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Abstract. In Clock routing research, such practical considerations as hierarchical buffering, rise-time and ove
shoot constraints, obstacle- and legal location-checking, varying layer parasitics and congestion, and even
underlying design flow are often ignored. This paper explores directions in which traditional formulations cé
be extended so that the resulting algorithms are more useful in production design environments. Specifice
the following issues are addressed: (i) clock routing for varying layer parasitics with non-zero via parasitics; (
obstacle-avoidance clock routing; and (iii) hierarchical buffered tree synthesis. We develop new theoretical analy
and heuristics, and present experimental results that validate our new approaches.

1. Preliminaries when|e,| > d((p),l(v)). The cost ofT, denoted
cosi{(T), is the total wirelength of the edgesTh We
Control of signal delay skew has become a dominant denote the set of sink locations in a clock routing in-
objective in the routing of VLSI clock distribution net-  stance asS = {s;, S, ..., S} C %% A connection
works and large timing-constrained global nets. Thus, topologyis a binary tree wit leaves corresponding
the “zero-skew” clock tree and performance-driven to the sinks inS. A clock tree E(S) is an embedding
routing literatures have seen rapid growth over the past of the connection topology in the Manhattan plane, i.e.,
several years; see [1, 2] for reviews. “Exact zero skew” each internal node € G is mapped to a locatiol(v)
is typically obtained at the expense of increased wiring in the Manhattan plane. (& and/orSare understood,
area and higher power dissipation. In practice, cir- we may simply us@ (S) or T to denote the clock tree.)
cuits still operate correctly within some non-zero skew The root of the clock tree is theurce denoted bys.
bound, and so the actual design requirement is for When the clock tree is rooted at the source, any edge
a bounded-skew routing tre@ST). This problem is between a parent nodeand its childv may be iden-
also significant in that it unifies two well-known rout-  tified with the child node, i.e., we denote this edge as
ing problems—th&ero Skew Clock Routing Problem e,. If t(u, v) denotes the signal delay between nodes

(ZST) for skew boundB = 0, and the classiRkec- u andv, then theskewof clock treeT is given by
tilinear Steiner Minimum Tree ProbleiRSMT) for
B = o0.
skewT) = max [t(Sp, S) — t(So, S
In our discussion, thdistancebetween two pointg ) s,sjes| (%0, 5) = (S0, 5y)l

andg is the Manhattan (or rectilinear) distara@, q), = maxt (S, §)} — min{t(so, S)}

and the distance between two sets of poiRtsand €S ses

Qisd(P, Q)= min{d(p,q)| pe P andqge Q}. The

costof the edges, is simply its wirelength, denoted ~ The BST problem is formally stated as follows.

le,|; this is always at least as large as the Manhattan

distance between the endpoints of the edge |eg.> Minimum-Cost Bounded Skew Routing Tree (BST)

d((p),1(v)). Detour wiring or detouring occurs ~ Problem: Given aseS = {si, ..., s} C R? of sink
locations and a skew bouril find a routing topology

“Support for this work was provided by Cadence Design Systems, G and a minimum-cost clock trég; (S) that satisfies

Inc. skew(T(S)) < B.
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1.1. The Extended DME Algorithm

a set of construction rules for computing the merging
regionmr(v) € SDRL,, L) efficiently in O(n) time.

The BST problem has been previously addressed in The resulting merging region is shown to be a convex

[3-5]. Their basic method, called tikextended DME
(Ex-DME) algorithm, extends the DME algorithm of
[6-9] via the enabling concept aherging region

polygon bounded by at most 2 Manhattan arcs and 2
horizontal/vertical segments whénp andL, are Man-
hattan arcs, or a convex polygon bounded by at most 4

which is a set of embedding points with feasible skew (with arbitrary slopes) segments wheris the number

and minimum merging cost if no detour wiring occlrs
For a fixed tree topology, Ex-DME follows the 2-
phase approach of the DME algorithm in constructing

a bounded-skew tree: (i) a bottom-up phase to con-

of the sinks. The empirical studies of [5] show that in

practice each merging region has at most 9 boundary

segments, and thus is computed in constant time.
Since each merging region is constructed from the

struct a binary tree of merging regions which represent closest boundary segments of its child regions, the

the loci of possible embedding points of the internal

method for constructing the merging region is called

nodes, and (ii) a top-down phase to determine the exactBoundary Merging and Embeddif®ME). [5] also
locations of the internal nodes. The reader is referred propose a more general method calletérior Merg-

to[4, 3, 5, 10] for more details (the latter is available by

anonymous ftp). In the remainder of this subsection,

we sketch several key concepts from [4, 3, 5].
Let maxt(p) and min_t(p) denote the maximum

ing and Embeddin¢§ ME), which constructs the merg-

ing region from segments which can be interior to the
children regions. The routing cost is improved at the
expense of longer running time. For arbitrary topol-

and minimum delay values (max-delay and min-delay, ogy, [3] propose the Extended Greedy-DME algorithm

for short) from pointp to all leaves in the subtree
rooted atp. The skew of pointp, denotedskewp),
is maxt(p) — mint(p). (If all points of a pointset

(ExG-DME), which combines merging region compu-
tation with topology generation, following the Greedy-
DME algorithm approach of [11]. The distinction

P have identical max-delay and min-delay, and hence is that ExG-DME allows merging at non-root nodes

identical skew, we similarly use the termsaxt (P),
min_t (P) andskewP).) As p moves along any line
segment the values aofiaxt (p) andmin_t(p), along
with skewp), respectively define thdelayand skew
functionsover the segment.

For a nodev € G with childrena andb, its merg-
ing region, denotedhr(v), is constructed from the so-
called “joining segmentsL.; € mr(a) andLy, € mr(b),
which are the closest boundary segmentsigi) and
mr(b). In practice,L, and Ly, are either a pair of

whereas Greedy-DME always merges two subtrees at
their roots; see [3] for detalils.

Experimental results show that ExG-DME can pro-
duce a set of routing solutions with smooth skew and
wirelength trade-off, and that it closely matches the
best known heuristics for both zero-skew routing and
unbounded-skew routing (i.e., the rectilinear Steiner
minimal tree problem).

parallel Manhattan arcs (i.e., segments with possibly 1.2. Contributions of the Paper

zero length having slop¢1 or —1) or a pair of paral-
lel rectilinear segments (i.e., horizontal or vertical line
segments). The set of points with minimum sum of dis-
tances toL, andLp, form aShortest Distance Region
SDRL,, Lp), where the points with skew B (i.e.,
feasible skew) in turn form the merging regiom(v).

[5] prove thatunder EImore delay each line segrhenat
P1P2 € SDRL,, Lp) iswell-behavedin that the max-
delay and min-delay functions of poipte | are of the

.....

