
problem cannot be approximated within a factor of
times optimal unless deterministic polylog space coincides
with nondeterministic polylog space.

In this paper, we propose three heuristics and two exact
algorithms for the MSPSA problem in the following order (

exponential-time exact algorithm, polynomial-time
heuristic):

• ( ) RSA/G (Section III): an efficient adaptation of the
greedyRSA heuristic in [25];

• ( ) RSA/BnB/G (Section IV): an optimal exponential-
time branch-and-bound variant ofRSA/G (analogous to
the RSA/BnB algorithm in [22]);

• ( ) RSA/DP/G (Section V): a fast implementation of
RSA/BnB/G based on dynamic programming (analogous
to the RSA/DP algorithm [22]);

• ( ) -IDeA/G (Section VI): a “scaled-down” near optimal
version of RSA/BnB/G;

• ( ) -IA/G (Section VII): a natural dual of-IDeA/G that
implements theIDOM heuristic [1] efficiently.

Experiments indicate that our heuristics generate near opti-
mal results and achieve speedups ofordersof magnitude over
existing arborescence algorithms.

II. PRELIMINARIES

Given , we define thedistance labelof ,
denoted , to be the shortest path distance offrom
in . The shortest path directed acyclic subgraph (SPDAG)
of is denoted , with and the
directed edge if and only if and

. Clearly, any arborescence of is
a subgraph of ; hence, we focus on solving the MSPSA

problem on SPDAG’s (with proper orientation of the edges).2

Given a general graph , its SPDAG can be constructed
in time using Dijkstra’s algorithm with
a Fibonacci heap [13]. We rank the nodes ofin order of
increasing distance labels, and we use, to
denote the th-ranked node, where is the root and is
the farthest node from the root (Dijkstra’s algorithm can be
modified to output this ranking without increasing runtime or
space complexity). The following discussion assumes that the
input graph is already an SPDAG, and we do not distinguish
between and unless otherwise noted. For simplicity,
we further assume that is a terminal (otherwise, we can
find the maximum such that and remove nodes

and their incident edges from, since none of
them are in any source-to-sink shortest path).

Given , is called aparentof and a child
of . We use to denote the set of children of in . That
is, . Given two nodes , we say

is reachablefrom , denoted , if and only if there
exists a (directed) path in from to , and if and
only if and . If , then denotes
a shortest path from to in ( is called a child of
in the arborescence). Unless otherwise noted, in the following
we assume and .

III. T HE RSA/G ALGORITHM

We begin by reviewing the MRSA problem. Recall that
a rectilinear Steiner arborescence is a Steiner tree in the
Manhattan plane spanning all terminals in such that each
source-to-sink path is a rectilinear shortest path. In [25],
Rao et al. presented theRSA heuristic, which constructs an
arborescence in a bottom-up fashion starting withsubtrees,
each consisting of a terminal in . RSA iteratively mergesa
pair of subtree roots and such that is as far from the
source as possible, where is the point on the bounding
box of and that is closest to . The algorithm terminates
when only one subtree remains.

A straightforward generalization ofRSA to the MSPSA
problem is as follows. Let be the set of active root nodes
(initially ). Then, iteratively find a node such
that 1) there exist ( ) with and

and 2) is maximized among all such nodes satisfying
1). Then, for each with , construct a shortest
path and remove from . Last, insert into . This
process is repeated until . Alexander and Robins gave
a straightforward implementation of this approach, called the
path folding algorithm (PFA) [1]. Because thePFA algorithm
requires frequent computation of the least common ancestor
of pairs of nodes in the SPDAG [up to times], its
overall time complexity is .

We adopt a slightly different approach, visiting the nodes
in in decreasing rank order (i.e., starting from ) and

2Actually, any arborescence is a subgraph ofG00
= (V 00; E00

), where
v 2 V 00 � V 0 if and only if v is on a shortest path fromr to somet 2 N ,
and(v; v0

) 2 E00 � E0 if and only if v; v0 2 V 00 and(v; v0
) 2 E0. In other

words,G00 is the union of all the shortest paths from the root to the sinks.
AlthoughG00 can be substantially smaller thanG0, to simplify the discussion,
we focus onG andG0.



26 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 1, JANUARY 1998

Fig. 1. An example run of theRSA/G algorithm. The upper left figure shows
an SPDAG with nine nodes and three terminals (one of which is the rootr),
wherein each node is labeled with its distance fromr. The upper right figure
shows the ranking of the nodes (based on the distances), andRSA/G will visit
the nodes in decreasing rank order. We label the nodevi with the unique
element (if any) of the setYi after vi is visited. The execution is:v8; v7
(TMO), v6; v5; v4 (no action),v3 (SMO, v3 v7 andv3 v8), v2 (no
action),v1 (TMO, v1 v3). ThePi are as follows:P9 = ;, P8 = fv8g,
P7 = P6 = P5 = P4 = fv7; v8g, P3 = P2 = fv3g, P1 = fv1g.
The Ai are as follows:A9 = A8 = A7 = A6 = A5 = A4 = ;,
A3 = A2 = fv3 v7; v3 v8g, A1 = fv1 v3; v3 v7; v3 v8g.

maintaining apeer setconsisting of all the subtree roots whose
ranks are higher than the rank of the current node. We use
and , respectively, to indicate the peer set and the partially
constructed arborescence after visiting(and before visiting

). Let and be the subset of
reachable from just before is visited). There are three

possible scenarios:

• terminal merger opportunity (TMO): ;

• Steiner merger opportunity (SMO): and ;

• otherwise and .

