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Combining Problem Reduction and
Adaptive Multistart: A New Technique
for Superior Iterative Partitioning

Lars W. HagenMember, IEEE and Andrew B. Kahng

Abstract —VLSI netlist partitioning has been addressed subsetd/ andW, with the cut sizec(U, W) being the number
chiefy by iterative methods (e.g., Kernighan-Lin and of hyperedges infe € E|Ju,w € e with v € U and
Fiduccia—Mattheyses) and spectral methods (e.g., Hagen—Kahng).w € W1. Two basic partitioning formulations are: Hjin-

Iterative methods are the de facto industry standard, but suffer . . . . o\ .
diminished stability and solution quality when instances grow Width bisection which seeks the partition witht/| = [WW|

large. Spectral methods have achieved high-quality solutions, Such thate(U, W) is minimized, and 2)minimum ratio cut
particularly for the ratio cut objective, but suffer excessive which seeks the partition such that(U, W)/|U| - [W]) is
memory requirements and the inability to capture practical minimized. Both of these formulations are NP-complete, and
constraints (preplacements, variable module areas, etc.). much work has sought effective heuristic solutions.

This work develops a new approach to Fiduccia—Mattheyses e o .
(FM)-based iterative partitioning. We combine two concepts: C_urrent partitioning approaches can be_CIass'f'ed Ito
1) problem reductionusing clustering and the two-phase FM €rative methods andspectralmethods. Iterative methods are
methodology and 2) adaptive multistart i.e., the intelligent more widely used, and involve local perturbation of a current
selection of starting points for the iterative optimization, based golution with either a greedy or a hill-climbing strategy. The
on the results of previous optimizations. The resultingclustered iterative algorithm of Fiduccia and Mattheyses (FM) [13] (a

adaptive multistart (CAMS) methodology [18] substantially . . . .
improves upon previous partitioning results in the literature, variant of [21] that uses linear time per pass) is the method that

for both unit module areas and actual module areas, and for IS most widely used for bisection [23]. Wei and Cheng [30]
both the min-cut bisection and minimum ratio cut objectives. use an adaptation of [13] to address the ratio cut objective.

The CAMS method is surprisingly fast and has very stable Spectral methods use eigenvectors of the Laplacian of a netlist-
solution quality, even for large benchmark instances. It has gerjyed graph to deterministically find a partitioning solution.
bee_n applied as the basis of a clustering methodology within The det - f tral thods i i d th
an industry placement tool, e determinism of spectral methods is appealing, an e
need for only one run keeps CPU requirements reasonable as
instances grow large. Spectral heuristics developed by Hagen
and Kahng [15] use eigenvectors to define linear orderings of
ARTITIONING optimizations are critical to the synthesiseither modules or nets, and find good partitions by splitting
of large-scale VLSI systems. Designs with over a mikhe linear ordering. An extension in [10] produced results for
lion transistors are now quite common, and entail problepatio cut partitioning corresponding to an average of 28.8%
complexities that are unmanageable for existing back-eftdprovement over the method of [30].
physical layout tools. Thus, partitioning is used to divide The main weakness of FM is that its solution quality is
the design into smaller, more manageable components. Wit very “stable,” i.e., it is not predictable. Fig. 1 shows the
system design being increasingly dominated by performangr! solution cost distribution for the Primary2 benchmark
and I/O constraints, the traditional goal of partitioning hasetlist which has 3014 modules. The distribution is “normal,”
been to minimize the number of signals which pass betwegihereby the average FM solution is significantly worse than

I. INTRODUCTION

components. the best FM solution. Thus, FM must be run many times
from random starting points to achieve a good result, i.e.,
A. Partitioning Methods to hit the tail of this distribution of solution costs. Indeed,

;E’r‘iaCtical implementations of FM use a number of random
starting configurations and return the best result [23], [30] in
porder to attain “stability”: we call this theandom multistart

approach. The number of runs required to achieve stability via

random multistart grows very rapidly with problem size [19],
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Fig. 1. Distribution of 21203 FM bisection solutions (i.e., local minima) for SIGDA Layout Synthesis benchmark Primary2 (3014 modules). Each soluti
was generated from a new random starting point.

iterative FM approach retains a very strong appeal to prao-minimize the Rent parameter of the condensed netlist; Ding
titioners, and much work has attempted to make FM moe al. [12] also used Rent-based clustering to improve the
viable in practice. performance of a placement algorithm.

