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Multilevel Circuit Partitioning

Charles J. AlpertMember, IEEE Jen-Hsin HuangMember, IEEEand Andrew B. KahngAssociate Member, IEEE

Abstract—Many previous works in partitioning have used with some initial solution{ X,Y}; modules are successively
some underlying clustering algorithm to improve performance. moved betweenX andY until each module has been moved
As problem sizes reach new levels of complexity, a single ap'exactly once. Given a current solutignX’,Y"}, the previ-

plication of a clustering algorithm is insufficient to produce , , L .
excellent solutions. Recent work has illustrated the promise of CUSIy unmoved module & X (or Y”) with highestgain

multilevel approaches. A multilevel partitioning algorithm re- (= cut({X’ — v, Y’ 4+ v}) — cut({X,Y'})) is moved fromX’
cursively clusters the instance until its size is smaller than a to Y’. After each pass, the best solutiqik’, Y’} observed
given threshold, then unclusters the instance while applying a during the pass becomes the initial solution for a new pass,
partitioning refinement algorithm. In this paper, we propose a 5 the passes terminate when a pass does not improve upon
new multilevel partitioning algorithm that exploits some of the h uti has b delv ad d by th
latest innovations of classical iterative partitioning approaches. th& most recent solution. FM has been widely adopted by the
Our method also uses a new technique to control the number of physical design community due to its short runtimes and ease
levels in our matching-based clustering algorithm. Experimental of implementation.

results show that our heuristic outperforms numerous existing lterative approaches dominate both the VLSI CAD literature

bipartitioning heuristics with improvements ranging from 6.9 to . .
27.9% for 100 runs and 3.0 to 20.6% for just ten runs (while and industry practice for several reasons. They are generally

also using less CPU time). Further, our algorithm generates intuitive (the ObViPUS way o improve a given solution is to
solutions better than the best known mincut bipartitionings for repeatedly make it better via small changes), easy to describe

seven of the ACM/SIGDA benchmark circuits, including golem3 and implement, and relatively fast. Hence, much work has
(which has over 100000 cells). We also presemuadrisection  gqoyght to improve upon the basic FM algorithm by introducing

results which compare favorably to the partitionings obtained . . o
by the GORDIAN cell placement tool. Our work in multilevel module tie-breaking schemes [19], [31], by modifying the

quadrisection has been used as the basis for an effective cellmodule locking and unlocking mechanism [11], [23], or by
placement package. using different formulas for computing the gain [13], [14].
Index Terms—Optimization, partitioning, physical design, Other worI§s gttempt to use iterative |mpr.ovemer.1t inside
placement. other algorithmic approaches such as genetic algorithms [9],
tabu search [5], large-scale Markov chains [16], two-phase
clustering [7], [17], [33], [40], or multilevel clustering [3],
|. INTRODUCTION [10], [22], [21], [27].
netlist hypergraphH(V, E) has n modules V' = This paper proposes a new multilevel circuit partitioning
{v1,ve,---v, }; anete € E is defined to be a subset ofalgorithm. Our work is motivated by the multilevel partitioners
V with size greater than 1. Aipartitioning P = {X,Y} is of Hendrickson and Leland [22] and Karypis and Kumar [27]
a pair of disjointclusters(i.e., subsets o) X andY such which have been very successful in the scientific computing
that X UY = V. The cut of a bipartitioning? = {X,Y} community for partitioning finite-element graphs. In addition
is the number of nets which contain modules in bathand to the implementation differences between graphs and netlist
Y, ie, cut(P) = [{elen X # B,enY # 0}]. Let A(v) hypergraphs, we have added two key ingredients which sig-
denote the area of € V and let A(S) = >, .5A(v) nificantly improves performance.
denote the area of a subsét C V. Given a balance . we utilize a LIFO bucket scheme for storing module

tolerance r, the min-cut bipartitioning problemseeks a gains [19] and the CLIP algorithm of [14] within our
solution P = {X,Y} that minimizes cut(P) subject to FM implementation.
(AV)(1 =m)/2 < AX), AY) < (AV)(L +1)/2. « We cluster based on the matching algorithms of [7], [22],

The standard bipartitioning approach is iterative improve-
ment based on the Kernighan—Lin (KL) [29] algorithm, which
was later improved by Fiduccia—Mattheyses (FM) [15]. The
FM algorithm proceeds in a series passesA pass begins

[27]. However, instead of constructing:/2) clusters
from a set ofn. modules, we stop the clustering prema-
turely so that more thafn/2) clusters are generated. This
causes the multilevel coarsening to proceed more slowly,
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TABLE | update efficiency could have been implemented just as easily.
BENCHMARK CIRCUIT CHARACTERISTICS One might even use a random organization, possibly at the cost
Test Case | # Modules | # Nets | # DPins of increased run times or a more complex bucket structure.
Dalu 801 735 2697 The authors of [19] observe that Sanchis [39], and most likely
bl 1 :gé 38; jﬁjﬁ,ﬁi Krishnamurthy [31], used random bucket selection schemes.
ol s s | sam In experiments with both the FM and Krishnamurthy al-
test03 1607 1618 5807 gorithms, the authors of [19] found that the LIFO bucket
test02 1663 1720 6134 organization is distinctly superior to FIFO and random bucket
test06 1752 1541 6638 organizations. Reference [19] ascribes the success of LIFO to
struct, 1952 1920 2Tl . « © .
(est0F 2505 9750 | 10076 its enforcement of “locality” in the choice of modules to move,
19ks 2844 3282 | 10547 i.e., modules that are naturally clustered together will tend to
primary?2 3014 3029 | 11219 move sequentially. Hageet al. [19] use this idea of locality
s02:44 7866 p8AL ) 14065 to propose an alternative formula for higher level gains, which
biomed 65141 5742 21040 | . f That LIFO ¢ £ FIFO
L 13207 87T 651 | 20606 also improves performance. Tha outperforms was
s15850 10470 10383 | 24712 also observed by Dutt and Deng [14] who, like [19], noted
industry2 12637 13419 | 43401 that lookahead tie breaking does not improve the performance
m(‘izl-lf;‘g& i;lﬂig ?lgj; ?:{(4” of FM when LIFO buckets are used (in other words, using
S E i ‘ b .
38581 20995 20717 | 55203 L.IFO |ns.tead of FIFO negates the advantage of lookahead
avgsinall 21918 22124 | 76231 tie-breaking).
38417 23849 23843 | 57613 Table Il presents our own comparisons of LIFO with ran-
av ek 9517 D1 B Yrd=4 ]
avalarge | 25178 1 25384 | 82751 dom (RND) and FIFO bucket schemes, allowing 10% de-
golem3 103018 144949 | 338419 - . . . .
viation from exact bisection. Our implementations actually

significantly outperform those of [19], perhaps because their

imental results in Section V that show that our algorithif’Plementations were adapted from Sanchis’ original parti-
outperforms numerous other circuit bipartitioning algorithm&ioning code (and also because they perform exact bisection).
Section VI concludes with directions for future work. For each of the test cases in the table, we ran FM 100