,,,,,

d(p1, @) ord(pz, b). In other words, the skew values
along awell-behaved segmémian be either a constant
(whenK = o = of = 0) or piecewise-linear decreas-

In this paper, we will show that these nice properties of
merging regions and merging segments still exist when
layer parasitics (i.e., the values of per-unit capacitance
and resistance) vary among the routing layers and when
there are large routing obstacles. Therefore, the EXG-
DME algorithm can be naturally extended to handle
these practical issues which are encountered in the real
circuit designs. Section 2 extends the BME construc-
tion rules for the case of varying layer parasitics. We
prove that if we prescribe the routing pattern between
any two points, any line segment 8DR L, L) is
well-behaved wheré& ; and Ly, are two single points.
Hence, the BME construction rules are still applicable.

ing, then constant, then piecewise-linear increasing Section 3 proposes new merging region construction

alongl. Thisimportant property enables [5] to develop

88

rules when there are obstacles in the routing plane. The
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solution is based on the concept opknar merging H L
region, which contains all the minimum-cost merging
points when no detouring occurs. Finally, Section 4
extends our bounded-skew routing method to handle V
the practical case of buffering hierarchies in large cir-
cuits, assuming (asisthe case in present design method-
ologies) that the buffer hierarchy (i.e., the number of
buffers at each level and the number of levels) is given.
Some conclusions are given in Section 5. H

Law =

2. Clock Routing for Non-Uniform (a) HV routing pattern
Layer Parasitics
Lo

In this section, we consider the clock routing problem
for non-uniform layer parasitics, i.e., the values of per-
unit resistance and capacitance on the V-layer (vertical
routing layer) and H-layer (horizontal routing layer)
can be differerft We first assume that via has no re-
sistance and capacitance, then extend our method for v
non-zero via parasitics.
Let nodev be a node in the topology with children L -
a andb, and let merging regiomr(v) be constructed
from joining segments ; C mr(a) andL, € mr(b). {b] VH ruuting pattern
When bothL , andL, are vertical segments or are two
single points on a horizontal line, only the H-layer will  Figure1 Two simple routing patterns between two points: HV and
be used for merginmr(a) andmr(b). Similarly, when VH.
L, andLy are both horizontal or are two single points
onavertical line, only the V-layer will be used formerg- having capacitive load €and G,. Assume that joining
ing mr(a) andmr(b).2 The original BME construction ~ segments 4 € mr(a) and L, € mr(b) are two single
rules [5] still apply in these cases. points. Under the the HV routing patterd) any line
Corollary 1 below shows that for non-uniform layer segment le SDRL,, Lp) is well-behaved(ii) merg-
parasitics, joining segments will never be Manhattan ing region m(v) has at mosb sides and (iii ) mr(v)
arcs of non-zero length. Thus we need consider only has no boundary segments which are Manhattan arcs
the possible modification of BME construction rules of non-zero length.
for the case where the joining segments are two sin-
gle points which do not sit on a horizontal or vertical Proof:  Without losing generality, we assume that
line. In this case, both routing layers have to be used La and L, are located at0, 0) and (h, v) as shown
for mergingmr(a) andmr(b). One problem withrout-  in Fig. 2. Let A(x,y) and B(x, y) be respectively
ing under non-uniform layer parasitics is that different the average max-delay fromandb to p under the
routing patterns between two points will resultin differ-  HV routing pattern. Lety, ¢; andry, ¢; be per-unit
ent delays, even if the wirelength on both layers are the resistance and capacitance of the H-layer and the V-
same. However, if we can prescribe the routing pattern layer. We refer to the original delays and skew at
for each edge of the clock tree, the ambiguity of delay PointL,asmaxt(La), mint(La), andskewL,). Sim-
values between two points can be avoided. Figure 1 ilarly, we refer to the original delays/skew at polry
shows the two simplest routing patterns between two as maxi(Lp), mint(Ly), andskewLp). For point
points, which we call the HV and VH routing patterns. P = (X, ¥) € SDRLa, Lp),
Other routing patterns can be considered, but may re-
sult in more vias and more complicated computation
of merging regions. +ray(C2y/2 + Cy + C1X)

2 2
Theorem 1. Letv be a node in the topology with = K- X"+ Ex+Kz-y
children a and b with the subtrees rooted at a and b + Fy+ Gxy+ D. 1)

AX, y) = maxt(Ly) +rix(cix/2+ Cy)

89
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L,(0,0) P, (x,0) I y=mx+d
h
parallel, but not Manhattan arcs L, (h,v)

parent merging region

Figure 2 The merging regiomr(v) constructed from joining seg-
mentsL, and L, which are single points by using the HV routing
pattern for non-uniform layer parasitics.

whereK; = ric1/2, E = r1C,, Ko = r26/2, F =
roCa, G =r,cy, andD = maxi(Ly). Similarly,
B(X, y) = maxi(Lp) +ri(h —x)
x (C1(h —X)/2+ Cp) +12(v — Y)
x (C2(v — y)/2+ Cp + c1(h — X))
=Kp- X%+ Ix+ Ky - y?
+Ly+ Gxy+ M. (2)
whereJ, L, andM are also constants. Therefore,
maxt(p) = max(A(x, y), B(x, y))
=maxXEx+ Fy+ D, JXx+Ly+ M)
+ K1 -x24+ Kz - y? + Gxy (3)
Similarly, we can prove that
mint(p) = min(A(X, y), B(X, ¥))
=min(Ex+ Fy+ D', Jx+ Ly + M)
+Ki-x2+ Ky - y? 4+ Gxy 4)
whereD’ = minf(L,) andM’ = M — skewLp).
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If line segment € SDRL,, Ly) is vertical, then for
point p(x, y) € | we have

maxt(p) = K, - y?>+ max{F,y + O, L,y + P} (5)
mint(p) = K, - y> 4+ min{F,y+ O’, L,y + P’} (6)

where F,=F+Gx, L,=L+Gx, O=D+K; -
X2+ EX, O = D'+Ky-X24+EX, P = M+Ky-x24+JX,
andP’ = M’ + K - x2 + Jxare all constants. Sbjs
well-behaved.

