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Abstract—Many previous works in partitioning have used
some underlying clustering algorithm to improve performance.
As problem sizes reach new levels of complexity, a single ap-
plication of a clustering algorithm is insufficient to produce
excellent solutions. Recent work has illustrated the promise of
multilevel approaches. A multilevel partitioning algorithm re-
cursively clusters the instance until its size is smaller than a
given threshold, then unclusters the instance while applying a
partitioning refinement algorithm. In this paper, we propose a
new multilevel partitioning algorithm that exploits some of the
latest innovations of classical iterative partitioning approaches.
Our method also uses a new technique to control the number of
levels in our matching-based clustering algorithm. Experimental
results show that our heuristic outperforms numerous existing
bipartitioning heuristics with improvements ranging from 6.9 to
27.9% for 100 runs and 3.0 to 20.6% for just ten runs (while
also using less CPU time). Further, our algorithm generates
solutions better than the best known mincut bipartitionings for
seven of the ACM/SIGDA benchmark circuits, including golem3
(which has over 100 000 cells). We also presentquadrisection
results which compare favorably to the partitionings obtained
by the GORDIAN cell placement tool. Our work in multilevel
quadrisection has been used as the basis for an effective cell
placement package.

Index Terms—Optimization, partitioning, physical design,
placement.

I. INTRODUCTION

A netlist hypergraph has modules
a net is defined to be a subset of

with size greater than 1. Abipartitioning is
a pair of disjointclusters(i.e., subsets of and such
that The cut of a bipartitioning
is the number of nets which contain modules in bothand

i.e., Let
denote the area of and let
denote the area of a subset Given a balance
tolerance the min-cut bipartitioning problem seeks a
solution that minimizes subject to

The standard bipartitioning approach is iterative improve-
ment based on the Kernighan–Lin (KL) [29] algorithm, which
was later improved by Fiduccia–Mattheyses (FM) [15]. The
FM algorithm proceeds in a series ofpasses. A pass begins
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with some initial solution ; modules are successively
moved between and until each module has been moved
exactly once. Given a current solution the previ-
ously unmoved module (or with highest gain

is moved from
to After each pass, the best solution observed
during the pass becomes the initial solution for a new pass,
and the passes terminate when a pass does not improve upon
the most recent solution. FM has been widely adopted by the
physical design community due to its short runtimes and ease
of implementation.

Iterative approaches dominate both the VLSI CAD literature
and industry practice for several reasons. They are generally
intuitive (the obvious way to improve a given solution is to
repeatedly make it better via small changes), easy to describe
and implement, and relatively fast. Hence, much work has
sought to improve upon the basic FM algorithm by introducing
module tie-breaking schemes [19], [31], by modifying the
module locking and unlocking mechanism [11], [23], or by
using different formulas for computing the gain [13], [14].
Other works attempt to use iterative improvement inside
other algorithmic approaches such as genetic algorithms [9],
tabu search [5], large-scale Markov chains [16], two-phase
clustering [7], [17], [33], [40], or multilevel clustering [3],
[10], [22], [21], [27].

This paper proposes a new multilevel circuit partitioning
algorithm. Our work is motivated by the multilevel partitioners
of Hendrickson and Leland [22] and Karypis and Kumar [27]
which have been very successful in the scientific computing
community for partitioning finite-element graphs. In addition
to the implementation differences between graphs and netlist
hypergraphs, we have added two key ingredients which sig-
nificantly improves performance.

• We utilize a LIFO bucket scheme for storing module
gains [19] and the CLIP algorithm of [14] within our
FM implementation.

• We cluster based on the matching algorithms of [7], [22],
[27]. However, instead of constructing clusters
from a set of modules, we stop the clustering prema-
turely so that more than clusters are generated. This
causes the multilevel coarsening to proceed more slowly,
which allows the partitioner to explore more levels of the
partitioning hierarachy.

The rest of our paper is as follows. Section II surveys
the latest innovations in iterative partitioning and discusses
our adoption of the CLIP and LIFO improvements within
our algorithm. Section III describes our multilevel algorithm,
and Section IV describes the matching-based clustering used
within the multilevel algorithm. We present extensive exper-
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TABLE I
BENCHMARK CIRCUIT CHARACTERISTICS

imental results in Section V that show that our algorithm
outperforms numerous other circuit bipartitioning algorithms.
Section VI concludes with directions for future work.

II. I NNOVATIONS IN ITERATIVE PARTITIONING

We now review selected works in iterative partitioning
which have provided new innovation (see the survey of
Alpert and Kahng [2] for a broader view of previous work
in partitioning). In our discussion of the algorithms below,
we include some comparisons of these methods (using our
implementations) for 23 of the standard benchmarks from
the CAD Benchmarking Laboratory (ftp to ftp.cbl.ncsu.edu).
Table I shows the characteristics for these test cases, and we
assume unit cell area for all test cases. Our experiments were
all run on a Sun Sparc 5 (85 MHz), and all runtimes reported
are for this machine (in seconds).