If either TMO or SMO applies, wemerge all the nodes
in (if any) into and update the peer set and the
arborescence, respectively, i.e., and

. Otherwise,
and (neither the peer set nor the arborescence
is changed). The algorithm starts with and

and terminates once and are computed;
is returned. An example is shown in Fig. 1. The time

complexity depends on how fast is computed, and the
following three theorems show that this can be done efficiently.

Theorem 1: Given with , for
any .

Proof: For any node , , either 1) there does
not exist any such that , or 2) there exists
such that for all and for all
or . Therefore, if there exists such that ,
it is necessary that case 2) applies, and so for any
such that , where .

Theorem 2: Let and be the subset
of reachable from immediately after is visited. Then

.

Fig. 2. An example run of theRSA/BnB/G algorithm, based on the pre-
vious example. LikeRSA/G, RSA/BnB/G visits the nodes in decreasing
rank order. We label the nodevi with the unique element (if any) of
the set Zi after vi is visited. Two branches are created atv3, since
it is an SMO, one corresponding toskipping and one tomerging. Both
branches are executed, and the branch with the lowest total weight is the
optimal arborescence (the merging branch in this example). For the merging
branch, thePi and Ai are as follows:P3 = P2 = fv3g, P1 = fv1g.
A3 = A2 = fv3 v7; v3 v8g, A1 = fv1 v3; v3 v7; v3 v8g.
For the skipping branch:P3 = P2 = fv7; v8g, P1 = fv1g. A3 = A2 = ;,
A1 = fv1 v7; v1 v8g.

Proof:

and

s.t. and

s.t. and

s.t. and

and

where denotes the application of Theorem 1 (note that
) in the direction.

Theorem 3: for .
Proof: We prove this inductively. The theorem holds for

since . Assume that for
some ; we will show that this implies . According to
the algorithm, in the case of TMO or SMO (where or

), we have and, therefore,
. Otherwise, and , and so

we have and .
These theorems lead to a very efficient scheme to deter-

mine . First, Theorem 3 indicates that has either zero
or one element. Therefore, we can use constant per-node
memory to store the set at the node after visiting

. Second, Theorem 2 implies that can be computed
by first taking the union of for each child of
and then intersecting with . We can perform the union
and intersection operations in time linear in the number of
children,3 and so the time complexity of visiting is .

3This is achieved by properly indexing the sinks and Steiner nodes. Note
that this is possible despite the fact that there can be many more nodes in the
peer set thanjCij.



CONG et al.: EFFICIENT ALGORITHMS FOR THE MSPSA PROBLEM 27

TABLE I
THE RSA/G ALGORITHMS. (a) TMO OR SMO AND (b) OTHERWISE

(a)

(b)

The overall time complexity is , or
including Dijkstra’s algorithm, which

is significantly better than the
complexity of thePFA algorithm [1]. Our algorithm, called
RSA/G, is summarized in Table I. Note that we describe a more
general version ofRSA/G, which allows some Steiner nodes
to be marked as permanentlydeleted(discussed in the next
section). The algorithm will not perform any Steiner merger
at such locations. The default version ofRSA/G simply sets
deleted[ ] false for all .

IV. THE RSA/BNB/G ALGORITHM

Recently, Leung and Cong presented an exponential-time
branch-and-bound algorithm calledRSA/BnB that solves the
MRSA problem optimally [22]. They observed that theRSA
heuristic is suboptimal precisely because Steiner mergers are
greedy and (sometimes) suboptimal. To obtain an optimal
solution, they suggested trying outboth merging and skip-
ping at SMO’s. The algorithm, calledRSA/BnB, essentially
enumerates the entire sequence of choices betweenmerging
andskippingat each SMO, and [22] showed that this method
enumerates at least one optimal arborescence.

Like RSA, RSA/BnB can also be generalized to the MSPSA
problem. LikeRSA/G, RSA/BnB/G visits nodes in decreasing
rank order and performs merger if the current nodeis a
TMO. If is an SMO, however,RSA/BnB/G tries out both
merging and skipping and returns the better solution.

Unfortunately, the generalization is not as trivial as before.
This is because Theorem 3 no longer holds: after an SMO is
skipped at (meaning there exist with
and , but they are not merged at),
.
Given two nodes , is called amerging

point (MP) of and if and only if and .

Furthermore, is called amaximal merging point(MMP)
of and if and only if is an MP of and and no
descendant of is an MP of and . Note that any pair of
nodes in has at least one MP.

Theorem 4: Given an arborescence, if there exists some
Steiner node with two or more children and is not an
MMP of every pair of children of , there exists , which
has a lower cost than .