If | is not vertical and described by the equatica
mx+ d wherem # oo (see Fig. 2), then from Egs. (1)
and (2)

AX,y) = K1 - X%+ Ex+ Kz - (mx+ b)?
+ F(mx+b) + Gx(mx+b) + D
=K x>+ Hx+1
B(x,y) = Kix2 4+ Jx + Ka(mx + b)?
+ L(mXx+b) + Gx(mx+b) + M
=K -x24+Hx+ 1,

whereK, H, I, H’, andl’ are all constants. Hence,

maxt(p) = K - x>+ maxHx+ 1, H'x+1) (7)
mint(p) = K - x4+ min(Hx + Q, H'x+ Q) (8)

Whenmaxt (p) andmin_t(p) are written as functions
of z=d(p, p1) = (1 + m)x, they will still have the
same coefficient in the quadratic term; this implies that
any line segmente SDRL,, Ly) is well-behaved.
Letl; andl, be the non-rectilinear boundary seg-
ments of SDRL,, Lp) which have non-zero length.
By the fact thaskewl;) = skewl,) = B and Egs. (3)
and (4) |, andl, will be two parallel line segments de-
scribed by equation€ — J)x+(F—-L)y+D—-M' =
+B. In practice|E — J| # |F — L| unless both layers
have the same parasitics, i.e;, = r, andc; = c.
Thus,l; andl, will not be Manhattan arcs. O

We similarly can prove that Theorem 1 holds when
the routing pattern is VH, or even when the routing
pattern is a linear combination of both routing patterns
such that each tree edge is routed by HV with prob-
ability 0 < « < 1 and VH with probability 1— «.
Notice that at the beginning of the construction, each
nodev is a sink withmr(v) being a single point. Thus,
no merging region can have boundary segments which
are Manhattan arcs with constant delays, and we have



Corollary 1.  For non-uniform layer parasiticseach
pair of joining segments will be eithér) parallel rec-
tilinear line segments ofii) two single points.

Since any line segment iIBDR L, Lp) is well-
behaved for non-uniform layer parasitics, the BME
construction rules are still applicable, except that (i) we
have to prescribe the routing pattern for each tree edge,
and (ii) the delays are calculated based on Egs. (5),
(6) for points on a vertical lind € SDRL,, L),
and (7), (8) for points on a non-vertical line €
SDRL,4, Lp), wheneverL, and L, are two single
points.

Theorem 2. With non-zero via parasiticgper-unit
resistance ¢ > 0, per-unit capacitance c> 0), The-
orem 1 still holds except that there will be different
delay/skew equations for points on boundary segments
and interior segments of SOR;, Lp).

Proof: Again, without losing generality we assume
the HV routing pattern. In Fig. 3(a), we assume that
pointsL, andLy are both located in the H-layer. Un-
der the HV routing pattern, most merging poims

V-layer

q’

(b)

Figure 3 Delay/skew equations for points on boundary segments
and interior segments &DRL,, Lp) are different when via resis-
tance and/or capacitance are non-zero.
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are on the V-layer except the top and bottom bound-
aries of SDRL,, Lp) (e.g., pointg in the figure).
For point p on the V-layer, there is exactly one via
in the path fromp to L, and L, according to the
HV routing pattern. Then, delay equations for merg-
ing pointsp= (X, y) € SDRL,, Ly) on the V-layer
become

A(X, y) = maxt(Lgy) +rix(cix/2 + Cy)
+r,(Ca+CiX+¢,/2)
+ray(c2y/2+ Ca+ CiX +Cy)
= Ky - x? + Jx
+ K- y2 4 L1y + racixy + My,
B(x, y) = maxt(Lp) +ri(h —x)(ci(h —x)/2+ Cp)
+1u(Cp+ Cith—X) +¢,/2) +12(v —Y)
x (C2(v —y)/2+ Cp + c1(h — X) +¢,)
=Ky - X2+ Jx
+ Kz y? + Loy + raCixy + M,

where J;, L1, M1, J, Lo, and M, are all constants.
Since the quadratic terms; - x2 and K - y? are the
same as before, Theorem 1 holds for the merging points
in SDRL,, Lp) on the V-layer.

For merging pointsy € SDRL,, L) on the H-
layer, the number of vias fromg to L, and L, can
be either 0 or 2. The delay calculations for merging
points p andq will not be the same because of the un-
equal number of vias from the merging pointslig
andLp.

Figure 3(b) shows one of the three cases where
without loss of generality either point, or Ly, is
located on the V-layer. As shown in the Figure, we
use pointg to represent the merging point on the
left or right boundary oSDRL,, L) on the V-layer,
point q’ to represent the merging point on the top
or bottom boundary oEDRL4, L) on the H-layer,
and pointp € SDRLg, Lp) to represent the other
merging points which are on the V-layer (but not on
the right or left boundaries). In this case, the num-
ber of vias from pointg, g’ and p to L, or Ly, are
not equal; their delay equations will not be identical,
but will still have the same quadratic ternkg - x2
andK; - y2. Therefore, Theorem 1 still holds except
that there will be different delay/skew equations for
points on boundary segments and interior segments of
SDRLg, Lp). O
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Table 1 Comparison of total wirelength of routing solutions under non-uniform and uniform layer parasitics, with ratios
shown in parentheses. We mark byhe cases where the routing solution under non-uniform layer parasitics has smaller
total wirelength than the solution under uniform layer parasitics.

r2 r3 r4 r5
Skew Wirelengths under non-uniform layer parasitics (normalized)
bound wirelengths under uniform layer parasitics
0[11] 1253.2 2483.8 3193.8 6499.7 9723.7
0 13325 (1.01) 2623.8 (1.01) *3359.1  (0.99) *6810.7  (0.99) *10108.7  (1.00)
1320.7 2603.6 3382.4 6877.5 10138.5
1ps 1283.5 (1.04) 2531.8 (1.05) 3207.0 (1.03) 6461.5 (1.04) 9610.8 (1.05)
1232.2 2401.7 3118.1 6241.1 9190.7
5ps 1182.1 (1.05) 2333.3 (2.03) 2988.6 (1.04) 5979.8 (1.05) 8753.9 (1.05)
1130.6 2256.2 2875.1 5715.1 8371.2
10ps 1158.6  (1.08) 2248.3 (1.03) 2810.7 (1.02) 5719.0 (1.05) 8482.4  (1.05)
1069.2 2183.5 2747.6 5453.8 8063.7
20ps 1071.5 (1.03) 2183.4 (1.06) 2709.8 (1.05) 5474.6  (1.03) 8018.2 (1.04)
1039.6 2069.1 2569.0 5290.1 7695.9
50ps 1058.6  (1.05) 2028.9 (1.06) 2557.0 (1.04) 5195.8 (1.04) 7562.9 (1.04)
1009.3 1917.8 2459.7 5008.0 7248.2
100 ps 989.0 (1.03) 1929.0 (1.03) 2463.9 (1.05) 4940.1 (1.03) 7193.1 (1.05)
964.3 1880.7 2350.1 4786.1 6869.6
200 ps 936.7 (1.05) 1886.7 (1.08) *2356.0 (0.99) 4734.4 (1.04) 6905.9 (1.04)
895.8 1741.6 2359.5 4540.1 6650.0
500 ps 9194 (1.12) 1770.9 (1.01) 2205.2 (1.01) 4635.1 (1.02) 6564.1 (1.02)
820.4 1754.6 2187.4 4564.2 6449.3
1ns 830.0 (1.01) *1664.2 (0.93) *2156.4  (0.99) *4500.5 (0.99) *6395.4  (0.99)
819.1 1709.4 2175.8 45314 6453.4
10ns 775.9 (1.00) *1569.4 (0.97) *2160.6  (0.98) *4072.1 (0.97) 6168.5 (1.03)
775.9 1613.5 2212.4 4184.2 5979.3
) 775.9 (1.00) 1522.0 (1.00) 1925.2 (1.00) 3838.2 (1.00) 5625.2  (1.00)
775.9 1522.0 1925.2 3838.2 5625.2
oo [12]  769.3 1498.8 1902.6 3781.4 5571.1

