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Combining Problem Reduction and
Adaptive Multistart: A New Technique

for Superior Iterative Partitioning
Lars W. Hagen,Member, IEEE, and Andrew B. Kahng

Abstract —VLSI netlist partitioning has been addressed
chiefly by iterative methods (e.g., Kernighan–Lin and
Fiduccia–Mattheyses) and spectral methods (e.g., Hagen–Kahng).
Iterative methods are the de facto industry standard, but suffer
diminished stability and solution quality when instances grow
large. Spectral methods have achieved high-quality solutions,
particularly for the ratio cut objective, but suffer excessive
memory requirements and the inability to capture practical
constraints (preplacements, variable module areas, etc.).
This work develops a new approach to Fiduccia–Mattheyses
(FM)-based iterative partitioning. We combine two concepts:
1) problem reduction using clustering and the two-phase FM
methodology and 2) adaptive multistart, i.e., the intelligent
selection of starting points for the iterative optimization, based
on the results of previous optimizations. The resultingclustered
adaptive multistart (CAMS) methodology [18] substantially
improves upon previous partitioning results in the literature,
for both unit module areas and actual module areas, and for
both the min-cut bisection and minimum ratio cut objectives.
The CAMS method is surprisingly fast and has very stable
solution quality, even for large benchmark instances. It has
been applied as the basis of a clustering methodology within
an industry placement tool.

I. INTRODUCTION

PARTITIONING optimizations are critical to the synthesis
of large-scale VLSI systems. Designs with over a mil-

lion transistors are now quite common, and entail problem
complexities that are unmanageable for existing back-end
physical layout tools. Thus, partitioning is used to divide
the design into smaller, more manageable components. With
system design being increasingly dominated by performance
and I/O constraints, the traditional goal of partitioning has
been to minimize the number of signals which pass between
components.

A. Partitioning Methods

A standard model for VLSI layout associates a hypergraph
with the circuit netlist; vertices in repre-

sent modules, and hyperedges inrepresent signal nets. A
bipartitioning of divides the vertices in into disjoint
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subsets and with thecut size being the number
of hyperedges in with and

Two basic partitioning formulations are: 1)min-
width bisection, which seeks the partition with
such that is minimized, and 2)minimum ratio cut,
which seeks the partition such that is
minimized. Both of these formulations are NP-complete, and
much work has sought effective heuristic solutions.

Current partitioning approaches can be classified intoit-
erative methods andspectralmethods. Iterative methods are
more widely used, and involve local perturbation of a current
solution with either a greedy or a hill-climbing strategy. The
iterative algorithm of Fiduccia and Mattheyses (FM) [13] (a
variant of [21] that uses linear time per pass) is the method that
is most widely used for bisection [23]. Wei and Cheng [30]
use an adaptation of [13] to address the ratio cut objective.
Spectral methods use eigenvectors of the Laplacian of a netlist-
derived graph to deterministically find a partitioning solution.
The determinism of spectral methods is appealing, and the
need for only one run keeps CPU requirements reasonable as
instances grow large. Spectral heuristics developed by Hagen
and Kahng [15] use eigenvectors to define linear orderings of
either modules or nets, and find good partitions by splitting
the linear ordering. An extension in [10] produced results for
ratio cut partitioning corresponding to an average of 28.8%
improvement over the method of [30].

The main weakness of FM is that its solution quality is
not very “stable,” i.e., it is not predictable. Fig. 1 shows the
FM solution cost distribution for the Primary2 benchmark
netlist which has 3014 modules. The distribution is “normal,”
whereby the average FM solution is significantly worse than
the best FM solution. Thus, FM must be run many times
from random starting points to achieve a good result, i.e.,
to hit the tail of this distribution of solution costs. Indeed,
practical implementations of FM use a number of random
starting configurations and return the best result [23], [30] in
order to attain “stability”: we call this therandom multistart
approach. The number of runs required to achieve stability via
random multistart grows very rapidly with problem size [19],
[31].