A. Tie-Breaking Strategies

One potential problem with the FM algorithm is that many
modules in the top bucket may potentially have the same
gain; hence, various tie-breaking strategies have been proposed
to choose among alternate moves that have the same gain.
Krishnamurthy [31] proposed usinglookaheadgain vectors,
and Sanchis [39] extended this approach to multiway partition-
ing. Even when gain vectors are used, ties may still occur in the
first- through th-level gains. Thus, it is the implementation of
the gain bucket data structure that determines which module is
selected. The original FM algorithm uses a linked list for each
bucket; we may infer that modules are probably removed and
inserted at the head of the list, i.e., that the bucket organization
corresponds to a last-in first-out (LIFO) stack. The authors of
[15] do not specifically mention a LIFO organization; one can
speculate that LIFO was an “obvious” choice. However, a
first-in first-out (FIFO) organization which supports the same

update efficiency could have been implemented just as easily.
One might even use a random organization, possibly at the cost
of increased run times or a more complex bucket structure.
The authors of [19] observe that Sanchis [39], and most likely
Krishnamurthy [31], used random bucket selection schemes.

In experiments with both the FM and Krishnamurthy al-
gorithms, the authors of [19] found that the LIFO bucket
organization is distinctly superior to FIFO and random bucket
organizations. Reference [19] ascribes the success of LIFO to
its enforcement of “locality” in the choice of modules to move,
i.e., modules that are naturally clustered together will tend to
move sequentially. Hagenet al. [19] use this idea of locality
to propose an alternative formula for higher level gains, which
also improves performance. That LIFO outperforms FIFO was
also observed by Dutt and Deng [14] who, like [19], noted
that lookahead tie breaking does not improve the performance
of FM when LIFO buckets are used (in other words, using
LIFO instead of FIFO negates the advantage of lookahead
tie-breaking).

Table II presents our own comparisons of LIFO with ran-
dom (RND) and FIFO bucket schemes, allowing 10% de-
viation from exact bisection. Our implementations actually
significantly outperform those of [19], perhaps because their
implementations were adapted from Sanchis’ original parti-
tioning code (and also because they perform exact bisection).
For each of the test cases in the table, we ran FM 100
times for all three bucket schemes; we report the minimum
cut, average cut, and standard deviation observed. Like [19]
and [14], the table shows that LIFO significantly outperforms
FIFO. However, we do not observe any improvement of LIFO
over random selection (it appears that random selection may
even be the best scheme of the three). In our work below, we
use a LIFO scheme since it is much faster than a random
scheme within the context of our implementation. Clearly,
the discrepancy between these results and those of [19] are
a source of concern and need to be further explored.

Recently, Dutt and Deng [13] proposed a different kind
of tie-breaking approach, based on probabilistic techniques.
Instead of using a gain value that reflects only the immediate
change in cut from moving a single vertex, their PROP algo-
rithm uses a more global gain computation. Each vertex has an
associated probability for the event that the vertex will actually
be moved to the other cluster. PROP begins by assigning
each vertex an initial probability of 0.95, and then gains are
recomputed based on a function of the current solution and
the vertex probabilities. As vertices are moved, probabilities
and gains are updated for neighboring vertices. Experiments in
[13] show that this gain computation significantly outperforms
classic FM. However, since its gain values are nondiscrete,
PROP cannot exploit the FM bucket structure; run times thus
increase by a factor of 4–8. The heuristic is nevertheless
still fairly efficient, and future work on probabilistic gain
computations is certainly promising.

B. Modifying the Basic FM Structure

Saab [38] observes that in an iterative improvement algo-
rithm, when a vertex is moved, it tends to “drag” with it its
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TABLE II
MINIMUM CUT, AVERAGE CUT, AND STANDARD DEVIATION FOR 100 RUNS OF FM USING THE LIFO, RANDOM (RND), AND FIFO TIE-BREAKING SCHEMES

adjacent vertices. His algorithm first performs a sequence of
consecutive moves from to and then clusters the first

vertices moved, reasoning that vertices that are dragged
across the cut line together should belong to the same cluster.
Like the LIFO bucket scheme, this strategy recognizes that
adjacent vertices should be moved sequentially. Saab uses
clusters identified in this manner to coarsen the graph, then
runs a two-phase FM variant (see the two-phase FM discussion
below).