Other two-phase FM approaches include [16], whose prob-
abilistic RW-ST method finds “natural clusters” via a self-
tuning random walkin the circuit netlist (strongly connected

Two main approaches have improved the quality of multiégions of t.he. netlist are detected by mult.iple revisitationg of
start iterative partitioning: modules within the walk). Cong and Smith [11] generalize

1) reducing the problem size so that a smaller, moFQe matching of Buiet al. to a clique-finding scheme, and

easily solved problem instance is obtained (s is iCS F R DL TR EER Ce e B Alper and
clusteringor two-phase FMapproach); and P

2) intelligently constructing new starting points for theKahng [2.]'.Wh°s‘? AGG algorithm appligs geometric c_Iusteriﬂg
optimization based on previously found local minim oa multldlmepS|onaI spectral embedding of thg netI|§t. Usmg
(this is theadaptivemultistart approach). GG clusters in the two-phase FM approach yields blsectlo_ns
that are an average of 26.9% better than the results of running
) . ) “flat” FM 200 times. Another strong result is reported by
A. Clustering: Reducing the Problem Size Cheng and Wei [8] for partitioning with a 1:3 size ratio
Informally, a clustering groups the netlist modules intobound (as opposed to exact bisection); their stable two-way
disjoint subsets oclusters Contracting the modules of each(STW) partitioning algorithm uses recursive FM-based ratio
cluster into a single node inducesampactedor condensed cut partitioning [30] to achieve a circuit clustering, then applies
representation of the original problem which may be easithre two-phase FM methodology.
to solve. Buiet al. [5], [6] proposed the “matching-based
compaction” (MBC) algorithm, where the edges of a maximal ) , . )
random matching in the netlist graph induce a compactgd Structure in the Solution Space: Adaptive Multistart (AMS)
instance of[n/2] vertices, and the compaction is iterated The second approach to improving iterative methods has
until the problem size becomes manageabletwd-phase centered on the careful choice of an initial configuration for
FM methodology results: the FM algorithm is applied to theach execution of the optimization algorithm. In such an
compacted netlist, and the result is reexpanded into a flat initegdproach, previously generated solutions are used to construct
configuration for a second FM application. Kgal. [26] used a starting point that is more likely to lead to a good local
a similar approach with a clustering algorithm which attemptadinimum. Boeseet al. [3] showed that the set of local

Il. IMPROVEMENTS TOITERATIVE PARTITIONING
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Fig. 2. Analysis of 2500 random local minimum bisections for graph in the class of difficult instéheg$100, 4, 10). The number of unique local minima
plotted is 2343. For each solution, we plot its cost against its average distance, in terms of single-vertex moves “shift moves,” to all 2493iotiser solu

minima for many iterative algorithmsjnder the appropriate each individual, either before or while being combined with
neighborhood structureexhibits a “big valley.” For a 100- other individuals to form new solution “offspring.” Such
node instance, Fig. 2 portrays 2500 local minimum grapkorks mostly remain within the genetic paradigm in that
bisections according to the pair-swap neighborhood struétureew solutions are derived from only two “parents”; however,
Each solution is plotted by its cost (number of edges cuf)uhlenbein [24] and Ackley [1, p. 35] describe multiparent,
versus its average distance (number of pair swaps) framting approaches for forming new solutions.

all other solutions. There is a clear correlation: the best

local minima are central to all of the others. Based on this

observation, theadaptive multistar(AMS) methodology [3] IIl. CLUSTERED ADAPTIVE MULTISTART (CAMS)

consists of wo phases. Clustering and AMS each improve on the naive (random

1) Generate a set ahndomstarting points, and call the  ,tistart) implementation of iterative search. However, each
iterative algorithmiter-Alg on each starting point, thus, -« §rawbacks

determining a set of (local minimum) solutions.

2) Constructadaptive starting points from the best local
minimum solutions found so far, and rdter-Alg on
these to yield corresponding new solutions.

Essentially, 2) attempts to find starting points that are central,
to the previous solutions, and thus are more likely to reach
the center of the big valley.