Proof:
Assume the contrary, that is optimal but a Steiner node
with two or more children is not an MMP of some children

. Then there exists a nodesuch that and
and . The new arborescence

, with
, yields a reduction in total tree length—a contradiction.

Therefore, it suffices to consider Steiner mergers at MMP’s
only. Let be if and otherwise; then we have
the following theorem.

Theorem 5: for .
We can simply use [which also

takes time to compute] instead of in the algorithm.
The RSA/BnB/G algorithm is summarized in Table II, and its
optimality is proven in Appendix A. An example is shown
in Fig. 2. The set of skipped nodes resulting in the lowest
tree length is marked as permanentlydeleted, and finally
RSA/G() is called (with the set of deleted nodes) to return
the arborescence.

V. THE RSA/DP/G ALGORITHM

Leung and Cong [23] showed that each subproblem in the
recursive call to theRSA/BnB algorithm can becompletely
characterized by a triple , which can be defined and
solved recursively. As a result, a hashing-based DP technique
can be applied to avoid computing any given subproblem more
than once. The algorithm, calledRSA/DP, is significantly faster
than RSA/BnB and capable of solving 250-terminal MRSA



28 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 1, JANUARY 1998

TABLE II
THE RSA/BnB/G ALGORITHM. (a) TMO. (b) SMO. (c) OTHERWISE

(a)

(b)

(c)

problems optimally in one hour. The reader may refer to [23]
for more details.

This result can be generalized to the MSPSA problem, as
each subproblem in the recursive call toRSA/BnB/G/aux can
also be completely characterized by a triple , where

is the node to be visited, is the current peer set (i.e.,
), and is the cost of the partially constructed

arborescence so far. We also callthe rank of the triple.
In addition to the characterization, we need to be able to 1)
determine the set (the subset of reachable from ) given
an arbitrary triple and 2) determine whether is
an MMP. To solve 1), we first completely characterize the
“ ” relation, which requires bits and
preprocessing time (quite reasonable for an exact algorithm).
Let and . Then is simply

. To solve 2), it suffices to look at each such
that . Then, is an MMP if and only if none of the

has more than one element.
The algorithm, called RSA/DP/G, is summarized in

Table III. Our implementation ofRSA/DP/G characterizes
each subproblem with a tuple , where is the
set of nodes at which Steiner mergers occur.4 RSA/DP/G
visits nodes in decreasing rank order in the fashion ofRSA/G.
If the current node is an SMO, the branching and merging
subproblems are characterized as two tuples, which are then

4Strictly speaking, onlyP andi are needed to characterize the subproblem
to be solved.C is used for pruning purpose andS for regenerating the optimal
solution once determined.

conditionally inserted into the hash table (denoted “” in the
algorithm) to be solved later. To be more precise, given a
new tuple , it is inserted into the hash table
if either 1) a tuple of the form already
exists in the hash table, and (in such case, the tuple
will be replaced by ) or 2) no such tuple exists. Note that
conditional insertion guarantees that at most one tuple of the
form exists in the hash table at any given time.

If the expansion of a tuple leads to the creation of a
tuple , it is necessary that has a lower rank than since
nodes are visited in decreasing rank order. By expanding tuples
in decreasing rank order, we guarantee thatRSA/DP/G will
expand at most one tuple of the form for each
pair .5 In other words, no subproblem is solved more
than once.

The time complexity of the algorithm is dominated by
expansion of tuples. Since there are at most pairs of
the form for each , and each expansion
takes time at node , the overall time complexity
is .

VI. THE -IDeA/G ALGORITHM

Since RSA/BnB/G tries out both skipping and merging at
every SMO, it requires exponential runtime in the worst case.
We now describe a simple heuristic variant ofRSA/BnB/G,

5This is because no other tuple of the same form exists in the hash table
1) at the time of expansion of the tuple (a property of conditional insertion)
and 2) in subsequent execution (all tuples generated later will have a lower
rank).



CONG et al.: EFFICIENT ALGORITHMS FOR THE MSPSA PROBLEM 29

TABLE III
THE RSA/DP/G ALGORITHM. (a) TMO. (b) SMO. (c) OTHERWISE

(a)

(b)

(c)

which allows up to SMO’s to be skipped along any path in
the branch-and-bound diagram. The best set of skipped nodes
are is marked as permanentlydeleted,and the algorithm is
repeated until there is no further improvement. The heuris-
tic, called -IDeA/G (iterated -deletion for arborescence), is
described in Table IV. At the end of each iteration, the set
of skipped nodes resulting in the lowest tree length
is marked as permanentlydeleted (a deleted node remains
deleted throughout, and the SMO’s skipped in the current
iteration do not include previously deleted nodes). The process
is repeated until no further improvement is obtained. Last,
RSA/G() is called (with the set of permanently deleted nodes)
to return the arborescence.