The CLIP algorithm of Dutt and Deng [14] builds upon this
idea further by tie breaking based on the adjacency to the most
recently moved modules. For example, suppose that moving
module increases the gain of by one. Instead of increasing
the gain by just one, it could be increased by two, five, ten,
etc., which would greatly increase the chance thatis moved
next. Instead of increasing the gain by some constant factor,
the authors of [14] actually propose to increase the gain by an
infinite factor. Since the magnitude of the bucket indexes in
FM are bounded by a constant, a different implementation is
required: 1) the FM buckets are rearranged immediately after
the initial gains are computed to start a pass, and 2) all of the
buckets in each bucket structure are concatenated into a single
linked list starting with the bucket with the largest index. This
entire list is then inserted into the bucket with index zero, and
all other buckets are made empty. This single preprocessing
step has the effect of multiplying the gain change of the most
recently moved modules by an infinite factor. The only other
modification required is that the range of bucket indexes must
double.

Experiments in [14] show that CLIP averages 18% im-
provement over FM (both using a LIFO bucket scheme).

TABLE III
MINIMUM CUT, AVERAGE CUT, STANDARD DEVIATION, AND

CPU TIMES FOR 100 RUNS OF THE FM AND CLIP ALGORITHMS

We have implemented the CLIP algorithm and made the
same comparisons of CLIP versus FM for bipartitioning with
balance tolerance Table III reports the minimum cut,
average cut, standard deviation of cut, and total CPU time
(Sun Sparc 5) for 100 runs of CLIP and FM on the suite of
test cases. We also report significant improvement for CLIP,
especially for some of the larger test cases. Interestingly, the
run times for CLIP are not much higher than those of FM,
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except one drastic increase for the very large circuit golem3.
The run times decrease for some of the larger test cases for
which CLIP requires fewer passes to converge.

Many other works have proposed modifications to the basic
FM structure. Observing that each module can be locked only
once during a pass, Hoffman [23] proposed an unlocking
mechanism that allows modules to move if they have been
locked in the “wrong” cluster. Dasdan and Aykanat [11]
have proposed a multiway variant of FM that allows a small
constant number (e.g., three or four) of module moves per pass.
In a similar spirit, Dutt and Deng [14] also propose a promising
method called CDIP which allows the iterative improvement
algorithm to reverse a sequence of bad moves, and then try
some different sequence. Backing up in this manner prevents
continuing an entire pass in which positive gain is unlikely to
be realized. Yehet al. [44] proposed an extension of Sanchis’
multiway partitioning algorithm that alternates “primal” passes
of module moves with “dual” passes of net moves; however,
run times for dual passes are a factor of 9–10 higher than for
a primal pass. In their study on circuit partitioning algorithms,
the authors of [21] conclude that dual passes “are not worth-
while.” Park and Park [34] propose to integrate size constraints
into the cut objective, and Shin and Kim [40] propose to
gradually tighten size constraints between FM passes.

These are just some of the many proposed modifications to
the basic FM structure. We chose to adopt only CLIP and LIFO
within our algorithm because neither of these modifications
increases run time significantly, while both enhance solution
quality. Whether the run time sacrifices for dual passes, CDIP,
or lookahead are worthwhile remains an open direction for
future work.

C. Using an Iterative Improvement Engine

As problem sizes grow larger, the performance of iterative
improvement approaches such as FM tend to degrade [20].
Hence, many heuristics have utilized iterative improvement
within a different paradigm. For example, the genetic par-
titioning algorithm of Bui and Moon [9] uses FM as a
postprocessing step to each crossover operation. (A similar
approach was proposed by [25].) FM postprocessing has also
been utilized within tabu search-based approaches [4], [5].
Fukunagaet al. [16] proposed a large-step Markov Chain
(LSMC) algorithm which generates new solutions by making
big “jumps” from low-cost local minima. These solutions are
then used as starting solutions in FM to generate new local
minima (also see Isomotoet al. [26]). Liu et al. [32] proposed a
gradient Fiduccia–Mattheyses algorithm (GFM) that alternates
FM refinements with gradient descents. They also propose
a variant (GFM which uses the two-phase FM technique
described below.

Another technique typically used to handle increasing prob-
lem sizes isclusteringor, equivalently,coarsening. The mod-
ules of the circuit are grouped into many small clusters, and
these clusters form the new nodes of a smaller coarser netlist.
Iterative improvement is then run on (some of) the clustered
netlists. Since our multilevel approach is based on this concept,
we now give some formal definitions.

Definition 1: A clustering1 of
induces the coarser netlist with

For every the net is a member
of where unless i.e.,

spans the set of clusters containing modules of
Definition 2: Suppose that was induced from by

the clustering The projection of the
bipartitioning solution of onto
is the solution where

and
The process of projecting to is

called uncoarsening.
Clustering has been commonly applied within a “two-phase”

methodology. First, a clustering of is generated, then
this clustering is used to induce the coarser netlist from

FM is then run once on to yield the bipartitioning
and this solution is projected to a new bipartitioning
of Finally, FM is run a second time on using as
its initial solution. This second FM run can be classified as a
refinementstep, which refers to when an initially good solution
is improved via local moves and swaps. The primary difference
among two-phase algorithms is the clustering method used to
generate Some common clustering approaches which have
been applied to two-phase FM include spectral [3], random
walks [17], random matching [7], and bottom-up connectivity-
based [33], [40] (see [2] for a survey of circuit clustering
techniques).