. Work in the genenc algorithms Ilter_ature ha; discussed sim- not obviously lead to a better solution.
ilar ideas within the context of “hybrid genetic-local search” N . i

[24] or “learn as you search” [1]. By combining genetic Our contribution lies in combining the clustering and AMS
algorithms with local search strategies, [4], [25], [24], [Zgl)hllosopmes into a ngwlustered adaptive mult@ta(CAMS).
showed that improved results were possible for the travelifigethodology [18] which enables the FM algorithm to rapidly
salesman problem (TSP) and partitioning. The basic approdEfH" best known partitioning solutions. As with AMS, CAMS

in these works allows an iterative algorithm to improvéldaptively exploits previous good solutions, except that the
solutions are used to find @ustering and not a “central”

IThis particular instance is from the class of “difficult” bisection inputssg|ution. As with two-phase FM, the clustered input is then
proposed by Buiet al. [5]. Specifically, a random graph in the class ’

GRui(n, d, b) hasn nodes, isd-regular, and has an optimum bisection cos{JSEd as the input to FM, and the ﬂ_attened result is the inpUt
almost certainly equal té. to a second FM phase. Our intuitions are: 1) that CAMS

» Clustering the netlist becomes expensive as instances
grow large, and can constrain the two-phase FM approach
to a solution space that does not include any high-quality
solutions.

AMS relies on the local minima of the iterative strategy
exhibiting a “big valley” structure; however, Fig. 3 shows
that with FM local minima, picking a central point will
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Fig. 3. Analysis of local minimum FM bisections of SIGDA Layout Synthesis benchmark Primary2, using 1000 random starting configurations. A&L00O loc
minima are distinct. For each solution, we plot its cost against its average distance, in terms of single-vertex moves “shift-moves,” to all g9Gtiotier

utilizes the information stored in “good” local minima to The subroutine€Construct_Clustered Netlist constructs the
predispose certain nodes toward specific partitions, and 2) tbhtstered hypergrapf’ from k& previous partitioning solutions
CAMS creates an “easier” problem by reducing the originalf the hypergraphi: vertices ofG that occur together in the
netlist hypergraph to a smaller and more manageable clustesadthe partition in all of thek solutions are grouped into a
hypergraph. single condensed vertex {&'. In order to do this efficiently,
The CAMS methodology is described in Fig. 4. A sineach vertex inGG is given ak-bit label, one bit from each
gle pass of CAMS corresponds to the main lodplus- partitioning solution, with each bit being 0 or 1 based on
tered_Adaptive_Multi-Start (lines 5-18), where CAMS per- whether it is in the same partition or the opposite partition
forms two-phase FM to generatenew solutions. The clus- as vertexv;. Finding the clusters is then simply a matter of
tered hypergrapi?’ used within the two-phase FM runs isidentifying vertices which have identical labels: this is a bucket
produced by th€onstruct_Clustered Netlist subroutine from or radix sort on the vertex labels, and is accomplished in time
k previous solutions. After each pass through the main lodmear in the number of verticesFig. 5 shows an example of
the k previous solutions used to generate the clustering drew Construct_Clustered Netlist would constructG’ from
replaced by thet new solutions generated during the passfour two-way partitioning solutions.
In practice, the CAMS clusterings will, after several passes, We believe that the subroutit@onstruct_Clustered_Netlist
almost always converge to a two-way partitioning (i.e., provides the key to the success of the CAMS algorithm.
clustering with only two clusters). While this in itself could bePrevious two-phase FM approaches build their clusters through
considered a natural stopping condition, we use the conditibrerarchical (bottom up in [5], top down in [8]) or randomized
that the main loop will be exited if the best solution quality16] processing of thenetlist and can take a “wrong turn”
has not improved over the last two passes (the variahile in the process. CAMS, on the other hand, through calls
Fig. 4 counts the number of passes with no improvement). This Construct_Clustered_Netlist, extracts structural building
stopping criterion can save a substantial amount of runtirbéocks directly from thectual partitioning solutionsThis idea
since, for many instances, there will be a large number of constructing the clusters from previous solutions, rather than
passes with no improvement in solution quality as the CAMBe input instance, is quite novel; it significantly improves the
clustering “converges” into a two-way partitioning. solutions that can be generated by the two-phase FM approach.
While CAMS is similar to AMS in that many local minima