times for all three bucket schemes; we report the minimum
cut, average cut, and standard deviation observed. Like [19]
and [14], the table shows that LIFO significantly outperforms
We now review selected works in iterative partitionings|ro. However, we do not observe any improvement of LIFO
which have provided new innovation (see the survey @jer random selection (it appears that random selection may
Alpert and Kahng [2] for a broader view of previous workayen pe the best scheme of the three). In our work below, we
in partitioning). In our discussion of the algorithms belowy,se 3 LIFO scheme since it is much faster than a random
we include some comparisons of these methods (using Q¢heme within the context of our implementation. Clearly,
implementations) for 23 of the standard benchmarks frofje discrepancy between these results and those of [19] are
the CAD Benchmarking Laboratory (ftp to ftp.cbl.ncsu.edu} source of concern and need to be further explored.
Table | shows the characteristics for these test cases, and WRecently, Dutt and Deng [13] proposed a different kind
assume unit cell area for all test cases. Our experiments Wgf&tie-breaking approach, based on probabilistic techniques.
all run on a Sun Sparc 5 (85 MHz), and all runtimes reportgfstead of using a gain value that reflects only the immediate

Il. INNOVATIONS IN ITERATIVE PARTITIONING

are for this machine (in seconds). change in cut from moving a single vertex, their PROP algo-
_ _ _ rithm uses a more global gain computation. Each vertex has an
A. Tie-Breaking Strategies associated probability for the event that the vertex will actually

One potential problem with the FM algorithm is that manye moved to the other cluster. PROP begins by assigning
modules in the top bucket may potentia”y have the San@.Ch vertex an initial probability of 0.95, and then gains are
gain; hence, various tie-breaking strategies have been propo&s®mputed based on a function of the current solution and
to choose among alternate moves that have the same gHif. vertex probabilities. As vertices are moved, probabilities
Krishnamurthy [31] proposed usingokaheadgain vectors, and gains are updated for neighboring vertices. Experiments in
and Sanchis [39] extended this approach to multiway partitiod-3] show that this gain computation significantly outperforms
ing. Even when gain vectors are used, ties may still occur in t&ssic FM. However, since its gain values are nondiscrete,
first- throughrth-level gains. Thus, it is the implementation oPROP cannot exploit the FM bucket structure; run times thus
the gain bucket data structure that determines which moduldnsrease by a factor of 4-8. The heuristic is nevertheless
selected. The original FM algorithm uses a linked list for eadiill fairly efficient, and future work on probabilistic gain
bucket; we may infer that modules are probably removed af@mputations is certainly promising.
inserted at the head of the list, i.e., that the bucket organization
corresponds to a last-in first-out (LIFO) stack. The authors of . )

[15] do not specifically mention a LIFO organization; one cali- Modifying the Basic FM Structure
speculate that LIFO was an “obvious” choice. However, a Saab [38] observes that in an iterative improvement algo-
first-in first-out (FIFO) organization which supports the samgthm, when a vertex is moved, it tends to “drag” with it its
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TABLE I
MiniMum CuT, AVERAGE CUT, AND STANDARD DEVIATION FOR 100 RUNS oF FM UsING THE LIFO, Ranbom (RND), AND FIFO Tie-BREAKING SCHEMES
Test MIN AVG STD
(Case LIFO [ FIFO [ RND || LIFO L FIFO ] RND || LIFO ] FIFO ] RND
balu 27 75 27 39 107 39 10 1h 10
bm1 17 64 al 76 107 706 14 17 13
primary | 49 byl 47 74 111 76 13 18 13
test04 71 139 66 138 208 135 27 26 25
test03 64 112 69 109 184 118 22 32 26
test02 109 185 122 172 169 243 28 18 23
test06 66 146 60 90 196 90 12 19 14
struct 38 131 42 54 184 42 9 16 6
test0) 104 251 93 175 335 175 33 29 37
19ks 121 261 120 175 332 180 27 33 28
primary?2 215 310 177 285 128 278 44 14 38
s9234 50 246 49 95 335 90 27 28 26
biomed 83 392 83 134 445 130 a0 25 12
513207 87 278 88 129 340 125 20 32 20)
s 15850 108 116 98 184 506 177 31 32 35
industry?2 319 667 3041 623 1192 603 171 262 196
industryd 241 408 259 497 2225 191 205 806 187
535932 113 719 103 230 953 230 61 78 61
538H84 59 1474 4 251 1641 258 106 111 109
avqsinall 319 1415 295 597 1667 624 129 85 122
$38417 167 1120 132 383 1194 381 95 39 102
avglarge 262 1839 345 87 2024 T2 163 78 151

adjacent vertices. His algorithm first performs a sequence of TABLE Il
consecutive moves fronX to Y, and then clusters the first MiniMuM CUT, AVERAGE CUT, STANDARD DEVIATION, AND
. . . CPU TimMES FOR 100 RuNs oF THEFM AND CLIP ALGORITHMS
k vertices moved, reasoning that vertices that are dragged
across the cut line together should belong to the same cluster Test MIN AVG STD cru
FM | CLIP || FM | CLIP {| FM [ CLIP FM CLIP
Like the LIFO bucket scheme, this strategy recognizes that— T T =—T"70 5 5
adjacent vertices should be moved sequentially. Saab uses,mi A7 | AT | 63 || 4] o9 97 29
clusters identified in this manner to coarsen the graph, then”“””' K KA | B R a7 40
5104 Tl 55 38 30 27 12 45 63
runs a two-phase FM variant (see the two-phase FM dlscussmr\“t[,; 61 | 57 1l ios | 74 1l 22 | 14 61 67
below). tost02 109 83 172 | 112 28 15 49 73
The CLIP algorithm of Dutt and Deng [14] builds upon this ‘100 | 56 20 30 %2 j iz )0 A I
idea further by tie breaking based on the adjacency to the mostesios o4 | T2 1T | T2 | 3w 92 116
recently moved modules. For example, suppose that moving 'k \ ;f' }‘12 ;;’ ;‘ jz ﬁ? f:;‘ }f;
])Illn"ﬂ\ ) Ay ) ) B . / D
modulev; increases the gain ef by one. Instead of increasing ;9234 50 15 9% 74 97 | 93 273 237

the gain by just one, it could be increased by two, five, ten, biomed || 83 | 84 (34 | 109 1) 50 | 26 326 207
: : : 513207 87 It 129 125 20 20 423 370
etc., which Woulo! greatly increase 'Fhe chance thas moved | rooo | o | 7o | wsa | w4 |3 | o2 || 435 | 505
next. Instead of increasing the gain by some constant factofdustryz || 319 | 208 || 623 | 342 || 171 | #9 538 | 991
the authors of [14] actually propose to increase the gain by aH“;':j)‘D" I 12[‘) ??2 2().01" P I BN
B D) . B : o
infinite factor. Since the magnitude of the bucket indexes in s3s554 50 | 48 | 251 | 101 || w06 ] 57 1523 | 1363
FM are bounded by a constant, a different implementation |sw<lsmd“ 3191204 ) 597 ) 3400 1129 ) 83 LA 1538
s38417 167 72 383 140 95 33 1595 1423
required: 1) the FM buckets are rearranged immediately after, ... | 262 | 221 || 787 | 352 | 163 | 79 | 1662 | 1896
the initial gains are computed to start a pass, and 2) all of theslem3 || 2847 | 2276 || 3500 | 3403 || 296 | 510 || 38028 | (46301
buckets in each bucket structure are concatenated into a single