We can show that the functionIDeA/G/aux() (one itera-
tion of the -IDeA/G algorithm) has time com-
plexity, where is the number of allowed deletions (the
complexity analysis is detailed in Appendix B). The ex-
perimental result (see Section VIII) shows that in practice,

-IDeA/G almost always terminates after only a few iterations.
Hence, the average-case time complexity of-IDeA/G is also

. In practice, even the -time 1-IDeA/G
heuristic generates solutions that are essentially optimal and is
sufficient for most practical purposes.

VII. T HE -IA/G ALGORITHM

The IDOM heuristic of Alexander and Robins [1] iteratively
finds a node maximizing MSpA

MSpA , where MSpA is the length
of the minimum spanning arborescence ofin rooted at
. is then replaced by in the next iteration until no

further improvement is possible. The algorithm is a straight-
forward adaptation of the iterated 1-Steiner approach [18] to
the graph arborescence problem, and the time complexity is

.
We now propose a heuristic inspired by the above approach,

with a strategy similar to -IDeA/G. Recall that -IDeA/G
can be viewed as a restricted version of theRSA/BnB/G
algorithm, in which at most Steiner mergers areskipped.
Our proposed algorithm, called-IA/G (which stands for
iterated -arborescence), is a symmetrical restricted version of
RSA/BnB/G in which at most Steiner mergers areallowed.
More precisely, -IA/G also visits the nodes in decreasing rank
order. If the current node is a TMO, the terminal merger is
always performed. If is an SMO, both merging and skipping
are tried unless Steiner mergers have already been performed
along the path, in which case the SMO is skipped.

Like the RSA/G and the -IDeA/G heuristics, -IA/G first
computes when node is visited, then takes appropriate
action based on . With RSA/G and -IDeA/G, the bounds on

and , respectively shown in Theorems 3 and 5, allow
to be computed efficiently in time using

space. Unfortunately, for-IA/G, no similar theorem applies.
Instead, for each , let us use to denote the subset of
sinks in interested inmerging into if is a Steiner node.



30 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 1, JANUARY 1998

TABLE IV
THE k-IDeA/G ALGORITHM. (a) TMO. (b) SMO, NODE DELETED. (c) SMO, SKIPPING ALLOWED. (d) SMO, SKIPPING EXHAUSTED. (e) OTHERWISE

(a)

(b)

(c)

(d)

(e)

Given a node , let .
Then, and .
In other words, a terminal is interested in merging into a
“downstream” potential Steiner node(such that ) if
is closer to than any of ’s potential parents in . The
and can be computed and maintained in time
and space; a given can then be computed by
taking the intersection of and , which requires
time.

The complete -IA/G algorithm is described in Table V.-
IA/G calls the functionIA/G/aux() to find the best (maximum
reduction in tree length) set of Steiner nodes, and adds
them to the terminal set . When , the functionIA/G/0()

is called instead ofIA/G/aux(); this function simply computes
the sum of the distances between each remaining terminal or
Steiner node and the closest “downstream” terminal. Note that
IA/G/0 can be implemented to run in time [we
consider all the remaining sinks to bedeletedafter returning
from IA/G/0()]. IA/G() calls IA/G/aux() repeatedly until no
further reduction in tree length is obtained. Last,RSA/G() is
called to return the arborescence; at this point,includes all
the Steiner nodes.

We can show that theIA/G/aux() function (one iteration
of the -IA/G algorithm) has time complexity,
where is the number of allowed Steiner mergers (the
complexity analysis is detailed in Appendix C). As a result,



CONG et al.: EFFICIENT ALGORITHMS FOR THE MSPSA PROBLEM 31

TABLE V
THE k-IA/G ALGORITHM. (a) TMO. (b) SMO, MERGING ALLOWED. (c) SMO, MERGING EXHAUSTED. (d) OTHERWISE

(a)

(b)

(c), (d)

the overall complexity of the-IA/G algorithm is
, where is the number of iterations. The extra

complexity is due to the one-time computation of
and and the subsequent updates. Since in

the worst case [the average case is also , as shown
in the next section], we have an overall time complexity
of . This compares favorably with
the IDOM algorithm of Alexander and Robins, which has a
complexity of .

VIII. E XPERIMENTAL RESULTS

A. Comparison I

We implemented all algorithms and heuristics proposed in
this paper using GNU C in the SUN UNIX environ-

ment and compared against thePFA and IDOM algorithms
of Alexander and Robins, which were proven to be highly
effectively for FPGA routing [1]. All experiments were per-
formed on a SPARC-5, and all central processing unit (CPU)
times are for this machine. We performed experiments in
the style of [1], whose goal was to compare the runtime
and solution quality of different Steiner and arborescence
algorithms on a typical FPGA routing instance with various
levels of congestion. Routing was done on a 2020 grid
graph, wherein edge weights model the congestion induced
by previously routed nets. Three different levels of congestion
were modeled: a) no congestion (no prerouted nets), b) low
congestion (ten prerouted nets), and c) medium congestion
(20 prerouted nets); see [1] for more details. For each net



32 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 1, JANUARY 1998

(a)

(b)