Despite these shortfalls, iterative algorithms—and FM in
particular—still possess many appealing advantages over the
spectral approach. These advantages include smaller memory
requirements, simplicity, and the ability to handle constraints
such as preplacements or variable module areas. Thus, the
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Fig. 1. Distribution of 21 203 FM bisection solutions (i.e., local minima) for SIGDA Layout Synthesis benchmark Primary2 (3014 modules). Each solution
was generated from a new random starting point.

iterative FM approach retains a very strong appeal to prac-
titioners, and much work has attempted to make FM more
viable in practice.

II. I MPROVEMENTS TOITERATIVE PARTITIONING

Two main approaches have improved the quality of multi-
start iterative partitioning:

1) reducing the problem size so that a smaller, more
easily solved problem instance is obtained (this is the
clusteringor two-phase FMapproach); and

2) intelligently constructing new starting points for the
optimization based on previously found local minima
(this is theadaptivemultistart approach).

A. Clustering: Reducing the Problem Size

Informally, a clustering groups the netlist modules into
disjoint subsets orclusters. Contracting the modules of each
cluster into a single node induces acompacted, or condensed,
representation of the original problem which may be easier
to solve. Bui et al. [5], [6] proposed the “matching-based
compaction” (MBC) algorithm, where the edges of a maximal
random matching in the netlist graph induce a compacted
instance of vertices, and the compaction is iterated
until the problem size becomes manageable. Atwo-phase
FM methodology results: the FM algorithm is applied to the
compacted netlist, and the result is reexpanded into a flat initial
configuration for a second FM application. Nget al. [26] used
a similar approach with a clustering algorithm which attempted

to minimize the Rent parameter of the condensed netlist; Ding
et al. [12] also used Rent-based clustering to improve the
performance of a placement algorithm.

Other two-phase FM approaches include [16], whose prob-
abilistic RW-ST method finds “natural clusters” via a self-
tuning random walkin the circuit netlist (strongly connected
regions of the netlist are detected by multiple revisitations of
modules within the walk). Cong and Smith [11] generalize
the matching of Buiet al. to a clique-finding scheme, and
provide a parallel implementation. The strongest two-phase
FM results for netlist bisection seem to be those of Alpert and
Kahng [2], whose AGG algorithm applies geometric clustering
to a multidimensional spectral embedding of the netlist. Using
AGG clusters in the two-phase FM approach yields bisections
that are an average of 26.9% better than the results of running
“flat” FM 200 times. Another strong result is reported by
Cheng and Wei [8] for partitioning with a 1:3 size ratio
bound (as opposed to exact bisection); their stable two-way
(STW) partitioning algorithm uses recursive FM-based ratio
cut partitioning [30] to achieve a circuit clustering, then applies
the two-phase FM methodology.

B. Structure in the Solution Space: Adaptive Multistart (AMS)

The second approach to improving iterative methods has
centered on the careful choice of an initial configuration for
each execution of the optimization algorithm. In such an
approach, previously generated solutions are used to construct
a starting point that is more likely to lead to a good local
minimum. Boeseet al. [3] showed that the set of local
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Fig. 2. Analysis of 2500 random local minimum bisections for graph in the class of difficult instancesGBui(100; 4; 10): The number of unique local minima
plotted is 2343. For each solution, we plot its cost against its average distance, in terms of single-vertex moves “shift moves,” to all 2499 other solutions.

minima for many iterative algorithms,under the appropriate
neighborhood structure, exhibits a “big valley.” For a 100-
node instance, Fig. 2 portrays 2500 local minimum graph
bisections according to the pair-swap neighborhood structure.1

Each solution is plotted by its cost (number of edges cut)
versus its average distance (number of pair swaps) from
all other solutions. There is a clear correlation: the best
local minima are central to all of the others. Based on this
observation, theadaptive multistart(AMS) methodology [3]
consists of two phases.