linked list starting with the bucket with the largest index. This

entire list is then inserted into the bucket with index zero, anffe have implemented the CLIP algorithm and made the
all other buckets are made empty. This single preprocessigigéme comparisons of CLIP versus FM for bipartitioning with
step has the effect of multiplying the gain change of the masélance tolerance = 0.1. Table Iil reports the minimum cut,
recently moved modules by an infinite factor. The only othefverage cut, standard deviation of cut, and total CPU time
modification required is that the range of bucket indexes mySun Sparc 5) for 100 runs of CLIP and FM on the suite of
double. test cases. We also report significant improvement for CLIP,
Experiments in [14] show that CLIP averages 18% imespecially for some of the larger test cases. Interestingly, the
provement over FM (both using a LIFO bucket schemejun times for CLIP are not much higher than those of FM,
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except one drastic increase for the very large circuit golem3.Definition 1: A clustering P* = {C},Cy, -+, Cy} of H;
The run times decrease for some of the larger test casesifmucesthe coarser netlistH; 1 (Viy1, Fiy1) with Viy =
which CLIP requires fewer passes to converge. {C1,Cs,---,Cy}. For everye € E;, the nete* is a member

Many other works have proposed modifications to the basi€ E;; wheree* = {Cy|e N Oy, # 0}, unless|e*| = 1, i.e.,
FM structure. Observing that each module can be locked orfyy spans the set of clusters containing moduleg of
once during a pass, Hoffman [23] proposed an unlocking Definition 2: Suppose tha#;,; was induced from#,; by
mechanism that allows modules to move if they have beéme clusteringP* = {Cy,Cs, - - -, C}. The projection of the
locked in the “wrong” cluster. Dasdan and Aykanat [1lbipartitioning solutionP;; = {X;4+1, Y41} of H;41 onto H;
have proposed a multiway variant of FM that allows a smal the solutionF, = {X;,Y;} whereX; = {v € V;|3C}, €
constant number (e.g., three or four) of module moves per pag%., v € C;,,C, € X; 11}y andY; = {v € V;|3C), € P* v €
In a similar spirit, Dutt and Deng [14] also propose a promisingy,, C;, € Y;+1}. The process of projecting’;; to F; is
method called CDIP which allows the iterative improvementalled uncoarsening
algorithm to reverse a sequence of bad moves, and then tnClustering has been commonly applied within a “two-phase”
some different sequence. Backing up in this manner prevemsthodology. First, a clustering* of H, is generated, then
continuing an entire pass in which positive gain is unlikely tthis clustering is used to induce the coarser neftigtfrom
be realized. Yelet al. [44] proposed an extension of SanchisH,. FM is then run once ok, to yield the bipartitioningPy,
multiway partitioning algorithm that alternates “primal” passeand this solutionP; is projected to a new bipartitioning),
of module moves with “dual” passes of net moves; howevesf Hy. Finally, FM is run a second time ol using P, as
run times for dual passes are a factor of 9-10 higher than ft¥ initial solution. This second FM run can be classified as a
a primal pass. In their study on circuit partitioning algorithmsefinemenstep, which refers to when an initially good solution
the authors of [21] conclude that dual passes “are not worisimproved via local moves and swaps. The primary difference
while.” Park and Park [34] propose to integrate size constrairasong two-phase algorithms is the clustering method used to
into the cut objective, and Shin and Kim [40] propose tgenerateP*. Some common clustering approaches which have
gradually tighten size constraints between FM passes. been applied to two-phase FM include spectral [3], random

These are just some of the many proposed modificationswtalks [17], random matching [7], and bottom-up connectivity-
the basic FM structure. We chose to adopt only CLIP and LIFGased [33], [40] (see [2] for a survey of circuit clustering
within our algorithm because neither of these modificationsechniques).
increases run time significantly, while both enhance solution The “two-phase” approach can be extended toutilevel
quality. Whether the run time sacrifices for dual passes, CDI&proach by allowing as many phases as are desired. Fig. 1
or lookahead are worthwhile remains an open direction fdlustrates the multilevel partitioning paradigm with five phases
future work. or levels(as in [27]). In a multilevel algorithm, a clustering of

H, is used to induce the coarser netli$t, then a clustering
of H; inducesH,, etc., until the most coarsened netlist,,

C. Using an lterative Improvement Engine is constructedm = 4 in the figure). A bipartitioning solution

As problem sizes grow larger, the performance of iterativé» = {Xm, Y} is found for #,, (e.g., via FM), and this
improvement approaches such as FM tend to degrade [Z8glution is then projected t&,,—1 = {X,;—1, Yin—1}. Prac1
Hence, many heuristics have utilized iterative improvemel& then refined, e.g., by FM postprocessing (in the figure, the
within a different paradigm. For example, the genetic paprojected and refined solutions are, respectively, denoted by
titioning algorithm of Bui and Moon [9] uses FM as adotted and solid lines). The uncoarsening process continues
postprocessing step to each crossover operation. (A sim¥Hil a refined partitioning of, is obtained.
approach was proposed by [25]) FM postprocessing has a|s(MuItiIeveI partitioning offers several advantages over pure
been utilized within tabu search-based approaches [4], [Bfrative partitioning two-phase FM.
Fukunagaet al. [16] proposed a large-step Markov Chain  In two-phase FM, coarsening occurs in a single step
(LSMC) algorithm which generates new solutions by making which may mean that{; is too coarse a representation
big “jumps” from low-cost local minima. These solutions are  of H,. Multilevel partitioning allows coarsening to pro-
then used as starting solutions in FM to generate new local ceed more slowly, which gives the iterative engine more
minima (also see Isomotet al.[26]). Liu et al.[32] proposed a opportunities for refinement.
gradient Fiduccia—Mattheyses algorithm (GFM) that alternatese If a fast clustering and refinement strategy is used, the
FM refinements with gradient descents. They also propose approach can be extremely efficient. One can afford to
a variant (GFM) which uses the two-phase FM technique perform a careful partitioning o, since this netlist

described below. will have very few modules.
Another technique typically used to handle increasing prob-+« Refinement progresses with progressively larger netlists,
lem sizes iclusteringor, equivalently coarsening The mod- which implies that number of modules moved during an

ules of the circuit are grouped into many small clusters, and FM “move” become progressively smaller. This permits
these clusters form the new nodes of a smaller coarser netlist.