Fig. 3. Comparison I. (a) The average wire length of various arborescence algorithms (PFA, IDOM, RSA/G, 1-IDeA/G, 1-IA/G, andRSA/BnB/G) as a percentage
above theIKMB wire length under the conditions of 1) no congestion, 2) low congestion, and 3) medium congestion. (b) The average radius (maximum
source-to-sink path length) ofIKMB-constructed Steiner as a percentage above optimal.

size (6–12), 50 random nets were generated and routed on the
weighted graph that modeled the given congestion (conges-
tion was newly generated for each net). We compared the
IKMB Steiner algorithm (one of the best performing graph
Steiner algorithms in the literature) with several arborescence
algorithms, includingPFA and IDOM from [1], our optimal
algorithms RSA/BnB/G and RSA/DP/G, and our heuristics
RSA/G, 1-IDeA/G, and 1-IA/G. For each net, we normalized
the tree length produced by each heuristic to that ofIKMB,
and the maximum source-to-sink path length of each heuristic
was normalized to optimal.

Fig. 3(a) gives the average tree length of various arbores-
cence algorithms (as percentage above that ofIKMB) under var-

ious congestion levels, and Fig. 3(b) gives the average radius
(maximum source-to-sink path length) ofIKMB-constructed
Steiner as a percentage above the maximum Manhattan source-
to-sink distance. When there is little or no congestion, arbores-
cences and Steiner trees have very similar total tree length. As
the congestion level increases, however, arborescences tend
to have longer tree length but shorter radius when compared
to Steiner topologies. All of the six arborescence heuristics
we tested (PFA, IDOM, RSA/G, 1-IDeA/G, and 1-IA/G) gave
similar solution quality (arborescences generated are less than
0.5% suboptimal on average),6 and this is the reason why we

6Please refer to [8] for a detailed comparison.



CONG et al.: EFFICIENT ALGORITHMS FOR THE MSPSA PROBLEM 33

(a)

(b)

Fig. 4. Comparison II. (a) The percentage of trials when each heuristic is a winner. (b) The average runtime in CPU seconds.

did not distinguish the tree lengths among different algorithms
in Fig. 3(a). However, their runtimes differ drastically despite
such similarity in performance, which we will study in the
next subsection.

B. Comparison II

We also “stress tested” our algorithms and heuristics by
running them on a grid that is four times larger (4040),
with a medium congestion level (20 prerouted nets). The size
of the nets tested ranges from three to 150, and for each net
size, 50 random nets were generated and routed byPFA, IDOM,
RSA/BnB/G and RSA/DP/G, RSA/G, 1-IA/G, 1-IDeA/G, and
2-IDeA/G. This comparison highlights runtime and solution

quality when the problem size is large (note that the data
for PFA, IDOM, RSA/BnB/G, andRSA/DP/G were incomplete
because they exceeded the run-time limit of 20 s for large
designs).

For a given routing instance, a heuristic is called awinner
if it generates a solution with the lowest tree length among
all heuristics tested (note thatRSA/BnB/G and RSA/DP/G
are not included). Fig. 4(a) shows the percentage of trials
when each heuristic is a winner; 1-IDeA/G and 2-IDeA/G are
consistently as good as or better than the other heuristics.
Runtimes are shown in Fig. 4(b). Average CPU times for both
1-IDeA/G and 1-IA/G were less than one second and for 2-
IDeA/G were less than four seconds, even for the largest test
cases. Moreover, our heuristics are orders of magnitude faster



34 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 1, JANUARY 1998

(a)

(b)

Fig. 5. Comparison II. (a) The average number of iterations for 1-IDeA/G, 2-IDeA/G, and 1-IA/G. (b) The average as percentage of the number of terminals.

than PFA and IDOM, even on instances of modest size [for
example, on 15-sink instances, 1-IDeA/G averages 53X (291X)
faster thanPFA (IDOM)], a result consistent with the earlier
comparison between the time complexities. Thus, substantial
run-time improvement over existingPFA- and IDOM-based
FPGA routing algorithms is expected with our new heuristics.

We also observe that 1-IDeA/G is superior to 1-IA/G in
both quality and runtime. Fig. 5 shows that on average, 1-
IDeA/G requires significantly fewer iterations than 1-IA/G;
1-IDeA/G finished in six iterations or less (practically constant)
on all our test cases, while 1-IA/G requires a nearly linear
number of iterations. This is not surprising since the number
of iterations of 1-IA/G is one plus the number of (degree

three or higher) Steiner nodes in the arborescence, which is
a linear or near linear function of . Hence, the effective
run-time complexities of 1-IDeA/G and 1-IA/G are
and , respectively.

From these experiments, we conclude thatRSA/G and 1-
IDeA/G are the two best arborescence algorithms to use in
terms of runtime and solution quality.

C. Comparison III

Last, we also studied graph-based routing in a regime that
models the presence of obstacles. In a layout region of size
4000 4000, we randomly generate a set ofterminals
and a set of rectangles (length and width are both within



CONG et al.: EFFICIENT ALGORITHMS FOR THE MSPSA PROBLEM 35

(a)

(b)

Fig. 6. Comparison III. (a) Average tree length (as percentage above that ofIKMB). (b) Average runtime in CPU seconds.