2We have tested an alternate methodology where the clustered hypergrape used to generate a promising starting point, a fundamental
is constructed from thé best solutions taken from over the entire history
of the solution process. However, this methodology gave inferior average®Asymptotically, the clustering operation is dominated by the complexity
solution qualities compared to the methodology which constructs the cluster#dhe k FM executions whictper passrequire time linear in the size of the
hypergraph from thé solutions found in the latest pass. netlist.
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Clustered_Adaptive Multi-Start (G,D,K) that local minima have certain subsets in common, and that
Input: Netlist hypergraph G = (V, E) with [V] = n the problem size can be reduced by clustering these subsets;
k = number of solutions used to construct cach clustering this seems to enable CAMS to Spend most of its Computation
Output: t* = best solution fonud « "
Local Variables: on the “hard” parts of the problefh.
M1 = set of k solutions
M, = set of k solutions
i . IV. EXPERIMENTAL RESULTS
u = number of passes without improvement
S ’5 solutions from random starting points We have performed the following experiments to compare
3 % o best solution in M CAMS against the previous work in partitioning:
1. u=0 1) comparison of CAMS against AMS and random multi-
5. repeat .
6. (7' — Construct_Clustered _Netlist((7,,) start; . i .
7. fori=1tok 2) comparison of CAMS against the previous two-phase
8. e Randcjrr:;Partition(G’) FM partitioning results in [2];
9. 1 FM(GL - -
0. | — FM(C Flatten(?)) 3) comparison of CAMS against the method of Cheng and
. My — MUt Wei [8]; and
12 we—utl ] 4) comparison of a ratio cut implementation of CAMS
13. t «— best solution in M, . . . .- . .
1 if Cost(l) < Cost(r) ag;iln[sltoaorewous ratio cut partitioning results in [30],
15. 1 , .
1‘7) v ‘—‘\34 Our first experiments compared CAMS against AMS and
. Py — . . . . .
18 untiluc2 random multistart using FM as the underlying optimizafion.
@ Fig. 6 shows the performance of the three approaches for unit-
area FM bisection on the SIGDA Layout Synthesis benchmark
Subroutine Construct_Clustered Netlist(G,M) Primary2. All of the numbers shown are the averages of at
Input: Hypergraph G = (V, E) with [V] = n least 50 independent runs, e.g., to get the single data point
Set M = {M,..., My} of partitioning solutions : H
Outputs A clustered hypergraph G = (V. ) for 1000 random multlstarF calls t_o FM, it was necessary to
S1. for each module v € V = {o1,.... 0} do call FM a total of 50000 times with random starting points.
s2. Construct &-bit label L = Ly ... L The data for CAMS were found by varying in the CAMS
“’hdefj‘:’ Li 7 Otf '”;;“d vi are in the same partition of M; algorithm, i.e., the average number of FM calls used by CAMS
an g olherwisce . . .
$3. V7 the sel of all labels created in Steps $1 and S2. is a function of the parametdr. We ran CAMS 50 times for
S4. E' — the set of hyperedges over V' that is induced by E different values oft, and used the resulting average solution
() quality and average number of FM calls as our datée varied

k from [((1/2)-log, n)] to [(2-log, n)], wheren = |V] is the
number of modules. Our reasoning was that if khgartitions
differ maximally from each other, we require = [log, n]
2 4 6 1,2,3,4 | 5,6,7,8 10 get no clustering at all. Hence, we uskd= [log,n] as

Fig. 4. Clustered_ Adaptive_Multi-Start template.

4Recall that the correlations for FM local minima in Fig. 3 were much

1.2.3.5 | 4.6,7.8 weaker than for pair-swap local minima in Fig. 2. Thus, the validity of the

1 8 l AMS paradigm is heavily dependent on the specific neighborhood structure
1.2,3.6 4578 that is used. Indeed, the results for AMS versus random multistart were
much less spectacular with FM partitioning than with the other formula-
3 5 7 1,2,3,4 | 5:6,7.8  tions/optimizations reported in [3]. See Fig. 6.
SOur version of FM is randomized so that more than one result is possible
@ (b) . . . : . :
for a given starting point. This entailed some minor changes to the code, but
12345678 (4} {6} did not produce any noticeable change in solution quality. Also note that our
FM implementation does not take advantage of the enhancements proposed by
00001111 Krishnamurthy [22]. The AMS results were derived from an implementation
00010111 (1.2,33 which follows the description in [3]. Our AMS implementation generates each
8 8 8 8 g i g 2 new starting point stochastically, based on théest known local minima.