1) Generate a set ofrandom starting points, and call the
iterative algorithmIter-Alg on each starting point, thus
determining a set of (local minimum) solutions.

2) Constructadaptivestarting points from the best local
minimum solutions found so far, and runIter-Alg on
these to yield corresponding new solutions.

Essentially, 2) attempts to find starting points that are central
to the previous solutions, and thus are more likely to reach
the center of the big valley.

Work in the genetic algorithms literature has discussed sim-
ilar ideas within the context of “hybrid genetic-local search”
[24] or “learn as you search” [1]. By combining genetic
algorithms with local search strategies, [4], [25], [24], [29]
showed that improved results were possible for the traveling
salesman problem (TSP) and partitioning. The basic approach
in these works allows an iterative algorithm to improve

1This particular instance is from the class of “difficult” bisection inputs
proposed by Buiet al. [5]. Specifically, a random graph in the class
GBui(n; d; b) hasn nodes, isd-regular, and has an optimum bisection cost
almost certainly equal tob:

each individual, either before or while being combined with
other individuals to form new solution “offspring.” Such
works mostly remain within the genetic paradigm in that
new solutions are derived from only two “parents”; however,
Mühlenbein [24] and Ackley [1, p. 35] describe multiparent,
voting approaches for forming new solutions.

III. CLUSTERED ADAPTIVE MULTISTART (CAMS)

Clustering and AMS each improve on the naive (random
multistart) implementation of iterative search. However, each
has drawbacks.

• Clustering the netlist becomes expensive as instances
grow large, and can constrain the two-phase FM approach
to a solution space that does not include any high-quality
solutions.

• AMS relies on the local minima of the iterative strategy
exhibiting a “big valley” structure; however, Fig. 3 shows
that with FM local minima, picking a central point will
not obviously lead to a better solution.

Our contribution lies in combining the clustering and AMS
philosophies into a newclustered adaptive multistart(CAMS)
methodology [18] which enables the FM algorithm to rapidly
return best known partitioning solutions. As with AMS, CAMS
adaptively exploits previous good solutions, except that the
solutions are used to find aclustering, and not a “central”
solution. As with two-phase FM, the clustered input is then
used as the input to FM, and the flattened result is the input
to a second FM phase. Our intuitions are: 1) that CAMS
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Fig. 3. Analysis of local minimum FM bisections of SIGDA Layout Synthesis benchmark Primary2, using 1000 random starting configurations. All 1000 local
minima are distinct. For each solution, we plot its cost against its average distance, in terms of single-vertex moves “shift-moves,” to all 999 othersolutions.

utilizes the information stored in “good” local minima to
predispose certain nodes toward specific partitions, and 2) that
CAMS creates an “easier” problem by reducing the original
netlist hypergraph to a smaller and more manageable clustered
hypergraph.

The CAMS methodology is described in Fig. 4. A sin-
gle pass of CAMS corresponds to the main loop,Clus-
tered Adaptive Multi-Start (lines 5–18), where CAMS per-
forms two-phase FM to generatenew solutions. The clus-
tered hypergraph used within the two-phase FM runs is
produced by theConstruct Clustered Netlist subroutine from

previous solutions. After each pass through the main loop,
the previous solutions used to generate the clustering are
replaced by the new solutions generated during the pass.2

In practice, the CAMS clusterings will, after several passes,
almost always converge to a two-way partitioning (i.e., a
clustering with only two clusters). While this in itself could be
considered a natural stopping condition, we use the condition
that the main loop will be exited if the best solution quality
has not improved over the last two passes (the variablein
Fig. 4 counts the number of passes with no improvement). This
stopping criterion can save a substantial amount of runtime
since, for many instances, there will be a large number of
passes with no improvement in solution quality as the CAMS
clustering “converges” into a two-way partitioning.