lterative improvement is then run on (some of) the clusteredA k-way clusteringP* of the netlistH (V' ) is a set of disjoint subsets
lists. Si il | his b d thi ,o++,Cg of V such thatChy UC, U--- U, = V. Since a clustering and
netlists. Since our multilevel approach Is based on this C0ncezplfhalrtitioning are actually equivalent, we use the superskript distinguish

we now give some formal definitions. between a clustering* and a bipartitioningP.
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Multilevel Bipartitioning
HO
refined
solution
Hl
projected
solution
H2
. Uncoarsening
Coarsening
H /

4

Initial Partitioning

Fig. 1. Multilevel bipartitioning paradigm.

the refinement algorithm to avoid bad local minima vialgorithm, upon which our coarsening scheme is based. The
big steps at high levels, but at the same time find a gowdrk of [1] adapted Metis to partition netlist hypergraphs
final solution via refinement at the low levels. while integrating the genetic approach of [20] to obtain more

Multilevel partitioning approaches have been especiaffjfable solution quality. _ o o
prominent in the scientific computing literature. Barnard and C0Nng and Smith [10] proposed applying their clique finding

Simon [6] have used multilevel techniques not directly forlUstering algorithm as the coarsening step in a multilevel
partitioning, but rather to compute the Fiedler vector fo‘f'rcu,It bipartitioning algorlthm.. More recently, .Hauck and
spectral bisection. Inspired by this work, Hendrickson ar%ornello [21] performed a detailed study of multilevel FPGA

Leland [22] developed a very efficient multilevel partitionind)artitiomng' They studied many variations of the basic par-

algorithm which is included in the Chaco partitioning packag _dlgm_, including 1) _partlt_lomng before and aft_er Fechnology
. . . . mapping, 2) clustering via shortest paths, pairwise connec-

The coarsening step finds a random maximal matching aSti'\ﬂt random matching, etc., 3) partitioning of the coarsest

[7] and [8], and merges pairs of modules to reduce the instance Y, 9, " P 9

. . . h vi rch ral, and iterativ hni n
size by a factor of 2. The refinement step uses multiway F aph via searches, spectral, and iterative techniques, and

. . e uncoarsening in one or multiple steps. Their final algo-
with a LIFO bucket scheme, but with several mOdIfIC":lt'onr':ithm uses simple connectivity-based clustering and iterative

to mp_rove run tlmes_: 1) the a!gorlthm can terminate befpreiﬁwprovement with two or three levels of lookahead.
pass is completed if further improvement appears unlikely,

2) gains are saved after a pass is completed so that only
moved modules and their neighbors need to have their gains . A'NEW MULTILEVEL ALGORITHM
recomputed before the next pass, and 3) an efficient boundaryotivated by the high-solution quality and fast run times
refinement scheme is used wherein only vertices incidentdd the Chaco and Metis multilevel partitioners as well as
cut edges are inserted into the data structure, with gaimsw improvements in FM [14], we have implemented our
for other vertices computed only on an “as needed” basmwn multilevel partitioner for netlist hypergraph©ne main
The authors of [35] also proposed a multilevel algorithm bulifference between our multilevel algorithm and previous
without refinement, i.e., a partition of the coarsest graph igultilevel partitioners [10], [21], [22], [27] is that a mechanism
uncoarsened in one step to form the final solution. is provided to control the speed of coarsening, and hence
Karypis and Kumar [27], [28] recently developed the Metihe total number of levels in the netlist hierarchy. We can
multilevel graph partitioning package. Like [22], they us@btain more levels in the hierarchy than previous approaches
boundary schemes and early pass termination. They also all®allowing coarsening to proceed more slowly. The advantage

the user to set options for the clustering scheme, the initia
P 9 gNote that the approach of [3] has to transform the netlist hypergraph to a

par.tltlonlng a!gorlthm, and the refinement Scheme' One @Eighted graph before calling the Metis algorithm [27]. Our implementation
their coarsening schemes uses a greedy weighted matchitgsens and partitions the hypergraph directly as in [21].
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ML Multilovel Algorithm of [21] explored numerous coarsening schemes with varying
Input: ITo(Va, Ira) = Netlist hypergraph complexity, yet the authors chose a simple connectivity-based
]Tf (\‘;W?ﬁ”‘“% threshold scheme for their multilevel algorithm. Based on the intuitions
. ¢= Matching rafio afforded by of these works, we have also chosen to coarsen via
Variables: m = Number of levels . : -
P, = Tnterim clusterings a matching algorithm which loosely follows the heavy-edge
Py, L < i < m = Interim bipartitionings matching algorithm used in Metis. In addition, a matching-
Output: Py = {Xo.¥p} = Final bipartitioning based approach allows us to control the total number of levels
1) :viitl)é Wil s 7 do in the netlist hierarchy (as opposed to other approaches, e.g.,
5 pk :f‘,,“,l,,,(HhH)‘ random W_alks [17], shortest path_ clustering [43], and clique
4 Hips Vi, Figr) = Induce(Hy, PF). compression [10], which automatically determine the number
hoo Seti=itl N - of clusters).
? L;lt imf:njﬁ1}()71'1,;111(}]0}):1[:/””)“(H"”1\HL)‘ The Match algorithm starts by randomly permuting the
8 P= Project(Hi, Pio) module indexes, and then visits each module in turn. A
B 4 gl i+l gl ) . . .
9. P, = FMPartition(IT;, P;). permutationof [1 - - - n] is a one-to-one mapping: [1---n] —
[0. return Py [1---n]. For a given moduley = v,(;y, Match tries to find

the unmatched module (i.e., a module that has not yet been
assigned to a cluster) with highest connectivitytavhere the

) N . connectivity between andw is defined as
is that more levels allow more opportunities to refine the

current solution at the various levels. The result is an efficient conn(v, w) = 1 1
partitioner that produces the lowest cost solutions in the T Av) - A(w le]”
literature.
Fig. 2 describes ML, our new multilevel alg_o'rith.m (whic_h The term (1/]e|) emphasizes nets with fewer modules,
follows the same struc_:ture as [22]) for partlt_|on|ng netllsénd the term(1/A(v) - A(w)) gives preference to matching
hypergraphs. The algorithm accepts a n_e_ﬂigtas Input alon_g modules with smaller areas to help prevent cluster sizes from
with two user parametefs and R. 1" specifies that coarsemngbecoming unbalanced. If suchwa can be found. them and
should proceed as long as the number of modules in the CUrrent, .« matched together to form a new clusfer,w}. If

netlist ; is greatgr tharT,. and R IS a parameter used_byno unmatchedw exists (i.e., all of the neighbors af are
our Matchcoarsening algorithm explained below. The variabl

fhatched), then the singleton clust is created. When
m denotes the number of levels used during coarsening, }jﬁn ) n9 usteo} |

Fig. 2. ML multilevel algorithm.

ec{elvce,wee}

! . . - uting theconnfunction, nets with more than ten modules
the variablesP* and P; denote intermediate clustering an puting

bivartitioni luti el re ignored to reduce runtimes.
Ipartitioning solutions respectively. . The matching algorithms of [22], [27] both seek maximal
The first five steps in Fig. 2 form the coarsening phasg1