Thesek local minimum bisections are each given the “parity” such that their
division of the modules into partitions 0 and 1 minimizes the move distance
(53 (7.8} from the best local minimum bisection. (In other words, for a given bisection
() (d) V = (U, W), we will makeU the “0 partition” andW the “1 partition” or
. L . _.vice versa, so that the bisection resembles the best known bisection as much
Fig. 5. Clustered graph constructed from four partitioning solutions using thg possible.) The modules are then assigned probabilities of membership in
subroutineConstruct_Clustered Netlist. The construction for hypergraphs is y5titions 0 and 1 of the new starting point, based on their locations ik the
similar. (a) Original Graph. (b) Partitioning Solutions. (c) Bit-Vectors. (dig|utions and according to a weighting function derived from heolution
Clustered Graph. costs. The weight contributed by each local minimum bisection is the cost
of the bisection divided by the sum of the costs offabisections. After all
. . . . . module probabilities have been determined, each module is randomly assigned
difference between CAMS and AMS lies in their respectivg either partition 0 or partition 1 according to these probabilities.
assumptions concerning the structure of local minima in thefin counting the number of FM calls CAMS makes, we are not counting
solution space. AMS explicitly depends on a “big valley” vidhe FM calls on the clustered netlist, i.e., one might argue that the number of

h . h h id of | | mini ill lead EM calls is nearly twice that listed. This is the method of counting used in
the assumption that the centroid of local minima will lead to ;?revious two-phase FM work [2]. Note that FM calls on the clustered netlist

good solution. CAMS is much more flexible: it assumes onbte of much lower complexity than those on the flattened netlist.
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Fig. 6. Plot of average bisection solution quality as a function of total number of FM runs using SIGDA Layout Synthesis benchmark Primary2 with each
module having unit area. The AMS plot is generated from the results for 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 500, and 1000 FM calls. The CAMS
plot is generated by varying the parameteas shown in the table. Each data point corresponds to the average of at least 50 independent runs.

the midpoint of our range. In Fig. 6, we see that a CAMS TABLE |

run that required an average of 80.8 FM calls resulted in COMPARISON OF BISECTION SOLUTION QUALITY USING ACTUAL MODULE
. . . AREAS ON BENCHMARKS FROM THE SIGDA LAYOUT SYNTHESIS SUITE

an average solution quality that would require more than

1000 FM calls in an AMS paradigm_ We also notice that théenchmark | Best Previous | CAMS Best i CAMS Average | Runtime (s)
improvement in average solution quality for the CAMS runs__bm! 18 (AGG) 47 50.76 118.61
é"ﬂh h d 19ks 1214 (AGG) 110 114.08 1159.76
seems to taper off at ar_ou_nd 110 EM c Ich corresponds  prGAT | 47 (RW-ST) a7 5079 11253
to k ~ 18. These and similar experiments prompted our choiC®rimGA2 146 (AGG) 138 117.10 826.13
of k£ = [(1.5-log, n)], and the remaining experiments reflect_PrimScl 49 (AGG) 47 51.32 111.61
this choice PrimSC2 | 144 (AGQ) 135 142.28 833.72
e . _ Test02 12 (Al 12 42.02 295.54
A similar experiment was performed on the Industry2 Teso3 50 (AGG) 39 39.16 263.90
benchmark (12 142 modules) for which there are no previously Testod | 12 (FM&AGG) 12 12.62 387.10
published partitioning results. The CAMS results for Industry2_Lest05 24 (FM) 2 35.32 773.79
Test06 63 (AGG) 63 64.06 164.65

give an average bisection cutsize of 211.72 using an average— —— - , ,
of 128.36 FM calls. The best solution we found using morg 1 25 Pt S0 B ontts e R it restlk. Note that
than 8000 random multistart FM calls had cutsize 303, agaHa Test05 bisections in [16] and [2] used slightly corrupted module area data,
indicating that CAMS provides a substantial improvement ovend theref(_)re reported incorrect bisection costs. The entries in this table reflect
the original multistart approach. The best solution found by ofy" érunning RW-ST and AGG on the corrected input file for Test05.

50 runs of CAMS had cutsize 181.

Our second set of experiments tested CAMS against t)ging clusters obtained through recursive ratio cut partitioning.
previous two-phase FM partitioning results mentioned ijs,e adopt the same experimental methodology as in [8],
Secti_on I1-A. Ta_blel shows the average solution and belsé, we report net cuts subject to a 1:3 size ratio bound,
solution of 50 independently started CAMS runs. In theSsing actual module areas. It is very important to note that
experiments, we use actual module area to conform with t&, resyits in Table Il can beorsethan the corresponding
previous two-phase FM results published in [2]. , bisection results in Table I. This is because the Bigection

Our third set of experiments compared CAMS against the, s imbalance of up to the largest module area during
method of Cheng and Wei [8], which applies two-phase Fihe shift/swap procedure—and for such examples as Test04,
ttﬂis is greater than 25% of the total module area, i.e., the
toferance applied for the 1:3 ratio-bounded optimization. For
each benchmark, CAMS again finds a partition of either equal