Experiments and Discussion

Table 1 compares the total wirelength of routing solu-
tions under non-uniform and uniform layer parasitics

is small. This may be due to the fact that merging
regions under non-uniform layer parasitics tend to be

smaller (and hence have higher merging cost at the
next higher level) because the joining segments can-

for standard test cases in the literature. The per-unit not be Manhattan arcs of non-zero length. When the
capacitance and per-unit resistance for the H-layer are skew bound is small, most of the merging regions are
c; = 0.027 fFand; = 16.6 mQ, respectively. Forthe  constructed from Manhattan arcs, and hence the so-
uniform layer parasitics, the per-unit capacitance and lutions under non-uniform layer parasitics are more
per-unit resistance of the V-layer are equal to those of likely to have larger total wirelength. When the skew
the H-layer, i.e.c, = ¢, andr, = rq. For the non- bound is infinite, no joining segments can be Manhat-
uniform layer parasitics, we s& = 2.0-¢; and tan arcs of non-zero length, and thus the routing solu-
ro = 3.0-rq, respectively. For simplicity, we use only tions under non-uniform and uniform layer parasitics
the HV routing pattern and ignore the via resistance have identical total wirelength. In all the test cases, the
and capacitance. As shown in the Table, the solu- wirelengths are evenly distributed among both routing
tions under non-uniform layer parasitics have larger layers—differences between the wirelengths on both
total wirelength than those under uniform layer para- layers are all less than 10% of the total wirelength, and
sitics in most cases, especially when the skew bound less than 5% in most cases.
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(a) Unifosm kayer parasitics (WL=2978 um)

(b} Mon-uniform layer parasitics (WL=2808 um)

Figure4 Examples of 8-sink zero-skew trees for the same uniform
and non-uniform layer parasitics used in Table 1. Note that the merg-
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uniform layer parasitics are Manhattan arcs and joining
segments are all single points. Notice that under any
given routing pattern like HV or VH, some adjacent
edges are inevitably overlapped. For example, edges
av andvp in Fig. 4 are overlapped because both edges
are routed using the same HV patterns. If edgeand

bv are routed according to the VH routing pattern, the
overlapping wire can be eliminated.

Finally, we note that under uniform layer parasitics
the IME method [5] is identical to the BME method
for zero-skew routing since all merging segments are
Manhattan arcs. However, the IME method might be
better than the BME method for non-uniform layer par-
asitics, since merging segments are no longer equal to
Manhattan arcs.

3. Clock Routing in the Presence of Obstacles

This section proposes new merging region construc-
tion rules when there are obstacles in the routing plane.
Without loss of generality, we assume that all obstacles
are rectangular. We also assume that an obstacle oc-
cupies both the V-layer and H-layer (this is of course
a strong assumption, and current work is directed to
the case of per-layer obstacles). We first present the
analysis for uniform layer parasitics, then extend our
method to non-uniform layer parasitics; we also give
experimental results and describe an application to pla-
nar clock routing.

3.1. Analysis for Uniform Layer Parasitics

Given two merging regionsir(a) andmr(b), the merg-
ing regionmr(v) of parent node is constructed from

ing segments (the dashed lines) in (a) are Manhattan arcs while those/0INiNG segmentd ; € mr(a) andL, € mr(b). Ob-

in (b) are not.

We also perform more detailed experiments on
benchmark r1 to compare the total wirelength of zero-
skew routing for different ratios of;/r; andc,/c;.
When (r,c2)/(r1¢1) changes from 1 to 10, the total
wirelength of solutions only varies betwee#% and
—1% from that obtained for uniform layer parasitics
(i.e., (rocp)/(r1c1) = 1). Hence, the routing solution
obtained by our new BME method is insensitive to
changes in the ratio of H-layer/V-layer RC values.

Figure 4 shows examples of 8-sink zero-skew clock
routing trees using the same HV routing pattern and

serve that a poinp € mr(v) inside an obstacle can-
not be the feasible merging point. Furthermore, points
p, P’ € SDRL,, Ly) may have different minimum
sums of pathlengths o, andL , because obstacles that
intersectSDRL 5, L) may cause different amounts of
detour wiring fromp and p’ to L, andLy,. We define
theplanar merging region pmp) to be the set of fea-
sible merging pointg such that the pathlength of the
shortest planar path (without going through obstacles)
from L, throughp to L, is minimum (when the min-
imum pathlength fronk 5 to Ly, is equal tad (L, Lp),
pmr(v) € mr(v)). Just as the merging regiom(v) be-
comes a merging segmentv) under zero-skew rout-

layer parasitics that are used in the Table 1 experiments.ing, the planar merging regignmr(v) becomes thpla-

We observe that no merging segments under non-

nar merging segment prig under zero-skew routing.
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Figure 5 lllustration of obstacle expansion rules.

The construction opmr(v) is as follows. If join-
ing segmentd.; and L, overlap,pmr(v) = mr(v) =
L, N Lp. Otherwise, we expand any obstacles that in-
tersect with rectilinear boundaries 8DRL,, L) as
illustrated in Fig. 5 for four possible cases; these define
the Obstacle Expansion Rules

Case l.(expand as in Fig. 5(a)).

1. Ly = {p1}, Lp = {p2}, andp1 pz has finite non-
zero positive slopen, i.e., 0< m < co.

2. L or Ly is a Manhattan arc of non-zero length
with slope—1.

Case Il.(expand as in Fig. 5(b)).

1. Ly = {p1}, Lp = {p2}, andpip; has finite non-
zero negative slopm, i.e.,—oo <m < 0.

2. L or Ly is a Manhattan arc of non-zero length
with slope+1.

Case lll. (expand as in Fig. 5(c)). Both joining seg-
ments are vertical segments, possibly of zero
length.

Case IV.(expand as in Fig. 5(d)). Both joining seg-
ments are horizontal segments, possibly of zero
length.
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Figure 6 A “chain reaction” in the obstacle expansion.