As | th ber of modules . i thanT atchings which will generally force the ratio 8f;| to |V 41|
S ‘ong as he€ number of modules . IS more thant, -, be (1/2). For example, if the parametdr is set to 100,
Match is used to form a clustering®® of H;. Procedure

. ) then a netlist with 3000 modules will likely generate five
Inducetakes a netlistd; and a clustering®* and constructs y g

. i coarser netlists during partitioning. We believe that reducing
the new net“;tH“fl 'j;‘,i'“"e‘i l?yP ’ TOtf thgttﬂodule e;relasthe problem instance by a factor of 2 may result in an
areé preserved, €.g., fr™ contains a cluster with two modules, o gicient number of levels, i.e., the coarsening proceeds

W'th areas 4 and 7, the module co.rrespondlng to this CIUSESB quickly. A slower coarsening that results in more levels
in Vi will .h".’“./e area 11. The functlonallty dhd_gce_exactly can give the refinement algorithm more opportunities to find
fol!ows Def|n|t|on_ .1' Step 5 construgts a blpart|t|on|_ngth solutions, and in addition, will reduce the differences between
using theFMPartition procedure, which takes a netlist and a@uccessively coarser netlists andH, . . To control the speed
initial solution as input and returns a refined bipartitioningOf coarseningMatch takes é pararheteﬁ < R < 1, called

If no én'tlgl solutlogwlns_; spguﬂed, the p:;‘\rametgrULll_ s | the matching ratiq that indicates the fraction of modules that
passed which caus artition to start with a random initia should be matched. For example, whBn= 1, a maximal

solution. Steps 7-9 form the uncc_)arsening phase.HrbBeqt matching is sought, but whe® = 0.5, the matching continues
procedure takes a netlisf;1; as input _anq a bipartitioning only until half of the modules are matched (each remaining
Piyy of Hiyy, then constructs the projection @ of Fit1 \nmatched module is assigned to its own cluster).

9ntoPi of HZ (follpwmg Deﬁnmon 2). The prOJeqted solution Fig. 3 shows theMatch coarsening procedure. Step 1 ini-
IS then rgflned waFlMP'amtmn, anq uncoarsening proc(_aecj":tializes the permutatiom and the variables.AM atch, k and
until a refined partitioning? of H, is obtained, this solution j. The while loop in Step 2 continues as long as the ratio
is returned in Step 10. The proceduhéatchandFMPartition of matched modules to the total number of modules is less

are now discussed in more detail. than R or until all of the modules have been examined. Step

3 checks if the current module is unassigned;,, and if

so, Step 4 adds it to the current cluster. Step 6 also adds the
The Chaco [22] and Metis [27] and multilevel algorithms remodulew to the cluster if a matching modute can be found

spectively use linear time “random” and “heavy-edge” matclier v, in Step 5. Step 7 incremenjsto consider the next

ing algorithms to construct a clustering. The partitioning studyodule in the permutation. When Step 8 is reached, matching

A. The Match Coarsening Algorithm
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Procedure Match sau_sfy the constraints foﬂi (since A(v*) may_decrease
Tnput: 1;(Vi- ;) = Netlist hypergraph during uncoarsening). In this case, the solution is rebalanced
It = Matching ratio by randomly moving modules from the larger cluster to the
) T = Pm‘mutation of V; smaller one.
Variables: & = Number of clusters
nMatch = Number of matched modules
j = Current module index C. Other |mp|ementation Details
w = Matched module . . . .
()]1tI)]1t: [’," = (‘l]]st‘(\ring of H,; OUI‘ COde was written II’C—l——I— aﬂd Complled Wlthg++
1. Construct random permutation m of [1..1]. (V, 24) on a Unix p|atf0rm. We utilize LEDA abstract data
, 5“; ,’;“”;’;{;;;L’j(_f 0, [‘{ == "} N types (anonymous ftp to ftp.cs.uni-sb.de) for sets, queues, and
N WI.lfe LA 'I“l" l-’t}<|"' o doubly linked lists. We have also implemented a database
1 I"r[_/ | 1s unmatchec 1€11 . . . .
1. Set k =k + 1. Add ;) to cluster (. which can perform numerous netlist and clustering func_tlons
5 Find unmatched w € Vi that maximizes and which handles the memory management of the primary
_conn(vrjy, w). data structures. The database also contains implementations
. if such a w exists then for the Project and Induce subroutines.
add w to cluster (% and h | Itil | . .
sot nMateh — nMateh + 2. ~ We have also ex’_ten_ded our multileve codqtmdrlsectlom_
7. Setj=j4L i.e., four-way partitioning. We use the quadrisection algorithm
8. while j < |V do of Sanchis [39], but without lookahead. We have implemented
o '”S:"((-t"'i‘k‘” “I‘j‘:“]’“"‘;ii:r‘l"‘f“ o eluster ¢ the sum of cluster degrees, net cut, and generic gain com-
net A= K . ASS Uiy 1O Cluste P’ . R .
10, Setj=j+1. ) putations [24]; our quadrisection results are reported for the
1. veturn PX = {C). Ca, ... Ch. sum of degrees gain computation. To utilize our quadrisection

algorithm within a placement tool, the user can preassign some
modules (e.g., I/O pads) to clusters. In addition, the user has
flexibility in defining terminal propagation models to partition

is complete; each remaining unmatched module is assignedtb-regions of the layout.

its own cluster in Steps 8-10. The final clustering obtained is
returned in Step 11.

The best modulev in Step 5 is found by using an array
Conn indexed over the modules and a setwhich stores  We ran our experiments on the 23 circuit benchmarks listed
the neighbors ofu,(;). First, each net incident tov,, is in Table I, with aI_I CPU times are_reported for a Sun Sparc 5
considered, and every module € e is then visited. Ifw is (85 MHz) unless indicated otherwise. We report bipartitioning
unmatched, theronn(v.(;),w) is computed for the net; results for unit module areas, allowing cluster sizes to vary
this value is added tGonnfw], andw is added toS. After all 10% from exact bisection (so = 0.1). The FM- and CLIP-
neighboring modules of.(;, have been visited, each modulé®aseéd implementations for our ML algorithm are denoted
in S is considered in turn, and its connectivity is looked upy MLr and MLc, respectively. For all experiments, the
in the Conn array. The modulev that maximizesConn[w] Coarsening threshold is set 6 = 35 modules. We have
is returned, and all of the entries in ti@nnarray are then Performed the following studies.
reset to zero. This reinitialization can be done efficiently by « We compare ML to CLIP, which is a superior iterative

Fig. 3. Match procedure.

IV. EXPERIMENTAL RESULTS

resetting entries indexed by modulesdnAssuming constant improvement engine to FM (as seen in Table IlI).

degree bounds on the modules and that nets with more tham We study the effects of modifying the matching ratio

ten modules are ignoretfjatch has linear time complexity. parametet, and find that slower coarsening yields more
stable solution quality.

B. The FM Partition Refinement Algorithm » We show that ML yields solutions with smaller cut sizes

than any existing two-way partitioner.

e Finally, we show that ML yields excellent results for
guadrisection, illustrating its ability to serve as the core
of a top-down placement tool.