"The best net cut observed over all the runs performed was 146. Since
average solution quality is 146.7 whén= 24, the plot for CAMS will have
a slope very near zero for larger valueskof
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TABLE I
COMPARISON WITH METHOD OF CHENG AND WEI [8] FOR MiNiMum NET CuT VALUE SUBJECT TO
1:3 PrRTITION SizE RATIO BOUND

Cheng-Wei 91 CAMS
Benchmark | Best [ Avg. o | Runtime (s) | Best | Avg. ¢ | Runtime (s)

bml 17 17.95 | 1.27 33.85 17 | 17.70 | 1.62 71.40
19ks 80 91.00 | 5.85 228.80 72 | 77.10 | 2.43 756.23
PrimGAl 17 17.25 | 0.91 34.25 17 | 17.80 | 2.02 65.04
PrimGA2 77 77.70 | 2.68 128.30 77 17932 | 6.24 578.73
PrimSC1 17 18.20 | 0.68 29.70 17 | 17.68 | 1.88 67.18
PrimSC2 77 77.90 | 2.84 176.35 77T | 7782 2.65 570.49
Test02 42 42.00 | 0.00 138.70 42 ] 42.50 | 1.50 276.99
Test03 39 39.55 | 1.50 66.45 39 |39.16 | 0.78 244.64
Test04 42 43.40 | 1.05 67.65 42 | 43.88 | 0.48 186.93
Test05 42 42.20 | 0.62 156.50 42 | 42.00 | 0.00 466.04
Test06 55 60.85 | 3.76 142.25 50 | 50.24 | 0.81 343.42
26K 65 | 156.95 | 64.03 4767.05 49 | 58.00 | 17.30 8229.82

To achieve an exact comparison, we report minimum, mean, and standard deviation for the net cut
value. Results of Cheng and Wei are based on 20 runs, while the CAMS results are based on 50
runs. Note that the 1:3 size ratio bound can entdibhter constraint on the FM optimization than
the bisection optimization discussed in Table I.

or better solution quality when compared to the previous work. TABLE Il

|ndeed for the benChmarkS 19 kS TeStOG and 26 K th@OMF’ARISON oFRATIO CuT SOLUTION QUALITY ON BENCHMARKS FROM THE
! . L ! ! ’ SIGDA LAYOUT SYNTHESIS SUITE WITH ALL MODULES HAVING UNIT AREA

average CAMS solution quality is substantially better than

the best Solutlon reported In [8]. The results for benchmar}knchmark Best Previous CAMS Best | CAMS Average | Runtime (5)
: : iqly, bml 5.531e-05 (B1G1, IG) 5.531e-05 6.068¢-05 83.81
26 K, which c_:ontalns almost _26 _000 modules, are espema..y: 19ks 5.882e-05 (RCut1.0) | 4.394e-05 4.547e-035 1078.74
noteworthy since they may indicate the future success Ofprmi 1.3300-01 (1G) 1339004 1334004 9111
CAMS as instances become |arger_ Prim2 4.576e-05 (1G-Match) | 4.576¢-05 4.612¢-05 901.34
. . . . Test02 | 1.240e-04 (IG-Match) | 7.962e-05 9.521e-05 518.26
Qur final s.elt of experiments tested CAMS against previousSy 55931005 (IG Match) | 8.6120.05 5.015005 ST981
ratio cut partitioning results. Table Ill shows the average and Testo1 | 5.700e-05 (I;- Match) | 5.7000-05 5.735-05 A04.78
best solution quality for 50 independent CAMS runs which Lest05 | 3.060e-05 (IG-Match) | 3.060e-05 |  3.249-05 1192.36
_Lest06 7.184e-05 (IG-Match) 7.738e-05 7.867e-05 504.22

optimize the ratio cut objective; these results are compar\_uh : : m—— TR—— |
f : : : jThe “Best Previous” column contains the best previously published result,
against the best ratio cut results in the literature (quo“éﬂld indicates in parentheses the algorithm which generated this result. IG