The “two-phase” approach can be extended to amultilevel
approach by allowing as many phases as are desired. Fig. 1
illustrates the multilevel partitioning paradigm with five phases
or levels(as in [27]). In a multilevel algorithm, a clustering of

is used to induce the coarser netlist then a clustering
of induces etc., until the most coarsened netlist
is constructed in the figure). A bipartitioning solution

is found for (e.g., via FM), and this
solution is then projected to
is then refined, e.g., by FM postprocessing (in the figure, the
projected and refined solutions are, respectively, denoted by
dotted and solid lines). The uncoarsening process continues
until a refined partitioning of is obtained.

Multilevel partitioning offers several advantages over pure
iterative partitioning two-phase FM.

• In two-phase FM, coarsening occurs in a single step
which may mean that is too coarse a representation
of Multilevel partitioning allows coarsening to pro-
ceed more slowly, which gives the iterative engine more
opportunities for refinement.

• If a fast clustering and refinement strategy is used, the
approach can be extremely efficient. One can afford to
perform a careful partitioning on since this netlist
will have very few modules.

• Refinement progresses with progressively larger netlists,
which implies that number of modules moved during an
FM “move” become progressively smaller. This permits

1A k-way clusteringP k of the netlistH(V;E) is a set of disjoint subsets
C1; � � � ; Ck of V such thatC1 [C2 [ � � � [Ck = V: Since a clustering and
a partitioning are actually equivalent, we use the superscriptk to distinguish
between a clusteringP k and a bipartitioningP:
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Fig. 1. Multilevel bipartitioning paradigm.

the refinement algorithm to avoid bad local minima via
big steps at high levels, but at the same time find a good
final solution via refinement at the low levels.

Multilevel partitioning approaches have been especially
prominent in the scientific computing literature. Barnard and
Simon [6] have used multilevel techniques not directly for
partitioning, but rather to compute the Fiedler vector for
spectral bisection. Inspired by this work, Hendrickson and
Leland [22] developed a very efficient multilevel partitioning
algorithm which is included in the Chaco partitioning package.
The coarsening step finds a random maximal matching as in
[7] and [8], and merges pairs of modules to reduce the instance
size by a factor of 2. The refinement step uses multiway FM
with a LIFO bucket scheme, but with several modifications
to improve run times: 1) the algorithm can terminate before a
pass is completed if further improvement appears unlikely,
2) gains are saved after a pass is completed so that only
moved modules and their neighbors need to have their gains
recomputed before the next pass, and 3) an efficient boundary
refinement scheme is used wherein only vertices incident to
cut edges are inserted into the data structure, with gains
for other vertices computed only on an “as needed” basis.
The authors of [35] also proposed a multilevel algorithm but
without refinement, i.e., a partition of the coarsest graph is
uncoarsened in one step to form the final solution.

Karypis and Kumar [27], [28] recently developed the Metis
multilevel graph partitioning package. Like [22], they use
boundary schemes and early pass termination. They also allow
the user to set options for the clustering scheme, the initial
partitioning algorithm, and the refinement scheme. One of
their coarsening schemes uses a greedy weighted matching

algorithm, upon which our coarsening scheme is based. The
work of [1] adapted Metis to partition netlist hypergraphs
while integrating the genetic approach of [20] to obtain more
stable solution quality.

Cong and Smith [10] proposed applying their clique finding
clustering algorithm as the coarsening step in a multilevel
circuit bipartitioning algorithm. More recently, Hauck and
Borriello [21] performed a detailed study of multilevel FPGA
partitioning. They studied many variations of the basic par-
adigm, including 1) partitioning before and after technology
mapping, 2) clustering via shortest paths, pairwise connec-
tivity, random matching, etc., 3) partitioning of the coarsest
graph via searches, spectral, and iterative techniques, and
4) uncoarsening in one or multiple steps. Their final algo-
rithm uses simple connectivity-based clustering and iterative
improvement with two or three levels of lookahead.