Our refinement algorithnd” M Partition takes a netlistd;
and an initial partitioning solutionP; as input, and returns
a refined partitioning off;. If the initial partitioning passed
in is NULL, as in Step 5 of Fig. 2, then a random starting
solution is generated. Our partitioner uses FM with a LIFO ] ) ) o
bucket scheme, and may also use CLIP [14] if desired. Sinte COMparisons with CLIP Bipartitioning
large nets can significantly slow down an iterative partitioner, Our first set of experiments compares both the FM and CLIP
FM Partition ignores nets with more than 200 modulesyariants of ML with the CLIP iterative algorithm [14]. We set
these nets are reinserted when measuring solution quality.the matching parameteR to 1, which forces ML to find a

Cluster size bounds can be set via the parameter complete matching in the coarsening phase. Table IV reports
i.e., the areas ofX; and Y; are bounded below by the minimum cut, average cut, and total CPU time obtained
A(V;)/2 — max (A(v*),r - A(V;) and above by A(V;)/2)+ from 100 runs of each algorithm on each test case. The results
max(A(v*),r - A(V;). wherev* is the module inV; with are similar for the smaller test cases in terms of the min cuts,
the largest area. The solutiah,.; may satisfy the balance but both implementations of ML are significantly better for
constraints forH;,, but the projected solutio®; may not circuits with more than 6000 modules. In terms of average
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TABLE IV
MiniMum CuT, AVERAGE CuT, AND ToTAL CPU TiME OBTAINED FOR 100 RUNS oF THE CLIP, MLz, AND ML« ALGORITHMS
Test MIN AVG CPU
(lase CLIP [ MLg I ML || CLIP | MLg ] ML CLIP [ MLFT Ml
balu 27 27 27 35 35 33 26 100 110
bl 47 47 47 63 57 55 29 93 107
primaryl 47 47 47 62 56 5H 30 93 106
test04 hY 48 4% 80 64 H6 63 219 2063
test0d 57 he 57 74 64 61 67 258 204
test02 88 89 89 112 101 100 73 243 288
test06 60 60 60 72 77 71 65 309 354
struct, 3 33 33 16 39 38 HH 199 233
testOh 72 75 71 72 91 83 16 386 459
19ks 110 104 106 151 114 111 144 447 H10
primary?2 143 139 139 215 158 156 168 414 522
89234 15 40 141 74 50 48 237 H42 HE2
blomed 84 86 83 109 103 G2 267 949 1036
s13207 78 58 60 125 77 76 370 8H7 950
515850 79 43 13 143 63 b1 505 997 1126
imndustry?2 203 168 174 342 213 197 991 2360 301H
industry3 242 243 248 406 275 274 1199 2932 3931
535932 15 41 40 118 46 46 935 2108 2351
s38H84 48 49 48 101 i H¥ 1363 2574 3106
avagsmall 204 139 133 340 194 182 1538 3022 3811
sAR41T 72 H3 50 140 82 66 1123 2514 3032
avqlarge 224 144 140 352 200 183 1896 3338 4230
golem3 2276 1663 | 1661 3403 | 2026 | 2006 146301 | 18495 | 89800

cut sizes obtained, the results are clearer:;JMiasily obtains This may be because that extra levels allow an inferior
the lowest averages, followed by MlLand CLIP. Indeed, for iterative improvement engine extra opportunities to find a
seven of the test cases, th@eragecut for ML is better better solution. Although ML does not yield lower minimum
than theminimumcut obtained by CLIP. A low average cut iscuts than MLz, it more consistently produces solutions with
attractive for users who may wish to run an algorithm only lwer cuts.
few times. The run times are higher for both versions of ML In general, asRkR decreases toward zero, the quality of
than for CLIP, with ML¢: using slightly more time than ME.  the partitioning solution should improve. This phenomenon
Note that as the instance sizes increase, the ratios of ML mmay not necessarily hold due to randomness introduced by
times to CLIP run times decrease. matching-based clustering. Of course, Asdecreases, both
memory and runtimes increase as well. Fig. 4 illustrates the
. . tradeoff betweer? and solution quality. Results are presented
B. The Matching Ratio Parameter R for the average cut obtained by 40 runs of Mbn avgsmall
Our next set of experiments varied the matching ratignd avglarge.
parameterR: we ran ML 100 times for each test case with
of ‘Coarsening increases 8 decreases. Tabies V. and V1. COTIPANSons with Other Biparitoring Algoriths
respectively, show how the solution quality varies as a function There are many works which present bipartitioning results
of R for MLy and MLc. for unit module areas and size constraints corresponding to
We observe that in both tables, the minimum cuts do not= 0.1. Table VIl compares the cuts obtained by Miwith
vary much ask changes, except with the larger benchmark#t = 0.5 for 100 and 10 runs to nine of the best and most recent
In both tables, the minimum cuts are significantly smaller félgorithms in the literature. Many of these nine algorithms
the largest four benchmarks (particularly golem3) foe= 0.5 outperform or subsume other older algorithms, so we simply
andR = 0.33. Slower coarsening also reduces the average dive pointers to these older works.
value, albeit with a noticeable runtime penalty. The cuts for « GMet [1] combines an adaptation of the Metis multilevel
R = 0.5 and R = 0.33 appear virtually indistinguishable, but partitioning algorithm of [27] to netlist hypergraphs with
the slower coarsening faR = 0.33 may start paying off for the genetic method of [20]. This algorithm is very fast
very large test cases (e.g., the averages for golem3 are 1421 since it exploits the efficiency of Metis, yet its cut sizes
for ML ¢ and 1413 for Mle: as compared to 1462 and 1465  are somewhat inferior since it was a graph partitioning
for R = 0.5). This small gain does not seem to be worth the rather than a netlist hypergraph partitioning engine.
extra run time, however. « HB is the multilevel partitioning algorithm of Hauck and
Observe that for small values &, the differences between Borriello [21]. They actually set the module area to be
ML = and ML¢ are not nearly as pronounced as fér= 1. equal to its degree (for FPGA applications), yet their
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TABLE V
MiniMum CuT, AVERAGE CuT, AND ToTAL CPU TiME OBTAINED FOR 100 RUNS OF ML  FOR DIFFERENT VALUES OF THE MATCHING RaATIO R
Test. MIN AVG CPU
Clasc 1.0 } 0.5 | 0.33 1.0 ] 0.5 l 0.33 1.0 [ 0.5 ‘ 0.33
balu 27 27 27 35 32 30 100 166 234
bml 47 47 47 57 59 50 93 166 236
primary | 47 47 47 H6 5Y| H1 93 171 231
test4 18 18 18 64 61 57 219 394 543
test().3 Ho H8 H8 64 61 61 258 H43 625
test()2 &9 88 88 101 98 97 243 435 601
test06 60 60 60 77 68 66 309 H34 732
struct 33 33 34 39 37 38 199 346 493
test0h H T2 71 91 80 79 386 696 946
19ks 104 105 105 114 118 L6 447 783 1077
primary?2 139 141 139 158 161 157 414 771 1089
59234 40 40 40 50 47 47 242 939 1386
biomed 86 83 83 103 96 94 909 1604 2199
s13207 Hy Do HR 7 72 71 8357 1172 2150
s158h0 13 43 42 63 a8 H9 997 1793 2596
mdustry?2 168 171 169 213 207 207 2360 4232 HE8H
industry3 243 243 241 27H 277 275 2932 5393 7859
$35932 41 42 42 46 18 19 2108 3978 HH86
s38H81 19 148 AT 77 56 57 2674 4530 6535
avgsmall 139 133 132 194 159 156 3022 5184 7476
s38117 523 50 50 82 72 68 2544 4649 6536
avglarge 144 130 131 200 163 157 3338 5799 8407
golemd 1663 | 1348 | 1347 || 2026 | 1462 | 1421 || 48495 | 68154 | 99124