[400, 600]). We then construct the Hanan grid graph
induced by the points and the corners of the rectangles, then
construct a new graph by deleting any edges of that
lie within rectangles in .7 For each , , ten
random examples with all terminals reachable from each other
were generated and routed usingIKMB, RSA/G, 1-IDeA/G, and
1-IA/G. Fig. 6 shows the average tree length as a percentage
above that ofIKMB, along with the runtime (in CPU seconds)
for each of the four heuristics (again, the solution quality

7The graphG has been proven to contain pair-wise shortest paths between
all terminals [7] and to contain an optimal rectilinear Steiner tree [6]. The
question of whetherG necessarily contains an MRSA is still open, though
the answer is likely positive.

of the heuristics is very similar). The arborescences are on
average 6–17% longer than the Steiner trees constructed by
IKMB but have much smaller maximum source-to-sink path
lengths; runtimes are orders of magnitude smaller. Last, Fig. 7
shows a 30-terminal, 30-rectangle example and the solution
generated by 1-IDeA/G in 0.49 CPU seconds.

IX. CONCLUSION

We have presented several efficient heuristics and exact
algorithms for the MSPSA problem, improving upon previous
work in both runtime and solution quality. We have also
presented detailed complexity analysis as well as extensive



36 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 1, JANUARY 1998

Fig. 7. A 30-terminal, 30-rectangle example, and the 1-IDeA/G solution.

experimental results that suggest that our algorithms are more
effective in practice than other arborescence algorithms. We
believe that applications to performance-driven global routing,
FPGA routing, and non-VLSI domains such as multicast
routing are all promising.

APPENDIX A
OPTIMALITY OF RSA/BNB/G

We shall prove the optimality ofRSA/BnB/G in the fashion
of [22]. Let denote a generic node in the BNB diagram and

, , be the node to be visited, the rank of the node, and
the partial arborescence constructed immediatelyafter visiting

, respectively (note that and ). If
is a TMO, denotes the child node of in the BNB

diagram (note that ). If is an SMO, and
denote the two child nodes of corresponding to merging

and skipping, respectively (note that ).
We say that is optimal if and only if there exists an optimal
arborescence that satisfies the following two optimality
criteria:

• [OC1 ] ;

• [OC2 ] such that and .

These two criteria guarantee that 1) the current partial arbores-
cence is optimal and 2) it is possible to generate an optimal
arborescence even though only nodes with a lower rank than

will be visited in the remaining execution.
Lemma 1: If is optimal and is a TMO, is optimal

and satisfies both OC1 and OC2 .
Proof: First of all, we shall show that

. Assume the contrary—that
this is not the case. Then there must exist
such that and . We can construct an
arborescence , and we
have , contradicting

the assumption that is optimal. Therefore, ,
and satisfies OC1 .

Second, we shall show that such
that . Assume the contrary—that such exists.
Note that the optimality of implies that . Therefore,

.
This is impossible, however, since no nodes in the peer set
dominate after the terminal merger at As a result, no
such path exists, and satisfies OC2 .

Lemma 2: If is optimal and is a Steiner merging
point, either 1) is optimal and satisfies both OC1
and OC2 or 2) is optimal and satisfies both
OC1 and OC2 .

Proof: If , then using an argument similar to the
previous proof, we can prove that satisfies both OC1
and OC2 , and so is optimal.

If , satisfies OC1 since
. To show that satisfies OC2 , we assume the

contrary that such that .
Using the same argument as before, we have

. This is contradictory, however, since .
Theorem 6: There exists at least one leaf node in the BNB

diagram in theRSA/BnB/G algorithm that is optimal in tree
length.

Proof: It follows from the facts that the root node of
the BNB diagram is optimal ( and )
and that each optimal node has at least one child node that is
optimal.

APPENDIX B
COMPLEXITY OF -IDEA/G

Consider the recursive functionIDeA/G/aux(), which does
the majority of the work and whose time complexity is a
function of the triple , where is the rank of the
current node, is the number of nodes removed from the
peer set in the subsequent execution (recursion), andis
the number of SMO’s that can be skipped in the subsequent
execution. Let denote its time complexity. The
execution ofIDeA/G/aux(), excluding the recursion, is domi-
nated by the computation of , which takes time.
In the following, we simply say that it takes time without
loss of precision. Table VI gives the recursive definition of

according to the different possible scenarios for
, , and . The base case of the algorithm is

. Note that all of these complexities are
directly inferred from the algorithm. The following theorem
bounds the complexity of .

Theorem 7: For any , , and ,
, where .

Proof: We use induction on . For ,
for any , .

Assume that for
; we shall prove that

holds for all of the scenarios described in Table VI. Note that
it suffices to prove the result for scenarios b) and c), since the
proofs for a), d), and e) are subsumed by that for b).