III. A N EW MULTILEVEL ALGORITHM

Motivated by the high-solution quality and fast run times
of the Chaco and Metis multilevel partitioners as well as
new improvements in FM [14], we have implemented our
own multilevel partitioner for netlist hypergraphs.2 One main
difference between our multilevel algorithm and previous
multilevel partitioners [10], [21], [22], [27] is that a mechanism
is provided to control the speed of coarsening, and hence
the total number of levels in the netlist hierarchy. We can
obtain more levels in the hierarchy than previous approaches
by allowing coarsening to proceed more slowly. The advantage

2Note that the approach of [3] has to transform the netlist hypergraph to a
weighted graph before calling the Metis algorithm [27]. Our implementation
coarsens and partitions the hypergraph directly as in [21].
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Fig. 2. ML multilevel algorithm.

is that more levels allow more opportunities to refine the
current solution at the various levels. The result is an efficient
partitioner that produces the lowest cost solutions in the
literature.

Fig. 2 describes ML, our new multilevel algorithm (which
follows the same structure as [22]) for partitioning netlist
hypergraphs. The algorithm accepts a netlistas input along
with two user parameters and specifies that coarsening
should proceed as long as the number of modules in the current
netlist is greater than and is a parameter used by
our Matchcoarsening algorithm explained below. The variable

denotes the number of levels used during coarsening, and
the variables and denote intermediate clustering and
bipartitioning solutions respectively.

The first five steps in Fig. 2 form the coarsening phase.
As long as the number of modules in is more than

is used to form a clustering of Procedure
Induce takes a netlist and a clustering and constructs
the new netlist induced by Note that module areas
are preserved, e.g., if contains a cluster with two modules
with areas 4 and 7, the module corresponding to this cluster
in will have area 11. The functionality ofInduceexactly
follows Definition 1. Step 5 constructs a bipartitioning of
using theFMPartition procedure, which takes a netlist and an
initial solution as input and returns a refined bipartitioning.
If no initial solution is specified, the parameterNULL is
passed which causesFMPartition to start with a random initial
solution. Steps 7–9 form the uncoarsening phase. TheProject
procedure takes a netlist as input and a bipartitioning

of then constructs the projection of of
onto of (following Definition 2). The projected solution
is then refined viaFMPartition, and uncoarsening proceeds
until a refined partitioning of is obtained; this solution
is returned in Step 10. The proceduresMatchandFMPartition
are now discussed in more detail.

A. The Match Coarsening Algorithm

The Chaco [22] and Metis [27] and multilevel algorithms re-
spectively use linear time “random” and “heavy-edge” match-
ing algorithms to construct a clustering. The partitioning study

of [21] explored numerous coarsening schemes with varying
complexity, yet the authors chose a simple connectivity-based
scheme for their multilevel algorithm. Based on the intuitions
afforded by of these works, we have also chosen to coarsen via
a matching algorithm which loosely follows the heavy-edge
matching algorithm used in Metis. In addition, a matching-
based approach allows us to control the total number of levels
in the netlist hierarchy (as opposed to other approaches, e.g.,
random walks [17], shortest path clustering [43], and clique
compression [10], which automatically determine the number
of clusters).

The Match algorithm starts by randomly permuting the
module indexes, and then visits each module in turn. A
permutationof is a one-to-one mapping

For a given module Match tries to find
the unmatched module (i.e., a module that has not yet been
assigned to a cluster) with highest connectivity towhere the
connectivity between and is defined as

The term emphasizes nets with fewer modules,
and the term gives preference to matching
modules with smaller areas to help prevent cluster sizes from
becoming unbalanced. If such a can be found, then and

are matched together to form a new cluster If
no unmatched exists (i.e., all of the neighbors of are
matched), then the singleton cluster is created. When
computing theconnfunction, nets with more than ten modules
are ignored to reduce runtimes.

The matching algorithms of [22], [27] both seek maximal
matchings which will generally force the ratio of to
to be For example, if the parameter is set to 100,
then a netlist with 3000 modules will likely generate five
coarser netlists during partitioning. We believe that reducing
the problem instance by a factor of 2 may result in an
insufficient number of levels, i.e., the coarsening proceeds
too quickly. A slower coarsening that results in more levels
can give the refinement algorithm more opportunities to find
solutions, and in addition, will reduce the differences between
successively coarser netlists and To control the speed
of coarsening,Match takes a parameter called
the matching ratio, that indicates the fraction of modules that
should be matched. For example, when a maximal
matching is sought, but when the matching continues
only until half of the modules are matched (each remaining
unmatched module is assigned to its own cluster).

Fig. 3 shows theMatch coarsening procedure. Step 1 ini-
tializes the permutation and the variables and

The while loop in Step 2 continues as long as the ratio
of matched modules to the total number of modules is less
than or until all of the modules have been examined. Step
3 checks if the current module is unassigned and if
so, Step 4 adds it to the current cluster. Step 6 also adds the
module to the cluster if a matching module can be found
for in Step 5. Step 7 incrementsto consider the next
module in the permutation. When Step 8 is reached, matching
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Fig. 3. Match procedure.

is complete; each remaining unmatched module is assigned to
its own cluster in Steps 8–10. The final clustering obtained is
returned in Step 11.