In Case |, an obstacl@ which intersects with the top
(bottom) boundary oEDRL 4, L) is expanded hori-
zontally toward the left (right) side unt® reaches the
left (right) boundary ofSDR L4, Lp). If O intersects
with the left (right) boundary oSDRL,, L), then
O is expanded upward (downward) un@ reaches
the top (bottom) boundary &DR L4, Lp). Case Il is
symmetric. In Case lll, an obstad®intersecting with
SDRLg,, Lp) is expanded along the horizontal direc-
tion until O reaches both joining segments. Case IV
is symmetric, with expansion in the vertical direction
Finally, note that in Cases | and Il an expanded obsta-
cle O canintersect with another obstacle, which is then
expanded in the same way; this sort of “chain reaction”
is illustrated in Fig. 6.

With these obstacle expansion rules, we may com-
plete the description of the planar merging region con-
struction. For child regionmr(a) andmr(b) of node
v, pmr(v) is constructed as follows.

1. Apply the obstacle expansion rules to expand ob-
stacles.

Calculatepmr(v) = {p | p € mr(v) — expanded
obstacles

Restore the sizes of all the expanded obstacles.

2.

3.



4. If pmr(v) # ¥ then stop; continue with next step
otherwise.

5. Compute the shortest planar p&ttbetweermr(a)
andmr(b).

6. Divide pathP into a minimum number of subpaths
P, such that the pathlength &, cost{P,), is equal

to the (Manhattan) distance between the endpoints

of B, i.e., if subpathP?, = s~ t, thencos(P,) =
d(s, t).

7. Calculate delay and skew functions for each line
segment inP.

8. For each subpath which has a poinp with fea-
sible or minimum skew, use the endpointsifas
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the number of merging regions may grow exponentially
during the bottom-up construction of merging regions
(this is the difficulty encountered by the IME method
of [5]). Our current implementation simply keeps at
mostk regions with lowest tree cost for each internal
node.

Finally, in the top-down phase of Ex-DME each node
v is embedded at a poigte L, closesttd (p) (where
p is the parent node af), and thatL, € mr(v) is one
of the joining segments used to constmnet p). When
L, is a Manhattan arc of non-zero length, there can
be more than one embedding point far However,
when obstacles interseSDRI (p), L,), some of the

the new joining segments. Then, calculate the pla- embedding pointg € L, closest td (p) may become

nar merging regiopmr (v) with respect to the new

infeasible because the shortest planar path footo

joining segments, using Steps 1, 2 and 3. (Note that | (p) has pathlengts d(I(p), L,). To remove infeasi-

pmr (v) # @ sincep € pmr, (v)).
9. pmr(v) = Upmr, (v), where subpatl, € P con-
tains a pointp with feasible or minimum skew.

Notice that the purpose of Step 6 is to maximize the
area ofpmr(v). As shown in Fig. 7, if we divide sub-
pathP, = y — z —t into two smaller subpathg — z
andz — t, regionpmr(v) in the Figure will shrink
to be within the shortest distance regi®DRYy, z).
Thus, like the merging regions constructed by the BME
method, the planar merging regions will contain all the
minimum-cost merging points when no detouring oc-

curs. For the same reason stated in the Elmore-Planar-

DME algorithm [13] the planar merging regions along
the shortest planar path will not guarantee minimum

ble embedding points from,,, we treat (p) andL, as

two joining segments, then apply the obstacle expan-
sion rules as in Fig. 8(b). It! denotes the portion of

L, left uncovered by the expanded obstacles, the feasi-
ble embedding locations far consist of the points on

L/ that are closest t(p).

tree cost at the next higher level. Thus, it is possible
to construct and maintain planar merging regions along
several shortest planar paths. Atthe sametime, ifanin-

ternal node can have multiple planar merging regions,

pmrv)

Figure 7. Construction of planar merging regions along a shortest
planar path between child merging regions.

Figure8 Madification of the embedding rule in the top-down phase
of the Ex-DME algorithm when there are obstacles in the routing
plane.
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Table 2 Total wirelength and runtime for obstacle-avoiding BST
algorithm, for various instances and skew bounds. Sizes and locations
of obstacles are shown in Fig. 9. Numbers in parentheses are ratios to
corresponding (total wirelength, runtime) values when no obstacles
are present in the layout.

#Sinks 50 100 150 555

Skew Wirelength:um (normalized)

bound CPU time: hr:min:sec (normalized)

0 8791.1(1.06) 11925.1(1.04) 14747.5(1.03) 28854.8(1.01)

00:00:04(4) 00:00:10(2)  00:00:15(2)  00:00:34(1)
1ps  8048.7(1.09) 10761.4(1.04) 13388.5(1.03) 26240.0(1.04)
00:01:09(6) 00:05:20(7) ~00:11:36(3) 00:44:14(10)
2ps  7831.9(1.07) 10796.8(1.01) 12643.0(1.02) 25205.2(1.04)
00:01:47(8) 00:08:17(9) 00:20:55(10) 01:30:08(13)
5ps  7140.9(1.04) 10493.6(1.08) 11598.8(1.01) 23648.0(1.04)
00:04:01(13) 00:15:16(11) 00:30:34(13) 01:30:08(13)
10ps  7126.2(1.06) 9701.2(1.03) 11426.1(1.07) 22737.3(1.05)
00:06:13(14) 00:19:36(12) 00:36:30(12) 01:48:06(13)
20ps  6831.6(1.13) 9296.4(1.03) 11606.0(1.10) 21641.7(1.05)
00:07:40(15) 00:21:56(10) 00:40:39(3) 03:42:52(24)
50ps  6468.4(1.12) 8739.6(1.09) 10194.4(1.10) 22167.1(1.15)
00:10:36(15) 00:26:47(11) 01:00:50(13) 02:18:20(14)
100ps 6484.7(1.20) 8588.2(1.11) 9295.6(1.02) 19086.6(1.01)
00:13:51(18) 00:30:16(9) 01:03:00(15) 03:06:23(17)
Our obstacle-avoiding BST routing algorithm was 1ns  g484.7(1.24) 8115.1(1.13) 9265.8(1.10) 17166.8(.99)

Figure 9. A zero-skew solution for the 555-sink test case with 40
obstacles.