2We have tested an alternate methodology where the clustered hypergraph
is constructed from thek best solutions taken from over the entire history
of the solution process. However, this methodology gave inferior average
solution qualities compared to the methodology which constructs the clustered
hypergraph from thek solutions found in the latest pass.

The subroutineConstruct Clustered Netlist constructs the
clustered hypergraph from previous partitioning solutions
of the hypergraph : vertices of that occur together in the
same partition in all of the solutions are grouped into a
single condensed vertex in In order to do this efficiently,
each vertex in is given a -bit label, one bit from each
partitioning solution, with each bit being 0 or 1 based on
whether it is in the same partition or the opposite partition
as vertex Finding the clusters is then simply a matter of
identifying vertices which have identical labels: this is a bucket
or radix sort on the vertex labels, and is accomplished in time
linear in the number of vertices.3 Fig. 5 shows an example of
how Construct Clustered Netlist would construct from
four two-way partitioning solutions.

We believe that the subroutineConstruct Clustered Netlist
provides the key to the success of the CAMS algorithm.
Previous two-phase FM approaches build their clusters through
hierarchical (bottom up in [5], top down in [8]) or randomized
[16] processing of thenetlist, and can take a “wrong turn”
in the process. CAMS, on the other hand, through calls
to Construct Clustered Netlist, extracts structural building
blocks directly from theactual partitioning solutions. This idea
of constructing the clusters from previous solutions, rather than
the input instance, is quite novel; it significantly improves the
solutions that can be generated by the two-phase FM approach.

While CAMS is similar to AMS in that many local minima
are used to generate a promising starting point, a fundamental

3Asymptotically, the clustering operation is dominated by the complexity
of the k FM executions whichper passrequire time linear in the size of the
netlist.
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(a)

(b)

Fig. 4. Clustered Adaptive Multi-Start template.

(a) (b)

(c) (d)

Fig. 5. Clustered graph constructed from four partitioning solutions using the
subroutineConstruct Clustered Netlist. The construction for hypergraphs is
similar. (a) Original Graph. (b) Partitioning Solutions. (c) Bit-Vectors. (d)
Clustered Graph.

difference between CAMS and AMS lies in their respective
assumptions concerning the structure of local minima in the
solution space. AMS explicitly depends on a “big valley” via
the assumption that the centroid of local minima will lead to a
good solution. CAMS is much more flexible: it assumes only

that local minima have certain subsets in common, and that
the problem size can be reduced by clustering these subsets;
this seems to enable CAMS to spend most of its computation
on the “hard” parts of the problem.4

IV. EXPERIMENTAL RESULTS

We have performed the following experiments to compare
CAMS against the previous work in partitioning:

1) comparison of CAMS against AMS and random multi-
start;

2) comparison of CAMS against the previous two-phase
FM partitioning results in [2];

3) comparison of CAMS against the method of Cheng and
Wei [8]; and

4) comparison of a ratio cut implementation of CAMS
against previous ratio cut partitioning results in [30],
[15], [10].

Our first experiments compared CAMS against AMS and
random multistart using FM as the underlying optimization.5.
Fig. 6 shows the performance of the three approaches for unit-
area FM bisection on the SIGDA Layout Synthesis benchmark
Primary2. All of the numbers shown are the averages of at
least 50 independent runs, e.g., to get the single data point
for 1000 random multistart calls to FM, it was necessary to
call FM a total of 50 000 times with random starting points.
The data for CAMS were found by varying in the CAMS
algorithm, i.e., the average number of FM calls used by CAMS
is a function of the parameter We ran CAMS 50 times for
different values of and used the resulting average solution
quality and average number of FM calls as our data.6 We varied

from to where is the
number of modules. Our reasoning was that if thepartitions
differ maximally from each other, we require
to get no clustering at all. Hence, we used as

4Recall that the correlations for FM local minima in Fig. 3 were much
weaker than for pair-swap local minima in Fig. 2. Thus, the validity of the
AMS paradigm is heavily dependent on the specific neighborhood structure
that is used. Indeed, the results for AMS versus random multistart were
much less spectacular with FM partitioning than with the other formula-
tions/optimizations reported in [3]. See Fig. 6.