TABLE VI
MiNniMuM CuT, AVERAGE CuT, AND ToTaL CPU TiME OBTAINED FOR 100 RUNS OoF ML« FOR DIFFERENT VALUES OF THE MATCHING RATIO R
Test. MIN AVG CPU
(lase 1.0 ] 0.5 [ 0.33 1.0 [ 0.5 } 0.33 1.0 | 0.5 [ 0.33
balu 27 27 27 33 29 29 110 171 234
bm AT 47 47 Hd 55 54 107 177 248
primary | 47 47 47 B H4 54 106 179 243
test.04 18 18 48 66 56 55 263 414 H61
test()3d a7 H6 57 61 60 60) 294 169 622
test()2 89 89 88 100 98 a7 288 452 619
test06 60 60 60 71 65 65 3h4 H46 720
struct, 33 33 33 38 37 37 333 351 506
test(H Tl 71 71 83 77 76 459 745 984
19ks 106 106 105 114 114 116 510 839 1137
primary?2 139 139 139 156 156 156 522 900 1234
59234 41 40 40 48 15 45 582 968 1106
biomed 83 83 83 92 91 91 1036 1723 2300
s13207 60) D5 H8 76 71 68 950 1552 2183
515850 43 44 43 59 56 57 1126 1894 2635
dustry?2 174 164 167 197 196 292 3016 5023 6893
industry3 248 243 244 274 276 276 3932 6670 9353
$3H932 40 41 42 46 45 46 2351 42066 5921
$38H84 48 47 47 Hy 52 52 3106 4898 6811
avgsimall 133 128 128 182 147 148 3811 6031 8228
s38417 50 49 49 66 56 o6 3032 1960 6782
avglarge 140 128 129 183 118 118 4230 6657 9276
golemd 1661 | 1346 | 1340 || 2006 | 1465 | 1413 || 89800 | 104828 | 141704

resulting bipartitionings still fall within the required size ¢ The PARABOLI (PB) algorithm of Riesst al. [36] was
constraints even for unit areas. They report results for widely considered to be the state-of-the-art partitioner in
ten runs of HB, and show that it outperforms the flow- 1994, and has been the subject of numerous comparisons
based algorithm of Yang and Wong [42] and spectral since [21], [42], [32], [14], [13]. The authors of [36] report
bipartitioning [18]. cuts that are 50% better than spectral bipartitioning.
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TABLE VII
Cut Size ComPARISONS OFML ¢+ (FOR 100 RUNS AND FOR TEN RUNS) WiTH NINE OTHER BIPARTITIONING ALGORITHMS
Test, MLe | MLe | GMet [AB | PB | GFM | GFM; | CL- | CD- | CL- [ LSMC
Casc (100) | (10) LA3; | LA3; | PRy
halu 27 27 27 11 27 28 27 27 27 27
bl 47 51 48 Hl 47 47 19
primary | 47 52 47 53 47 5l 51 A7 5l 19
Lesti4 48 49 49 49 48 52 69
test03 56 HR 62 56 57 57 63
Lest 02 89 92 95 91 89 87 102
test06 60 60 94 60 60 60 60
struct 33 33 33 A0 11 36 33 36 33 43
test05 71 72 104 50 74 77 97
19ks 106 | 108 106 104 104 | 104 | 123
primary2 139 145 142 116 139 139 142 151 152 163
9234 10 41 43 | 45 | T4 11 14 45 44 12 1
biomed 83 84 83 135 84 92 83 83 34 R3
13207 55 55 0 | 62| 91 66 61 66 69 71 68
15850 44 56 53 | 46 | 91 63 46 7 59 56 91
industry?2 164 174 177 193 211 175 200 182 192 216
industry3 || 243 | 243 243 267 | 241 244 | 260 | 243 | 243 | 242
35932 41 42 57 | 46 | 62 1 44 73 73 42 97
38581 47 48 53 | B2 | 55 47 54 50 47 51 51
avgsmall || 128 | 134 144 224 120 | 139 | 144 | 270
38417 49 50 69 49 81 62 70 74 65 116
avglarge || 128 | 131 144 139 127 | 137 | 143 | 255
golem3 || 1346 | 1374 || 2111 1629
% mnprv X 16.9 | 95 | 279 | 11.1 7.8 9.2 1.5 6.9 21.9
% imprv X 84 | 30206 | 6.5 1.6 6.0 7.9 | 52 | 191
190.0 e , We quote the best results for 20 runs of their three
i best algorithms: CL-LA3 (CLIP with lookahead level
3), CD-LA3; (CDIP with lookahead level 3) and CL-
PR; (CLIP with PROP gain calculation). Thésubscript
1800 | —— avgsmall implies tha_t _standard_ FM was run as a refinement step
_____ - avalarge after the original algorithm terminated. CL-PRubsumes
glarg the results for PROP reported in [13].
B A . .
| LN e Finally, we compare to the LSMC algorithm of [16]
| ] . .
—— | which we reimplemented. The results are reported for
3 o - 100 descents, with the kick move performed on the best
® partitioning solution observed so far (temperataré in
= the LSMC algorithm).
— i . .
<1>) ‘ The last two rows of the table, respectively, give the percent
& 1600 improvements of Ml with 100 runs, and Mk with ten
runs, over the other algorithms. We observe thatdWith
100 runs averages between 7.8 and 27.9% improvement in
cut sizes, yielding the best cuts ever reported for seven of
150.0 | - the test cases. Even when limiting MLto just ten runs, we
I . . .
still obtain between 3.0 and 20.6% improvement over the other
algorithms. For 100 runs of Md., we obtained the best known
results for the benchmarks test05, s9234, s13207, s15850,
140.0 ‘ ‘ \ industry2, avgsmall, and golem3. From Table IV, we see that
0.0 02 0.8 1.0 the averagecut obtained for golem3 was 1465, which is still

0.4 | 0.6 .
Matching Ratio
Fig. 4. Tradeoff between solution quality and the matching rétioEach
data point represents the average cut obtained by 40 runs ef. ML

significantly better than the best known result.