3.2. Experimental Results

tested on four examples respectively having 50, 100, 00:16:20(18) 00:36:52(11) 01:18:36(15) 07:24:38(12)
150 and 555 sinks with uniformly random locations 10ns  6484.7(1.24) 8115.1(1.13) 9265.8(1.10) 16698.3(.99)
in a 100 by 100 layout region; all four examples have 00:16:19(18) 00:36:43(11) 01:20:07(15) 03:18:20(7)
the same 40 randomly generated obstacles shown ins 6484.7(1.24) 8115.1(1.13) 9265.8(1.10) 16698.3(1.02)
Fig. 9. For comparison, we run the same algorithm 00:16:43(18) 00:36:52(11) 01:20:25(13) 03:21:11(7)

on the same test cases without any obstacles. Details
of the experiment are as follows. Parasitics are taken
from MCNC benchmarks Primaryl and Primary2, i.e.,
all sinks have identical.8 pF loading capacitance and

routing solutions with obstacles are very close to those
of routing solutions without obstacles (typically within
the per-unit wire resistance and wire capacitance areafeW percent)._ Rt_mtimes (r_eported for a Sun 85 MHz
166 mQ and 0.027fE. For each internal node. we Sparc-5) are significantly higher (by factors of up to

) ’ i ' 18 for the 50-sink instance) when the 40 obstacles are

maintain at mosk = 5 merging regions .W'th low- present; we believe that this is due to our current naive
est tree cost. We use the procedure Find-Shortest-; 1o entation of obstacle-detecting and path-findin
Planar-Path of the Elmore-Planar-DME algorithm [13] P 9 P 9:

. ; Figur hows the zero-skew clock routin lution for
to find shortest planart paths. The currentimplemen- gure 9 shows the zero-skew clock routing solution fo

tation uses Dijkstra’s algorithm in the visibility graph the 555-sink test case.

G(V, E) (e.g., [14, 15]) wher& consists of the source

and destination points, t along with detour points  3.3. Extension to Non-Uniform Layer Parasitics
around the corners of obstacles. The wejghof edge

e = (p,q) € E is computed on the fly; ié intersects When the layer parasitics are non-uniform, no joining
any obstacle, thefe| = oo, elsele| = d(p,q). The segment can be a Manhattan arc, so Cases |.2 and 1.2
running time of obstacle-avoidance routing can be sub- of the obstacle expansion rules are inapplicable. In
stantially improved with more sophisticated data struc- Cases lll and 1V, only one routing layer will be used to
tures for detecting the intersection of line segments and merge the child regions, so the construction of planar
obstacles, and faster path-finding heuristic in the geo- merging regions will be the same as with uniform layer
metric plane. Table 2 shows that the wirelengths of parasitics. Hence, the construction of planar merging
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e Letc € R andd € R be the corner points which
are closest to joining segmeh} andLy,. Apply
prescribed routing patterns frooo L, and from
dto Lp.

e Calculate delays atandd.

e Construct the merging region from poirdsand
d as as described in Section 2.

Finally, we notice that in planar clock routing, all
wires routed at a lower level become obstacles to sub-
sequent routing at a higher level. Also, in the obstacle-
avoidance routing, if some obstacle blocks only one
routing layer, then the routing over the obstacle must
be planar. In such cases, we may apply the concept of
the planar merging region to improve the planar clock
routing. In particular, we improve the Elmore-Planar-
DME algorithm [13, 16] by (i) constructing the pla-
nar merging segmermgv) for each internal node
of the input topologyG, and (i) replacing the Find-
Merging-Path and Improve-Path heuristics of Elmore-

(b) Planar-DME by construction of a shortest planar gath

connecting’s childrens andt viav’s embedding point
Figure 10 Obstacle-avoidance routing for non-uniform layer par- 1 (v) € pmguv). Total wirelength can be reduced be-
asitics when joining segmenits;, andL, are single points notonthe  cause (v) is now selected by the DME method opti-
same vertical or horizontal line. mally from pmgv) instead of being selected heuris-

tically by Find-Merging-Path and Improve-Path in
regions changes only for Cases I.1 and I1.1, i.e., when EImore-Planar-DME. Our experiments [17] show that
the joining segments, andL, are two single points  Elmore-Planar-DME is consistently improved by this
which are not on the same vertical or horizontal line.  technique.

Since larger merging regions will result in smaller
merging costs at the next higher level, a reasonable
approachis to maximize the size of the merging region
constructed within each rectangRe € SDRL,, Lp),
by expandingR; as shown in Fig. 10(b). After expan-
sion, “redundant” rectangles contained in the expan-
sions of other rectangles (e.g., rectang®esand Rs

4. Buffered Clock Tree Synthesis

Finally, we extend our bounded-skew routing method
to handle the practical case of buffering hierarchies in
large circuits. There have been many works on buffered
- . . . . clock tree designs. [18—20] determine the buffer tree
in Fig. 10 are contained in the union of expansions of . .

hierarchy for the given clock tree layout or topology.

Ri, Rs, Ru, R and Ry) can be removed to simplify [21, 22] design the buffer tree hierarchy and the rout-
the computation. The merging region construction for :

. g .. . ing of the clock net simultaneously. However, the pre-
Cases I.1 and 1.1 with non-uniform layer parasitics is = _=. . U
; vailing design methodology for clock tree synthesis is
summarized as follows.

that the buffer tree hierarchy is pre-designed before the

physical layout of the clock tree (e.g., see recent vendor

1. DivideSDRLg4, Lp) into a set of disjointrectangles  tools for automatic buffer hierarchy generation, such as
R by extending horizontal boundary segments of Cadence’s CT-Gen tool). In practice, a buffer hierar-

the (expanded) obstacles®DRL,, Lp). chy must satisfy various requirements governing, e.g.,
2. Expand each rectangl® until blocked by obsta-  phase delay (“insertion delay”), clock edge rate, power
cles. dissipation, and estimated buffer/wire area. Also, the
3. Remove rectangld’ that are completely contained placement and routing estimation during chip planning
by other rectangles. must have reasonably accurate notions of buffer and
4. For each rectanglg; do: decoupling capacitor areas, location of wide edges in
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the clock distribution network, etc. For these reasons, selected centers. After dilcluster centers have been
buffer hierarchies are typically “pre-designed” well in  selected, each node at the current level is assigned to
advance of the post-placement buffered clock tree syn- the nearest center. Pseudo-code for K-Center is given
thesis. So our work starts with a given buffer hierarchy in Fig. 11 (reproduced from [23]), with Steps O aral 3
as an input; this defines the number of buffer levels added to heuristically maximize the minimum distance
and the number of buffers at each level. We use the among thek cluster centers.
notationky — ky_1 — --- — ko to represent a buffer We propose to further balance the clustering solution
hierarchy withk; buffers at level, 0 < i < M. For from K-Center using the iterative procedure PostBal-
example, a 170-16-4-1 hierarchy has 170 buffers at ancein Fig. 12, which greedily minimizes the objective
level 3, 16 buffers at level 2, etc. Note that we al- function) ;_, , Cap(X;)". Here,
ways haveky = 1 since there is only one buffer at
the root of the clock tree. As in [19, 20, 22], to min-
imize the skew induced by the changes of buffer sizes
due to the process variation, we assume that identical
buffers are used at the same buffer level. (From the
discussion of our method below, we can see that our
method can work without this assumption by minor .