5Our version of FM is randomized so that more than one result is possible
for a given starting point. This entailed some minor changes to the code, but
did not produce any noticeable change in solution quality. Also note that our
FM implementation does not take advantage of the enhancements proposed by
Krishnamurthy [22]. The AMS results were derived from an implementation
which follows the description in [3]. Our AMS implementation generates each
new starting point stochastically, based on thek best known local minima.
Thesek local minimum bisections are each given the “parity” such that their
division of the modules into partitions 0 and 1 minimizes the move distance
from the best local minimum bisection. (In other words, for a given bisection
V = (U;W ); we will makeU the “0 partition” andW the “1 partition” or
vice versa, so that the bisection resembles the best known bisection as much
as possible.) The modules are then assigned probabilities of membership in
partitions 0 and 1 of the new starting point, based on their locations in thek

solutions and according to a weighting function derived from thek solution
costs. The weight contributed by each local minimum bisection is the cost
of the bisection divided by the sum of the costs of allk bisections. After all
module probabilities have been determined, each module is randomly assigned
to either partition 0 or partition 1 according to these probabilities.

6In counting the number of FM calls CAMS makes, we are not counting
the FM calls on the clustered netlist, i.e., one might argue that the number of
FM calls is nearly twice that listed. This is the method of counting used in
previous two-phase FM work [2]. Note that FM calls on the clustered netlist
are of much lower complexity than those on the flattened netlist.
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Fig. 6. Plot of average bisection solution quality as a function of total number of FM runs using SIGDA Layout Synthesis benchmark Primary2 with each
module having unit area. The AMS plot is generated from the results for 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 500, and 1000 FM calls. The CAMS
plot is generated by varying the parameterk as shown in the table. Each data point corresponds to the average of at least 50 independent runs.

the midpoint of our range. In Fig. 6, we see that a CAMS
run that required an average of 80.8 FM calls resulted in
an average solution quality that would require more than
1000 FM calls in an AMS paradigm. We also notice that the
improvement in average solution quality for the CAMS runs
seems to taper off at around 110 FM calls,7 which corresponds
to . These and similar experiments prompted our choice
of and the remaining experiments reflect
this choice.

A similar experiment was performed on the Industry2
benchmark (12 142 modules) for which there are no previously
published partitioning results. The CAMS results for Industry2
give an average bisection cutsize of 211.72 using an average
of 128.36 FM calls. The best solution we found using more
than 8000 random multistart FM calls had cutsize 303, again
indicating that CAMS provides a substantial improvement over
the original multistart approach. The best solution found by our
50 runs of CAMS had cutsize 181.

Our second set of experiments tested CAMS against the
previous two-phase FM partitioning results mentioned in
Section II-A. Table I shows the average solution and best
solution of 50 independently started CAMS runs. In these
experiments, we use actual module area to conform with the
previous two-phase FM results published in [2].

Our third set of experiments compared CAMS against the
method of Cheng and Wei [8], which applies two-phase FM

7The best net cut observed over all the runs performed was 146. Since the
average solution quality is 146.7 whenk = 24; the plot for CAMS will have
a slope very near zero for larger values ofk:

TABLE I
COMPARISON OFBISECTION SOLUTION QUALITY USING ACTUAL MODULE

AREAS ON BENCHMARKS FROM THE SIGDA LAYOUT SYNTHESIS SUITE

The “Best Previous” column contains the best previously published result,
and in parentheses gives the algorithm which generated that result. Note that
the Test05 bisections in [16] and [2] used slightly corrupted module area data,
and therefore reported incorrect bisection costs. The entries in this table reflect
our rerunning RW-ST and AGG on the corrected input file for Test05.