for RCutl.0 [30], EIG1 [15], EIG1-IG [15], and IG-Matchingdicates that both EIG1-IG and IG-Match obtained the same result. The
[1L0]—the last three are spectral methods). Here, we use uB{MS results are based on 50 runs.
module areas, again to maintain comparability against theprevious literature on clustering suggests that the
previous results. For these experiments, we used a VerSiorbIQlfstering/two-phase FM methodology succeeds because
the FM algorithm that was slightly modified so as to minimizgf increased average node degree in the condensed netlist
the ratio cut ObjeCtive instead of the bisection Objective. representation (Cf., discussions in [5] and [23]) However, we
For many of the benchmarks, the CAMS results are not th@ve observed that good clusterings tend to cluster the densest
much better than the spectral results (of course, the specgghs of the hypergraph, leaving intact any nodes which are
results already average almost 30% better than FM-based r@ti€ident to “widely separated” regions of the hypergraph.
cuts). This supports the claim in [15] that spectral methodse resulting clustered hypergraph can be less dense than the
yield high-quality ratio cut partitions. However, as note@yriginal hypergraph, suggesting that the clustering win is not
above, even though the solution qualities are comparable & much related to density as it is to the reduction in problem
unit-area instances, FM-based methods are greatly preferafij which allows most of the optimization effort to address
for their inherent robustness and amenab”ity to praCtiCﬁ-le “difﬁcu|t part" Of the prob'em_ Another assumption in
constraints such as variable module areas. previous work is that clusters should be of uniform size (e.g.,
[27, p. 243] or the original method of [5] which employs
iterative matching). However, our work shows clearly that
uniform cluster size need not be a dominant concern: Table IV
The success of the clustered adaptive multistart algorittshows some example profiles from a typical CAMS execution
provides new insights into previous works and beliefs in then the Primary2 benchmarV'| = 3014). Even when there
literature. In particular, while CAMS was originally formu-are 179 clusters, there exists a single cluster that contains
lated to draw on the established techniques of clustering amwekr one-sixth of the modules. Thus, it seems acceptable for
adaptive multistart, we find that quite a bit of the originah clustering to group many tightly coupled nodes into a single
intuition behind these two approaches is now subject targe cluster, while other nodes remain singletons. The table
reconsideration. also shows the total number of nets cut by the clustering, the

V. DiscussiON AND CONCLUSIONS
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TABLE IV clustering-based two-phase FM with the adaptive multistart

DATA SHOWING TYPICAL CLUSTER DATA FOR A CAMS RUN approach. For both the bisection and the ratio cut objectives,
ON BENCHMARK PRIMARY2 AsSUMING UNIT-AREA MODULES CAMS achieves partitioning results that are better than or as
Clustering | Number of | Total | Total | Scaled 3 Largest Clusters gOOd as_ all of the best previous r_eSUItS in the Ilterature' The
Passes Clusters | Cuts | Pins | Cost | Size | | Size 2 | Size 3 method is very simple to state and implement, and relies on the
Pass 1 603 1253 | 4937 | 0.000974 | 120 62 4 present standard iterative approach, namely, the FM algorithm.
Pass 2 323 906 | 3501 | 0.000303 ] 271 | 154 5 CAMS is also highly stable in its rapid convergence to a good
Pass 3 252 927 | 3240 [ 0.000845 [ 332 | 147 [ 10 o) oo
Pass 4 235 906 | 2067 | 0.000779 | 300 | 202 | 10 ' : L
Pass § 179 793 | 2320 | 0.000798 | 577 1 307 | 20 The success of CAMS for netlist bisection may make

The table gives the total number of clusters, and the respective sizesr%Furswe blpartltlonlng-based placement a more appealmg

the largest, second largest and third largest clusters for each clustering. Wethodology. Moreover, the substantial improvement in so-

also report total nets cut, total net-degree, and scaled cost values for efagfion quality may well put into question previous work

clustering. [17] which compared “partitioning-based Rent parameters”
of various algorithms, and found ratio-cut hierarchies to be

sum of net degrees (“pins”) over all clusters, and the scalgdPerior. Finally, we note that CAMS is also naturally suited

cost value of the clustering (a multiway generalization dPr clustering applications; our current work further applies the

ratio cut, due to Chaet al. [7]). CAMS paradigm to VLSI placement, multiway netlist parti-
Although we have concentrated on the improved twdloning, and a number of other combinatorial formulations.