CONG et al.: EFFICIENT ALGORITHMS FOR THE MSPSA PROBLEM 37

TABLE VI
THE COMPLEXITY OF THE IDeA/G/aux FUNCTION FOR ANY i � 1, d � 0, AND k � 0 (“—” D ENOTES DON’T CARE)

In case b), we have

In case c), we have

Therefore, the induction step holds for for each of
the scenarios a)–e).

Theorem 8: The IDeA/G/aux() function (one iteration of the
-IDeA/G algorithm) has complexity , where is

the number of allowed deletions.

Proof: Note that any arborescence has at most
Steiner nodes, and therefore, at most

nodes are removed from the peer set (onlyremains
in at the end). Therefore, the complexity of the function is at
most

.

APPENDIX C
COMPLEXITY OF -IA/G

We use an analysis scheme similar to that presented for
-IDeA/G. The complexity of the functionIA/G/aux() can be

expressed as a function of the triple , where is the
rank of the current node, is the number of nodes removed
from the peer set in the subsequent execution (recursion),
and is the number of Steiner mergers allowed in the
subsequent execution. In what follows, let be
the complexity of callingIA/G/aux(). The time complexity
of executing IA/G/aux() at node , excluding the recursive
calls, is . However, we know that
since all nodes in the peer set (except, which is added to
the peer set at the end) will have been deleted when the
recursion terminates. As before, we simply say thatIA/G/aux(),
excluding the recursive calls, takes time. Table VII gives
the (recursive) definitions of according to the
different possible scenarios, for , , and .
The base cases of the algorithm are
and . The following theorem bounds the
complexity of .

Theorem 9: For any , , and ,
.

Proof: We use induction on . Note that it suffices
to prove the result for scenarios a), b), and c), since d)
is subsumed by c). The theorem holds for since

for any . It
also holds for since
for any . Assume that
for any , and with ( ).

In case a), we have



38 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 1, JANUARY 1998

TABLE VII
TIME COMPLEXITY OF THE IA/G/AUX FUNCTION FOR ANY i � 1, d � 1, AND k � 0

In case b) we have, if

If instead, then

In case c), we have

Therefore, the induction step holds for for each of
the scenarios a)–d).

Theorem 10:The IA/G/aux() function (one iteration of the
-IA/G algorithm) has complexity , where is the

number of allowed Steiner mergers.
Proof: Since there are at most nodes removed

from the peer set (all terminals and Steiner nodes), the com-
plexity of the algorithm is equal to

.

REFERENCES

[1] M. J. Alexander and G. Robins, “New performance-driven FPGA
routing algorithms,”IEEE Trans. Computer-Aided Design,vol. 15, pp.
1505–1517, Dec. 1996.

[2] J. D. Cho, “Min-cost flow based min-cost rectilinear Steiner distance
preserving tree construction,”Int. Symp. Physical Design,Apr. 1997,
pp. 82–87.

[3] J. D. Cho, private communication, 1997.
[4] H. A. Choi and A. H. Esfahanian, “A message-routing strategy for

multicomputer systems,”Networks,vol. 22, pp. 627–646, 1992.
[5] H. A. Choi, A. H. Esfahanian, and B. C. Houck, “Optimal communica-

tion trees with application to hypercube multicomputers,” inProc. 6th
Int. Conf. Theory and Application of Graph Theory,1988, pp. 245–264.

[6] J. P. Cohoon and J. L. Ganley, “Rectilinear interconnections in the
presence of obstacles,” inAdvanced Routing in Electronic Modules,Y.
T. Wong and M. Pecht Eds. Boca Raton, FL: CRC Press, 1996.

[7] J. P. Cohoon and D. S. Richards, “Optimal two-terminal� � � wire
routing,” Integration: VLSI J.,vol. 6, pp. 35–57, 1988.

[8] J. Cong, A. B. Kahng, and K.-S. Leung, “Efficient heuristics for the
minimum shortest path Steiner arborescence problem with applications
to VLSI physical design,” inProc. Int. Symp. Physical Design,Apr.
1997, pp. 88–95.

[9] J. Cong and K.-S. Leung, “On the construction of optimal or near-
optimal Steiner arborescence,” Dept. Computer Science, Univ. of Cali-
fornia, Los Angeles, Tech. Rep. CSD-960033, 1996.

[10] J. Cong, K. S. Leung, and D. Zhou, “Performance driven interconnect
design based on distributed RC delay model,” inProc. ACM/IEEE
Design Automation Conf.,June 1993, pp. 606–611.

[11] J. Cong and P. H. Madden, “Performance driven routing with multiple
sources,”IEEE Trans. Computer-Aided Designvol. 16, pp. 410–419,
Apr. 1997.

[12] J. Ćordova and Y. H. Lee, “A heuristic algorithm for the rectilinear
Steiner arborescence problem,” CIS Department, Univ. of Florida, Tech.
Rep. TR-94-025, 1994.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

[14] M. X. Goemans and Y. S. Myung, “A catalog of Steiner tree formula-
tions,” Networks,vol. 23, pp. 19–28, 1993.

[15] M. Hanan, “On Steiner’s problem with rectilinear distance,”SIAM J.
Appl. Math.,vol. 14, pp. 255–265, 1966.