The best module in Step 5 is found by using an array
Conn indexed over the modules and a setwhich stores
the neighbors of First, each net incident to is
considered, and every module is then visited. If is
unmatched, then is computed for the net
this value is added to and is added to After all
neighboring modules of have been visited, each module
in is considered in turn, and its connectivity is looked up
in the Conn array. The module that maximizes
is returned, and all of the entries in theConn array are then
reset to zero. This reinitialization can be done efficiently by
resetting entries indexed by modules inAssuming constant
degree bounds on the modules and that nets with more than
ten modules are ignored,Match has linear time complexity.

B. The FM Partition Refinement Algorithm

Our refinement algorithm takes a netlist
and an initial partitioning solution as input, and returns
a refined partitioning of If the initial partitioning passed
in is NULL, as in Step 5 of Fig. 2, then a random starting
solution is generated. Our partitioner uses FM with a LIFO
bucket scheme, and may also use CLIP [14] if desired. Since
large nets can significantly slow down an iterative partitioner,

ignores nets with more than 200 modules;
these nets are reinserted when measuring solution quality.

Cluster size bounds can be set via the parameter
i.e., the areas of and are bounded below by

and above by
where is the module in with

the largest area. The solution may satisfy the balance
constraints for but the projected solution may not

satisfy the constraints for (since may decrease
during uncoarsening). In this case, the solution is rebalanced
by randomly moving modules from the larger cluster to the
smaller one.

C. Other Implementation Details

Our code was written in and compiled with
(v. 2.4) on a Unix platform. We utilize LEDA abstract data
types (anonymous ftp to ftp.cs.uni-sb.de) for sets, queues, and
doubly linked lists. We have also implemented a database
which can perform numerous netlist and clustering functions
and which handles the memory management of the primary
data structures. The database also contains implementations
for the Project and Inducesubroutines.

We have also extended our multilevel code toquadrisection,
i.e., four-way partitioning. We use the quadrisection algorithm
of Sanchis [39], but without lookahead. We have implemented
the sum of cluster degrees, net cut, and generic gain com-
putations [24]; our quadrisection results are reported for the
sum of degrees gain computation. To utilize our quadrisection
algorithm within a placement tool, the user can preassign some
modules (e.g., I/O pads) to clusters. In addition, the user has
flexibility in defining terminal propagation models to partition
sub-regions of the layout.

IV. EXPERIMENTAL RESULTS

We ran our experiments on the 23 circuit benchmarks listed
in Table I, with all CPU times are reported for a Sun Sparc 5
(85 MHz) unless indicated otherwise. We report bipartitioning
results for unit module areas, allowing cluster sizes to vary
10% from exact bisection (so The FM- and CLIP-
based implementations for our ML algorithm are denoted
by ML and ML respectively. For all experiments, the
coarsening threshold is set to modules. We have
performed the following studies.

• We compare ML to CLIP, which is a superior iterative
improvement engine to FM (as seen in Table III).

• We study the effects of modifying the matching ratio
parameter and find that slower coarsening yields more
stable solution quality.

• We show that ML yields solutions with smaller cut sizes
than any existing two-way partitioner.

• Finally, we show that ML yields excellent results for
quadrisection, illustrating its ability to serve as the core
of a top-down placement tool.

A. Comparisons with CLIP Bipartitioning

Our first set of experiments compares both the FM and CLIP
variants of ML with the CLIP iterative algorithm [14]. We set
the matching parameter to 1, which forces ML to find a
complete matching in the coarsening phase. Table IV reports
the minimum cut, average cut, and total CPU time obtained
from 100 runs of each algorithm on each test case. The results
are similar for the smaller test cases in terms of the min cuts,
but both implementations of ML are significantly better for
circuits with more than 6000 modules. In terms of average
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TABLE IV
MINIMUM CUT, AVERAGE CUT, AND TOTAL CPU TIME OBTAINED FOR 100 RUNS OF THE CLIP, MLF , AND MLC ALGORITHMS

cut sizes obtained, the results are clearer: MLeasily obtains
the lowest averages, followed by MLand CLIP. Indeed, for
seven of the test cases, theaveragecut for ML is better
than theminimumcut obtained by CLIP. A low average cut is
attractive for users who may wish to run an algorithm only a
few times. The run times are higher for both versions of ML
than for CLIP, with ML using slightly more time than ML
Note that as the instance sizes increase, the ratios of ML run
times to CLIP run times decrease.