using clusters obtained through recursive ratio cut partitioning.
We adopt the same experimental methodology as in [8],
i.e., we report net cuts subject to a 1:3 size ratio bound,
using actual module areas. It is very important to note that
the results in Table II can beworse than the corresponding
bisection results in Table I. This is because the FMbisection
allows imbalance of up to the largest module area during
the shift/swap procedure—and for such examples as Test04,
this is greater than 25% of the total module area, i.e., the
tolerance applied for the 1:3 ratio-bounded optimization. For
each benchmark, CAMS again finds a partition of either equal
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TABLE II
COMPARISON WITH METHOD OF CHENG AND WEI [8] FOR MINIMUM NET CUT VALUE SUBJECT TO

1:3 PARTITION SIZE RATIO BOUND

To achieve an exact comparison, we report minimum, mean, and standard deviation for the net cut
value. Results of Cheng and Wei are based on 20 runs, while the CAMS results are based on 50
runs. Note that the 1 : 3 size ratio bound can entail atighter constraint on the FM optimization than
the bisection optimization discussed in Table I.

or better solution quality when compared to the previous work.
Indeed, for the benchmarks 19 ks, Test06, and 26 K, the
averageCAMS solution quality is substantially better than
the best solution reported in [8]. The results for benchmark
26 K, which contains almost 26 000 modules, are especially
noteworthy since they may indicate the future success of
CAMS as instances become larger.

Our final set of experiments tested CAMS against previous
ratio cut partitioning results. Table III shows the average and
best solution quality for 50 independent CAMS runs which
optimize the ratio cut objective; these results are compared
against the best ratio cut results in the literature (quoted
for RCut1.0 [30], EIG1 [15], EIG1-IG [15], and IG-Match
[10]—the last three are spectral methods). Here, we use unit
module areas, again to maintain comparability against the
previous results. For these experiments, we used a version of
the FM algorithm that was slightly modified so as to minimize
the ratio cut objective instead of the bisection objective.

For many of the benchmarks, the CAMS results are not that
much better than the spectral results (of course, the spectral
results already average almost 30% better than FM-based ratio
cuts). This supports the claim in [15] that spectral methods
yield high-quality ratio cut partitions. However, as noted
above, even though the solution qualities are comparable for
unit-area instances, FM-based methods are greatly preferable
for their inherent robustness and amenability to practical
constraints such as variable module areas.

V. DISCUSSION AND CONCLUSIONS

The success of the clustered adaptive multistart algorithm
provides new insights into previous works and beliefs in the
literature. In particular, while CAMS was originally formu-
lated to draw on the established techniques of clustering and
adaptive multistart, we find that quite a bit of the original
intuition behind these two approaches is now subject to
reconsideration.

TABLE III
COMPARISON OFRATIO CUT SOLUTION QUALITY ON BENCHMARKS FROM THE

SIGDA LAYOUT SYNTHESIS SUITE WITH ALL MODULES HAVING UNIT AREA

The “Best Previous” column contains the best previously published result,
and indicates in parentheses the algorithm which generated this result. IG
indicates that both EIG1-IG and IG-Match obtained the same result. The
CAMS results are based on 50 runs.

Previous literature on clustering suggests that the
clustering/two-phase FM methodology succeeds because
of increased average node degree in the condensed netlist
representation (cf., discussions in [5] and [23]). However, we
have observed that good clusterings tend to cluster the densest
parts of the hypergraph, leaving intact any nodes which are
incident to “widely separated” regions of the hypergraph.
The resulting clustered hypergraph can be less dense than the
original hypergraph, suggesting that the clustering win is not
so much related to density as it is to the reduction in problem
size which allows most of the optimization effort to address
the “difficult part” of the problem. Another assumption in
previous work is that clusters should be of uniform size (e.g.,
[27, p. 243] or the original method of [5] which employs
iterative matching). However, our work shows clearly that
uniform cluster size need not be a dominant concern: Table IV
shows some example profiles from a typical CAMS execution
on the Primary2 benchmark Even when there
are 179 clusters, there exists a single cluster that contains
over one-sixth of the modules. Thus, it seems acceptable for
a clustering to group many tightly coupled nodes into a single
large cluster, while other nodes remain singletons. The table
also shows the total number of nets cut by the clustering, the
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TABLE IV
DATA SHOWING TYPICAL CLUSTER DATA FOR A CAMS RUN