[16] J. M. Ho, M. T. Ko, T. H. Ma, and T. Y. Sung, “Algorithms for rec-
tilinear optimal multicast tree problem,” inProc. Int. Symp. Algorithms
and Computation,June 1992, pp. 106–115.

[17] F. K. Hwang, D. S. Richards, and P. Winter,The Steiner Tree Problem.
Amsterdam, The Netherlands: North-Holland, 1992.

[18] A. B. Kahng and G. Robins, “A new class of iterative Steiner tree heuris-
tics with good performance,”IEEE Trans. Computer-Aided Design,vol.
11, pp. 893–902, July 1992.

[19] , On Optimal Interconnections for VLSI.Norwell, MA: Kluwer,
1995.

[20] R. R. Ladeira de Matos, “A rectilinear arborescence problem,” Ph.D.
dissertation, University of Alabama, Tuscaloosa, 1979.

[21] Y. Lan, A. H. Esfahanian, and L. M. Ni, “Multicast in hypercube
multiprocessors,”J. Parallel Distributed Computing,vol. 8, pp. 30–41,
1990.

[22] K. S. Leung and J. Cong, “Fast optimal algorithms for the minimum
rectilinear Steiner arborescence problem,”Algorithmica,to be published.
See also Computer Science Department, University of California, Los
Angeles, UCLA Computer Science Tech. Rep. CSD-960037, 1996; and



CONG et al.: EFFICIENT ALGORITHMS FOR THE MSPSA PROBLEM 39

Proc. IEEE Symp. Circuits and Systems,, June 1997, pp. 1568–1571
(extended abstract).

[23] , “IDEA: An efficient near-optimal heuristic for the minimum
rectilinear Steiner arborescence problem,” unpublished.

[24] L. Nastansky, S. M. Selkow, and N. F. Stewart, “Cost minimal trees in
directed acyclic graphs,”Zeitschrift für Oper. Res.,vol. 18, pp. 59–67,
1974.

[25] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The rectilinear
Steiner arborescence problem,”Algorithmica,vol. 7, pp. 277–288, 1992.

[26] J. P. Sheu and M. Y. Su, “A multicast algorithm for hypercube
multiprocessors,” inInt. Conf. Parallel Processing,1992, vol. 3, pp.
18–22.

[27] G. E. T́ellez and M. Sarrafzadeh, “On rectilinear distance-preserving
trees,” in Proc. IEEE Symp. Circuits and Systems,June 1995, vol. 1,
pp. 163–166.

[28] V. A. Trubin, “Subclass of the Steiner problems on a plane with
rectilinear metric,”Cybernetics,vol. 21, pp. 320–322, 1985.

Jason Cong(S’88–M’90–SM’96) received the B.S.
degree in computer science from Peking University,
China, in 1985 and the M.S. and Ph.D. degrees in
computer science from the University of Illinois
at Urbana-Champaign in 1987 and 1990, respec-
tively.

He currently is an Associate Professor in the
Computer Science Department of the University
of California, Los Angeles (UCLA,) and Codirec-
tor of the VLSI CAD Laboratory. His research
interests include layout and logic synthesis for high-

performance, low-power very-large-scale-integration (VLSI) circuits, design
and optimization of VLSI interconnects, field programmable gate array
(FPGA) synthesis, and reconfigurable computing. He has published more than
100 research papers and led more than 20 research projects supported by the
Defense Advanced Research Project Agency, National Science Foundation
(NSF), and a number of industrial sponsors in these areas. He is an Associate
Editor of ACM Transactions on Design Automation of Electronic Systems.

Dr. Cong received the Ross J. Martin Award for Excellence in Research
from the University of Illinois in 1989, the NSF Research Initiation Award and
NSF Young Investigator Award in 1991 and 1993, respectively, the Northrop
Outstanding Junior Faculty Research Award from UCLA in 1993, and the
Best Paper Award from IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS in 1995.

Andrew B. Kahng (A’89), for a photograph and biography, see this issue,
p. 1.

Kwok-Shing Leung (M’97) received the B.S. de-
gree in computer science and engineering from the
University of California, Los Angeles (UCLA,) in
1993 and the M.S. degree in computer science
from Carnegie-Mellon University, Pittsburgh, PA,
in 1995. He currently is pursuing the Ph.D. degree
in computer science at UCLA.

He previously was with AT&T Bell Laborato-
ries (Summer 1993), Intel Corporation (Summer
1994, 1995–1996), and Cadence Design Systems
(1996–1997). He currently is a Senior Software

Engineer with Magma Design Automation, Palo Alto, CA, developing next-
generation physical design tools. His research interests include physical design
of systems, and algorithm design and analysis.

Mr. Leung is a member of Tau Beta Pi and the Golden Key Honor Society.
He received the Peat Warwick Scholarship from the Golden Key Honor
Society and the UCLA President’s Undergraduate Fellowship in 1992. He
received the Outstanding Senior Award from the UCLA Computer Science
Department and the Outstanding Bachelor Award from the UCLA School of
Engineering in 1993.