Algorithm k-center(S,Xi..., Xk, k)

modification.) Input: Set of subtree roots (e.g., sinks or

We propose an approach to bounded-skew clock tree buffers) S;

construction for a given buffer hierarchy. Our approach  Guious: g‘e‘;‘s“gffd‘ffsfi‘r‘:‘ff,;’“xz —

performs the following steps at each level of the hier- 0. Calculate V=8JU,whercd = {u|u=a
S|

archy, in bottom-up order. grid point of uniformly spaced
horizontal and vertical lines inside bboz(S) }
Initialize W, a set of duster centers, to empty.

i i Choosc some random v from V and add it to W.
1. Cluster the nodes in the current level (i.e., roots of while [V S ko find o€V st doy =

subtrees in the buffer hierarchy, which may be sinks mingew d(vfu‘j&ls maximized, and add it to W.

or buffers) in the current level into the appropriate | 3a- While vy € W,vo € V =W s. t. dw can be
increased by swapping v; and v, then swap v

e Cap(X;)isthe estimated total capacitance ofthe BST
(to be constructed in the second major step of our
approach) over sinks in cluste§. In other words,
Cap(Xi) = ), x Cv +d((v), cente(Xi)) - c,

Ch)t\)’_—‘

number of clusters (see Section 4.1). and vy (ie, W =W 4 {vz — {v1}).
2. Build a bounded-skew tree for each cluster by ap- | % sﬁﬁgfé ;{;‘,ﬁf Ing“Xz’ -+ Kk cach “mta”""g e
plying the ExG-DME algorithm under Elmore de- placeveVach v € 8 into the cluster of the closest
i €W,
lay [5]. w

3. Reduce the total wirelength by applying a buffer Frigure 11 Pseudocode for a modified K-center heuristic.
sliding heuristic (see Section 4.2).

Procedure PostBalance(X; ..., Xi)
i Input: Sets of clusters {X: ..., Xk} s.t.
4.1. Clustering XiNX, =0 VI<i£ji<k
Output: Sets of clusters {Xl, .., Xk} s.b.
The first step is to assign each node (e.g., sink or buffer) XiNX; =0 v1<i ;é J<k
in the current level of the buffer hierarchy to some ; gzl“late §S=Uis
buffer in leveli — 1. The set of nodes assigned to a | 3. Slorfi clusters in increasing order of estimated
H H H oad capacitance
given leveli -1 buffer constitute Zluster If there 4. for each cluster X; in the sorted order
are k buffers in the next higher level of the buffer 5. n-move = 0
. L . 6. Let V={v|veSsS-X}
hierarchy, then this is &-way clustering problem. 7. S(ort nodes v € V in increasing order of
: " d(v, center(X;
Numerous algorithms have been developed for geo- | ¢ y, center(Xi)) €V in the srted oder
metric clustering (see, e.g., the survey in [23]); our Suppose v € X;, 1 < j#i < k
empirical studies show that the K-Center technique of | % if 3., x(Cap(X.))* decreases by moving
v to cluster X;
Gonzalez [24] tends to produce more balanced clus- | 10, Move v to cluster X, (ie., X
ters than other techniques. Furthermore, the K-Center | =X, + {o}, X, = X, - {v})
L. R . . . nN-Move = n_move +
heuristic has onlyD (nk) time complexity (assuming 12. if n_move >3 Go To 4
nodes at the current level). The basic idea of K-Center | 13- While there is any sink moved in current

is to iteratively seleck clustercenters with each suc-
cessive center as far as possible from all previously Figure 12 Procedure PostBalance.
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where ¢, is the input capacitance of nodeand by constructing a minimal Steiner tree ovgrandbs.
centexX;) is the Manhattan center of the nodes in Suppose the delay from’ to bufferb; is larger than
clusterX; as defined in [25, 16]. that fromp’ to bufferb,, we can slide buffeb, toward
e The numbermw is used to trade off between balance the left, thus increasing the delay fropi to b, such
among clusters and the total capacitive load of all thatp’ can become the delay balance point.
clusters. A higher value af favors balanced clus- There is a similar idea in [21], which reduces wire-
tering, which usually leads to lower-cost routing at length by inserting an extra buffer. However, adding
the next higher level but can cause large total capac- a buffer will cause large extra delay and power dissi-
itive load at the current level. On the other hand, pation. Indeed, whefi, and T, have similar delays,
w = 1 favors minimizing the total capacitive load excessive detour wirelength is inevitable when a buffer
at the current level without balancing the capacitive is added at the parent edge of just one subtree. Hence,
load among the clusters. Based on our experiments, the technique of [21] will be effective in reducing power
we usew = 5to obtain all the results reported below; dissipation and wirelength only when the delaySpf
this value seems to reasonably balance the goals ofand T, are very different. ([21] also consider buffer
low routing cost at both the current and next higher insertion only for the zero-skew case.)
levels'. We now give a buffer sliding heuristic, calletB (see
Fig. 14) that does not add any extra buffers and that can
handle any skew bound (we find, however, that it is less
effective for large skew bounds; see Section 4.3). H3

. . builds a low-cost tre@,y; over a set of of bufferss
Chung and Cheng [20] shift the location of a buffer _ {by. ... b as follows. First, we construct a BST

along the edd%e toits QI_ahrent ntqd(i'to rdelt“'ﬁe. otr elrllm}nate T under a new skew bouril > B without buffer slid-
excessive detouring. The mofivation for their technique g "y, we calculate the delaly, (dhy,) which
E’S rmg borf\fN‘?t; ' nd Ig.bt ,;u rthYO(;)e_ 3 V1 1S is the maximum (minimum) delay along any root-sink

fiven Dy buflebs, and Sublreé; rooted abz IS driven path inT that passes through buffer (Line 7). We
by bufferb,. Lett, be the delay from parent nogeto _ i .

hild nod dlett! be the delay f t nod then calculatenax = max_1{d},} at Line 8. At
child nodevz, and 1€l be the deiay from parent node ;o 10, we slide each bufféy such that the min-delay
p to child nodev, after bufferb, slides toward node | _Bjand

X . N atits inputis increased by mfX dmax— di,
g\(;svr lila(\j/;stance ak units. Letl = d((p).l(v2)). We skewT) is reduced toward. Finally, we build a new

treeT by re-embedding the topology dfaccording to
the original skew boun®& (Line 9); this will minimize