way partitionings afforded by CAMS, it is also of in-

terest to characterize the clusterings generated Con- ACKNOWLEDGMENT

struct_Clustered Netlist, independent of their use in CAMS. M. | smith provided the FM code used for the bisection
As seen from Table IV, the CAMS clusterings tend to consigyperiments and the modified FM code used for the ratio cut
of two relatively large clusters and several clusters contalmlégperiments_ Prof. C. K. Cheng and Dr. N.-C. Chou of the
only one or two modules. This is not expected given that Wgnjversity of California at San Diego provided us with copies
construct the clustering from “good” two-way partitions whichy their benchmark examples [9]. The anonymous reviewers
are likely to assign many modules similarly. Thus, CAM$ovided many constructive suggestions and comments on
clusterings may not be well suited for general clusteringe original draft of this paper. The work of A. B. Kahng
applications. It is possible that more “natural” clusteringgas performed in part during a Spring 1993 sabbatical at the
may be obtained by using a CAMS-like methodology with agyniversity of California at Berkeley; the hospitality of Prof.

iterative multiway clustering approach such as that of Sanclis 5. Kuh and his research group is gratefully acknowledged.
[28], but this is beyond the scope of the current work.

We also note that, in practice, CAMS finds its “optimum” REEERENCES
solution after only a few iterations, seemingly before any effect o _ S
of “adaptation” would have a chance to set in. This furthef!! \'?Vé'ﬁ'-'\AACAk_'egl'u’zv gf”{‘gg;‘omsr Machine for Genetic Hiliclimbing Nor-
suggests that CAMS relies more on problem size reductiop; c.”J. Alpert and A. B. Kahng, “Geometric embeddings for faster
than on the “big valley effect” which motivated the original and better multi-way netlist partitioning,” iRroc. ACM/IEEE Design

; [P Automation Conf.Dallas, TX, June 1993, pp. 743-748.
AMS gpproach. Yet another contrast is that stocha§t|0|ty i ] K. D. Boese, A. B. Kahng, and S. Muddu, “New adaptive multistart
the original AMS approach can cause the new starting point™ techniques for combinatorial global optimization®per. Res. Lettvol.
to be very far from the “good” local minima, while the CAMS F126,Nr|10.82,dpp-“c1)0}—1_13t,_ 199:1- redies dleaned from biological evol
. . . . . braay, ptimization strategies gleaned from Diological evolu-

clustering guara_mtees a startmg point whose structure close[f)l) tion,” Natureg vol. 317, pp. 804-806, 1985.
reflects that of its parent solutions. [5] T.N.Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser, “Graph bisection

Last, we again note the clear connection between “adaptive algorithms with good average case behavi€g@mbinatorica vol. 7,

. N . : : no. 2, pp. 171-191, 1987.
multistart” and the concept of genetic algorithms. As describegk; 1 gui, C. Heigham, C. Jones, and T. Leighton, “Improving the perfor-

above, work in genetic algorithms by iMlenbeinet al. [25] mance of the Kernighan-Lin and simulated annealing graph bisection
has touched on ideas related to CAMS in addressing TSP. (The 290rihms." inProc. ACWIEEE Design Automation ConL989, pp.

algorithm in [25] constructs a new more compact solutionz] p. k. Chan, M. D. F. Schiag, and J. Zien, “Spectfatway ratio cut
from two parents by clustering common substrings in the partitioning and clustering,” irProc. Symp. Integrated SysSeattle,
parents, i.e., in some sense, both the “problem reduction” arég] WA, Mar. 1993.

M

B L C. K. Cheng and Y. C. Wei, “An improved two-way partitioning algo-
the “adaptation” elements are present.) However, our CA rithm with stable performance[EEE Trans. Computer-Aided Design

approach is basically “nongenetic” in that it uses “multiple _ vol. 10, pp. 1502-1511, Dec. 1991.

" N.-C. Chou, private communication, Aug. 1993.
parents,” and does not rely on any sort of Chromosomég] J. Cong, L. Hagen, and A. B. Kahng, “Net partitions yield better module

representation of solutiorfs. partitions,” in Proc. ACM/IEEE Design Automation ConfAnaheim,
i i CA, June 1992, pp. 47-52.

ln.conC|US|0n’ we h"?“.’e (jeveloped a neWSter.ed adapt!ve [11] J. Cong and M’LF.)pSmith, “A parallel bottom-up clustering algorithm

multistart (CAMS) partitioning methodology which combines™ " yith applications to circuit partitioning in VLSI design,” ifProc.
ACM/IEEE Design Automation ConfDallas, TX, June 1993, pp.

8Standard genetic algorithms seek a chromosomal representation which 755-760.
allows easy mutations between solution pairs; CAMS instead seeks m¢t@] C.-L. Ding, C.-Y. Ho, and M. J. Irwin, “A new optimization driven
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recombination operators (e.g., for clustering and local search). ACM/SIGDA Physical Design Workshop993, pp. 13-19.
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