ON BENCHMARK PRIMARY2 ASSUMING UNIT-AREA MODULES

The table gives the total number of clusters, and the respective sizes of
the largest, second largest and third largest clusters for each clustering. We
also report total nets cut, total net-degree, and scaled cost values for each
clustering.

sum of net degrees (“pins”) over all clusters, and the scaled
cost value of the clustering (a multiway generalization of
ratio cut, due to Chanet al. [7]).

Although we have concentrated on the improved two-
way partitionings afforded by CAMS, it is also of in-
terest to characterize the clusterings generated byCon-
struct Clustered Netlist, independent of their use in CAMS.
As seen from Table IV, the CAMS clusterings tend to consist
of two relatively large clusters and several clusters containing
only one or two modules. This is not expected given that we
construct the clustering from “good” two-way partitions which
are likely to assign many modules similarly. Thus, CAMS
clusterings may not be well suited for general clustering
applications. It is possible that more “natural” clusterings
may be obtained by using a CAMS-like methodology with an
iterative multiway clustering approach such as that of Sanchis
[28], but this is beyond the scope of the current work.

We also note that, in practice, CAMS finds its “optimum”
solution after only a few iterations, seemingly before any effect
of “adaptation” would have a chance to set in. This further
suggests that CAMS relies more on problem size reduction
than on the “big valley effect” which motivated the original
AMS approach. Yet another contrast is that stochasticity in
the original AMS approach can cause the new starting point
to be very far from the “good” local minima, while the CAMS
clustering guarantees a starting point whose structure closely
reflects that of its parent solutions.

Last, we again note the clear connection between “adaptive
multistart” and the concept of genetic algorithms. As described
above, work in genetic algorithms by M̈uhlenbeinet al. [25]
has touched on ideas related to CAMS in addressing TSP. (The
algorithm in [25] constructs a new more compact solution
from two parents by clustering common substrings in the
parents, i.e., in some sense, both the “problem reduction” and
the “adaptation” elements are present.) However, our CAMS
approach is basically “nongenetic” in that it uses “multiple
parents,” and does not rely on any sort of chromosomal
representation of solutions.8

In conclusion, we have developed a newclustered adaptive
multistart (CAMS) partitioning methodology which combines

8Standard genetic algorithms seek a chromosomal representation which
allows easy mutations between solution pairs; CAMS instead seeks more
natural problem representations, and implicitly invokes very sophisticated
recombination operators (e.g., for clustering and local search).

clustering-based two-phase FM with the adaptive multistart
approach. For both the bisection and the ratio cut objectives,
CAMS achieves partitioning results that are better than or as
good as all of the best previous results in the literature. The
method is very simple to state and implement, and relies on the
present standard iterative approach, namely, the FM algorithm.
CAMS is also highly stable in its rapid convergence to a good
solution.

The success of CAMS for netlist bisection may make
recursive bipartitioning-based placement a more appealing
methodology. Moreover, the substantial improvement in so-
lution quality may well put into question previous work
[17] which compared “partitioning-based Rent parameters”
of various algorithms, and found ratio-cut hierarchies to be
superior. Finally, we note that CAMS is also naturally suited
for clustering applications; our current work further applies the
CAMS paradigm to VLSI placement, multiway netlist parti-
tioning, and a number of other combinatorial formulations.
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