B. The Matching Ratio Parameter R

Our next set of experiments varied the matching ratio
parameter we ran ML 100 times for each test case with

values 1.0, 0.5, and 0.33. Recall that the number of levels
of coarsening increases as decreases. Tables V and VI,
respectively, show how the solution quality varies as a function
of for ML and ML

We observe that in both tables, the minimum cuts do not
vary much as changes, except with the larger benchmarks.
In both tables, the minimum cuts are significantly smaller for
the largest four benchmarks (particularly golem3) for
and Slower coarsening also reduces the average cut
value, albeit with a noticeable runtime penalty. The cuts for

and appear virtually indistinguishable, but
the slower coarsening for may start paying off for
very large test cases (e.g., the averages for golem3 are 1421
for ML and 1413 for ML as compared to 1462 and 1465
for This small gain does not seem to be worth the
extra run time, however.

Observe that for small values of the differences between
ML and ML are not nearly as pronounced as for

This may be because that extra levels allow an inferior
iterative improvement engine extra opportunities to find a
better solution. Although ML does not yield lower minimum
cuts than ML it more consistently produces solutions with
lower cuts.

In general, as decreases toward zero, the quality of
the partitioning solution should improve. This phenomenon
may not necessarily hold due to randomness introduced by
matching-based clustering. Of course, asdecreases, both
memory and runtimes increase as well. Fig. 4 illustrates the
tradeoff between and solution quality. Results are presented
for the average cut obtained by 40 runs of MLon avqsmall
and avqlarge.

C. Comparisons with Other Bipartitioning Algorithms

There are many works which present bipartitioning results
for unit module areas and size constraints corresponding to

Table VII compares the cuts obtained by MLwith
for 100 and 10 runs to nine of the best and most recent

algorithms in the literature. Many of these nine algorithms
outperform or subsume other older algorithms, so we simply
give pointers to these older works.

• GMet [1] combines an adaptation of the Metis multilevel
partitioning algorithm of [27] to netlist hypergraphs with
the genetic method of [20]. This algorithm is very fast
since it exploits the efficiency of Metis, yet its cut sizes
are somewhat inferior since it was a graph partitioning
rather than a netlist hypergraph partitioning engine.

• HB is the multilevel partitioning algorithm of Hauck and
Borriello [21]. They actually set the module area to be
equal to its degree (for FPGA applications), yet their
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TABLE V
MINIMUM CUT, AVERAGE CUT, AND TOTAL CPU TIME OBTAINED FOR 100 RUNS OF MLF FOR DIFFERENT VALUES OF THE MATCHING RATIO R

TABLE VI
MINIMUM CUT, AVERAGE CUT, AND TOTAL CPU TIME OBTAINED FOR 100 RUNS OF MLC FOR DIFFERENT VALUES OF THE MATCHING RATIO R

resulting bipartitionings still fall within the required size
constraints even for unit areas. They report results for
ten runs of HB, and show that it outperforms the flow-
based algorithm of Yang and Wong [42] and spectral
bipartitioning [18].

• The PARABOLI (PB) algorithm of Riesset al. [36] was
widely considered to be the state-of-the-art partitioner in
1994, and has been the subject of numerous comparisons
since [21], [42], [32], [14], [13]. The authors of [36] report
cuts that are 50% better than spectral bipartitioning.
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TABLE VII
CUT SIZE COMPARISONS OFMLC (FOR 100 RUNS AND FOR TEN RUNS) WITH NINE OTHER BIPARTITIONING ALGORITHMS

Fig. 4. Tradeoff between solution quality and the matching ratioR: Each
data point represents the average cut obtained by 40 runs of MLC :

• The GFM results are for 80 runs of the gradient Fiduc-
cia–Mattheyses algorithm of [32], and the GFMresults
are for a single run of a “two-phase” variation of GFM.

• Dutt and Deng [14] show how CLIP and CDIP (see
above discussion) can be used within any partitioner.

We quote the best results for 20 runs of their three
best algorithms: CL-LA3 (CLIP with lookahead level
3), CD-LA3 (CDIP with lookahead level 3) and CL-
PR (CLIP with PROP gain calculation). Thesubscript
implies that standard FM was run as a refinement step
after the original algorithm terminated. CL-PRsubsumes
the results for PROP reported in [13].

• Finally, we compare to the LSMC algorithm of [16]
which we reimplemented. The results are reported for
100 descents, with the kick move performed on the best
partitioning solution observed so far (temperature0 in
the LSMC algorithm).

The last two rows of the table, respectively, give the percent
improvements of ML with 100 runs, and ML with ten
runs, over the other algorithms. We observe that MLwith
100 runs averages between 7.8 and 27.9% improvement in
cut sizes, yielding the best cuts ever reported for seven of
the test cases. Even when limiting MLto just ten runs, we
still obtain between 3.0 and 20.6% improvement over the other
algorithms. For 100 runs of ML we obtained the best known
results for the benchmarks test05, s9234, s13207, s15850,
industry2, avqsmall, and golem3. From Table IV, we see that
the averagecut obtained for golem3 was 1465, which is still
significantly better than the best known result.