Table VIII compares the CPU times for the algorithms. We
report the total time required for ten runs of iMLon a Sun
Sparc 5. The run times for GMetis, CL-LA3CD-LA3;, CL-

» The GFM results are for 80 runs of the gradient Fidud®®R;, and LSMC are also given for this machine. PB and
cia—Mattheyses algorithm of [32], and the GFMsults GFM(GFM;) runtimes are reported for a DEC 3000 Model
are for a single run of a “two-phase” variation of GFM.500 AXP and a Sun Sparc 10, respectively. Although run

e Dutt and Deng [14] show how CLIP and CDIP (sedimes across different platforms are not directly comparable,
above discussion) can be used within any partitionere observe that ten runs of MLuse less runtime than any
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TABLE VI
CPU MPARISONS OFML « wiTH OTHER BIPARTITIONING ALGORITHMS

Test ML (Met. PB GFM | GFM;, CL- CD- CL- | LSMC

(lase (10) LA3; | LA3; | PRy

balu 17 14 16 24 25 32 31 34 11

bml 18 12 37 47 36 13
primary t 18 12 18 16 25 36 48 37 42

test04 41 21 81 106 114 89

test0d 47 23 88 107 95 92

test02 45 26 99 124 109 94

test06 55 32 50 HH) 175 99

struct, 35 27 35 80 32 1H 51 75 83

test0H 74 16 111 162 188 148

19ks 84 39 178 216 219 279)
primary?2 90 53 137 224 61 167 210 353 176

s9234 97 H8 490 672 186 17h 270 264 326

biomed 172 95 711 1440 371 231 362 572 342
s13207 155 102 2060 | 1920 397 220 129 380 505
s15850 189 114 1731 | 2560 530 267 543 576 HI8
industry?2 502 245 1367 | 4320 819 1129 | 1453 | 2127 914
industry3 667 299 761 4000 861 1419 1 1944 | 1920 | 1192
$35032 127 266 2627 | 10160 | 1038 463 964 1085 | 1191

s38H84 490 397 6HI8 | 9680 3463 748 1339 | 1950 1536
avgsinall 603 328 4099 1260 | 2507 | 2082 1600
s38417 496 281 2042 | 11280 | 1062 811 1733 | 1690 1676
avqlarge 666 417 4135 1430 | 3145 | 2126 1742

golem3 10483 450 10823

of the other algorithms except GMetis. It seems that if a TABLE IX
reasonably high-quality result is desired in only a few seconds, FOUR-WAY PARTITIONING COMPARISONS
then GMetis is appropriate; however, if a bit more CPU time™ 1w # Cut Nets
can be afforded, Mb is the better choice. Case MLg GORDIAN | FM I CLIP ] LSMCp | LSMCe
We conclude that for bipartitioning, our multilevel algorithm  Primay? 126 f'”’;; o il e -
. . . Drimary B ). B b D b3
with a CLIP engine prOVIdES excellent cut results compared pioned 311 (390) 479 933 697 859 567
to previous algorithms while requiring a reasonable amount of 513207 | 472 (503) 590 653 | 819 337 359
515850 547 (594) 678 774 9HR 487 392
CPU resources. industry2 || 398 (1369) 1179 2200 | 1505 1695 1246
industry3 || 830 (1049) 1965 3005 | 2223 1605 1h72
. . i avgsimall 408 (505) 646 2877 | 1728 2098 1324
D. Quadrisection Comparisons avqlarge || 481 (519) 661 3131 | 1890 | 2511 1435

Our final set of experiments compares ML for four-way par-
titioning against the GORDIAN [30] standard cell placement \ve obtained GORDIAN-L placement solutions [37] for
program. In GORDIAN, the I/O pads are initially preplacedsome of the test cases in Table IX. For each placement
then a system of equations is solved to find the locations &j|ution, we split the placement into four equal-sized clusters
the unfixed modules such that either a squared wire-lengiid measured the total cut obtained. The best cut obtained
[30] or a linear wire-length objective [41] (GORDIAN-L) is py either GORDIAN or GORDIAN-L is reported in the table.
optimized. The solution to this system induces an ordering @fe also compare to the best cut obtained for 100 runs for
the modules in the horizontal direction which is then split inteyur-way implementations of FM, CLIP, and LSMC with
abipartitionings.' Then, another optimization inducesaverticqboth FM and CLIP partitioning engines_ The first column
ordering of the modules which is split to yield a four-wayontains min-cut results obtained by ML(with R = 1.0 and
partitioning. The algorithm continues to perform optimization — 100), with average cut sizes in parentheses. Here zML
in order to spread out the cells (i.e., prevent overlappin@utperforms Ml in terms of cuts and run times; this may be
but this initial four-way partitioning is preserved in the finaljue to CLIP being relatively ineffective at the top levels of
solution. the hierarchy. Table IX illustrates that both the minimum and

average cuts obtained by Miare better than those obtained

3GORDIAN finds a bipartitioning by finding the single split that evenlyby GORDIAN. Our multilevel-based quadrisection algorithm
divides the area into a left and right half. GORDIAN-L uses a morblas recently been integrated into a top-down hierarchical
complicated scheme whereby the ordering is split into five clusters and ﬁ)gacement tool [24]. The authors of [24] report an average

system of equations is resolved with new constraints. The ordering induced . .
this second solution is then split into a bipartitioning using the same techniqg 14 and 11% ere-length savings versus GORDIAN-L and

as GORDIAN. GORDIAN-L + DOMINO, respectively.
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V. CONCLUSIONS [10]

We have presented a new multilevel circuit partitioner based
on the paradigm of [22]. The success of our algorithm relidl]
on exploiting new innovations in the iterative improvement
engine and our ability to control the number of coarseningy)
levels during clustering. We obtain excellent bipartitioning

results compared to previous works in the literature whilg,

using less CPU time. There are several improvements that

we

functionality of our multilevel tool.

L]

(1]

(2]
(3]

(4]

(5]
(6]

(7]

(8]

(9]

plan to make to address the runtimes, performance a[rfztlj]
We plan to implement a “boundary” version of FM in
which only modules incident to cut nets are initially[ls]
inserted into the data structure [22]. This will significantly
reduce CPU time, and may even enhance solution qualit¥.
Run times may be further reduced via faster reinitializa: !
tion of the FM buckets at the beginning of a pass [22]. If
only a few modules were moved during a pass, then onli/]
these modules and their neighbors need to be updated
for the new pass. Currently, before each pass, the entjig]
bucket structure is reinitialized.

At the top few levels, (coarser) netlists have fewer (e.g[19
<500) modules so partitioning solutions can be obtained
very quickly. It may be worthwhile to spend more CPU
time partitioning at these levels, e.g., by calling FM!
multiple times or using LSMC.

Dutt and Deng [13] showed that lookahead schemes [3#}]
do not work very well with FM when using a LIFO bucketp;
scheme; however, their impact increases dramatically
when using CLIP. We would like to explore the us
of lookahead in our iterative improvement engine eve
though the increases in run times may be significant.
Finally, we have successfully integrated our quadrisectidf’!
algorithm into a timing-driven placement package [24].
Our ongoing work seeks to integrate additional partitiori25]
ing objectives that accommodate congestion, density, and
routability considerations. [26]

23]
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