Table VIII compares the CPU times for the algorithms. We
report the total time required for ten runs of MLon a Sun
Sparc 5. The run times for GMetis, CL-LA3CD-LA3 CL-
PR and LSMC are also given for this machine. PB and
GFM(GFM runtimes are reported for a DEC 3000 Model
500 AXP and a Sun Sparc 10, respectively. Although run
times across different platforms are not directly comparable,
we observe that ten runs of MLuse less runtime than any
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TABLE VIII
CPU COMPARISONS OFMLC WITH OTHER BIPARTITIONING ALGORITHMS

of the other algorithms except GMetis. It seems that if a
reasonably high-quality result is desired in only a few seconds,
then GMetis is appropriate; however, if a bit more CPU time
can be afforded, ML is the better choice.

We conclude that for bipartitioning, our multilevel algorithm
with a CLIP engine provides excellent cut results compared
to previous algorithms while requiring a reasonable amount of
CPU resources.

D. Quadrisection Comparisons

Our final set of experiments compares ML for four-way par-
titioning against the GORDIAN [30] standard cell placement
program. In GORDIAN, the I/O pads are initially preplaced,
then a system of equations is solved to find the locations of
the unfixed modules such that either a squared wire-length
[30] or a linear wire-length objective [41] (GORDIAN-L) is
optimized. The solution to this system induces an ordering of
the modules in the horizontal direction which is then split into
a bipartitioning.3 Then, another optimization induces a vertical
ordering of the modules which is split to yield a four-way
partitioning. The algorithm continues to perform optimization
in order to spread out the cells (i.e., prevent overlapping),
but this initial four-way partitioning is preserved in the final
solution.

3GORDIAN finds a bipartitioning by finding the single split that evenly
divides the area into a left and right half. GORDIAN-L uses a more
complicated scheme whereby the ordering is split into five clusters and the
system of equations is resolved with new constraints. The ordering induced by
this second solution is then split into a bipartitioning using the same technique
as GORDIAN.

TABLE IX
FOUR-WAY PARTITIONING COMPARISONS

We obtained GORDIAN-L placement solutions [37] for
some of the test cases in Table IX. For each placement
solution, we split the placement into four equal-sized clusters
and measured the total cut obtained. The best cut obtained
by either GORDIAN or GORDIAN-L is reported in the table.
We also compare to the best cut obtained for 100 runs for
four-way implementations of FM, CLIP, and LSMC with
both FM and CLIP partitioning engines. The first column
contains min-cut results obtained by ML(with and

with average cut sizes in parentheses. Here, ML
outperforms ML in terms of cuts and run times; this may be
due to CLIP being relatively ineffective at the top levels of
the hierarchy. Table IX illustrates that both the minimum and
average cuts obtained by MLare better than those obtained
by GORDIAN. Our multilevel-based quadrisection algorithm
has recently been integrated into a top-down hierarchical
placement tool [24]. The authors of [24] report an average
of 14 and 11% wire-length savings versus GORDIAN-L and
GORDIAN-L DOMINO, respectively.



666 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 8, AUGUST 1998

V. CONCLUSIONS

We have presented a new multilevel circuit partitioner based
on the paradigm of [22]. The success of our algorithm relies
on exploiting new innovations in the iterative improvement
engine and our ability to control the number of coarsening
levels during clustering. We obtain excellent bipartitioning
results compared to previous works in the literature while
using less CPU time. There are several improvements that
we plan to make to address the runtimes, performance and
functionality of our multilevel tool.

• We plan to implement a “boundary” version of FM in
which only modules incident to cut nets are initially
inserted into the data structure [22]. This will significantly
reduce CPU time, and may even enhance solution quality.

• Run times may be further reduced via faster reinitializa-
tion of the FM buckets at the beginning of a pass [22]. If
only a few modules were moved during a pass, then only
these modules and their neighbors need to be updated
for the new pass. Currently, before each pass, the entire
bucket structure is reinitialized.

• At the top few levels, (coarser) netlists have fewer (e.g.,
500) modules so partitioning solutions can be obtained

very quickly. It may be worthwhile to spend more CPU
time partitioning at these levels, e.g., by calling FM
multiple times or using LSMC.

• Dutt and Deng [13] showed that lookahead schemes [31]
do not work very well with FM when using a LIFO bucket
scheme; however, their impact increases dramatically
when using CLIP. We would like to explore the use
of lookahead in our iterative improvement engine even
though the increases in run times may be significant.

• Finally, we have successfully integrated our quadrisection
algorithm into a timing-driven placement package [24].
Our ongoing work seeks to integrate additional partition-
ing objectives that accommodate congestion, density, and
routability considerations.
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