4.2. Buffer Sliding

to=rl(cl/24 cp) +tp +rp - Cap(To)
to=r( —x)cl —x)/24+cp) + 1y

+rp(cx + Cap(Ty)) + rx(cx/2 + Cap(Tz)) Joot new position
e, ;
t) —tp=rcx? 4 rpex +r(Cap(T) — ¢l —cp)x  (9) b ¢ bmffer b2 o
vy x N X _
Notice that the coefficient of the last term in Eq. (9), p\‘/\u‘?".’"’
. L . wiring
Cap(T,) —cl — ¢y, is always positive in practice be-
cause (i) the total wirelength @t is larger than that of (a)
the parent edge dF,, and (ii) the sum of sink capac- : "
itances inT; is larger than the input capacitance of a s oot of bufter. 'g’g
buffer, sothat, > t,. Also, as buffeb, is moved closer b, 1 / x
to its parent node, delayt;, will increasingly exceed Y1 > P b? W

to. Inthe case wherg is so much larger thaia that de- “
tour wiring is necessary, we can slide bufferso that

delay balance is achieved at pomusing less detour )

wiring (see Fig. 13(a)). Even when no detour wiring is

necessary, thpf buffgr sliding technique Ca_n still be used Figure 13  Two examples showing how the buffer sliding technique
to reduce routing wirelength at the next higher level of  can eliminate (a) detour wiring or (b) routing wirelength at higher
the hierarchy. In Fig. 13(b), we reduce the wirelength levels of the buffer hierarchy.
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Procedure H3(S)
Input: Set of buffers § = {b1,---,bx };
Skew Bound B; Set of subtrees
T driven by buffer b; with skew(T;) < B;
Output: Tree Top: with skew(Top) < B;
Set of wirelength L; > 0 Inserted between
buffer bz and its subtree root root(7}).
1. min_cost = _
2. Set new skew bound B=B
3. do _
4. Build tree T over buffers in & with new
skew bound B no buffer sliding)
5. for:=1tok
/* Let maz £(b;) (maa:.t(b )) be max-delay
from input of buffer b; to sinks which are
descendants of b; before (after) buffer
sliding * _
6. Calculate & = delay from root(T)
along the unique path in 7" to b;
7. Calculate d,,, = maz (b)) + z, and
diin = mint(b;) + =
8. Calculate dmar = max{d,,.}
9. for:i=1tok do
10. Calculate the length of wire L; between
b; and root(T;) s.t. min-t(b;) = min_#(b;)
+ max{0, dmaez — d;mn - _
11.  Build tree T by re-embedding topology of T’
under original skew bound 5 with wire of
‘l;_ngth L; inkserted between b; and root(T;),
=1,
12.  if cost(T) < min_cost
13. opt = T
14. man-cost = cost(T)
15. B =B+ 3ps
16. whi]e‘min_.cost ever decreased in last 10
iterations

Figure 14 Procedure H3 (buffer sliding).

any potential increase in tree casts{T) — cos{(T).

The above steps are iterated for different skew bounds.

B > B, and the tred with smallest total wirelength is
chosen aJop. In general, when the new skew bound
B is increasingcosi(T) will be decreasing. However,
the length of the wire inserted between each buffer and
its subtree root will increase when tiebecomes too
large, anccos{(T) will stop decreasing after a certain
number of iterations. In all of our experiments, the pro-
cedure stops within 50 iterations.

4.3. Experimental Results

For the sake of comparison, we have also implemented
the following buffer sliding heuristics.

HO No buffer sliding.

H1 Slide buffers to equalizenaxt(b;) forall1 <i <
k, i.e., the max-delay from the input of each buffer
b; to sinks which are the descendantdofThis is
the buffer sliding technique used in [19, 22].

100

Figure 15 Total wirelength achieved by different buffer sliding
heuristics on benchmark circuit r1 with a 32-1 buffer hierarchy. The
wirelength unit is 10Qum. Buffer parameters are output resistance

= 100 Q, input capacitance, = 50 fF, and internal delay
tp = 100 ps. Note that the X axis is on a logarithmic scale.

H2 Slide buffers to equalizenaxt (b ) andmaxt (bj)
whereb; andb; are the sibling buffers.

Figure 15 shows the total wirelength reduction
achieved by the various buffer sliding heuristics on
benchmark circuit rl1 with a 32-1 buffer hierarchy. H3
is consistently better than other heuristics for the skew
bound from 0to 50 ps. When the skew bouis larger
than 50 ps, the tree cost reducticosi{T) — cos{(T)
is very slight for anyB > B, and hence when we push

skewT) back toB by buffer sliding, there is almost
no gain in the total wirelength. Therefore, heuristic
H3 will be the same as HO when the skew bound is
sufficiently large. A more detailed comparison of total
wirelength reduction achieved by different buffer slid-
ing heuristics is given in Table 3, which shows that H3
is consistently better than other heuristics for different
skew bounds and buffer hierarchies. In the table, we
also report ratios of tree costs, averaged over the five
test cases, for each heuristic versus H3 (i.e., we norma-
lize the tree costs against the H3 tree cost). Forthe zero
skew regime, the heuristics HO, H1 and H2 respectively
require 6.9%, 10.6% and 3.0% more wirelength on av-
erage than our heuristic H3. And for the 50 ps skew
regime, the heuristics HO, H1 and H2 respectively re-
quire 3.1%, 17.0% and 1.1% more wirelength on aver-
age than our heuristic H3. Notice that heuristic H1, the
method used in [19, 22], actually has the largest total
wirelength in most cases.
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Table 3 Detailed comparison of total wirelength achieved by different buffer sliding heuristics on benchmark circuits
r1-r5 with two types of 2-level buffer hierarchy and one type of 3-level buffer hierarchy. The wirelength unit and buffer
parameters are the same as those in Fig. 15.

rl r2 r3 r4 r5 rl r2 r3 r4 r5

Skew bound=0 Skew boundg=10ps

Buffer hierarchy: 2/n — 1
HO 1,486 2,984 3,728 7,718 11,193 (1.059) 1,242 2,446 3,095 6,279 9,102 (1.061)
H1 1,483 3,207 3,855 8,829 11,567 (1.119) 1,232 2,850 3,175 7,710 9,785 (1.164)
H2 1458 2941 3,651 7,408 10,852 (1.032) 1,185 2,400 3,012 6,018 8,773 (1.025)
H3 1,404 2802 3553 7,261 10,589 (1.000) 1,172 2,314 2,921 5,907 8,549 (1.000)

Buffer hierarchy:,/n — 1
HO 1,497 2,923 3,733 7,476 11,185 (1.044) 1,231 2,516 3,053 6,128 9,128 (1.060)
H1 1,447 2,896 3,848 7,661 11,418 (1.051) 1,219 2,408 3,207 6,297 9,470 (1.073)
H2 1450 2,825 3,646 7,319 10,878 (1.015) 1,170 2,419 2,982 5,972 8,820 (1.023)
H3 1,432 2,797 3,584 7,175 10,713 (1.000) 1,159 2,340 2,893 5,872 8,597 (1.000)

Buffer hierarchy:n?/3 — n1/3 — 1
HO 1,626 3,259 4,017 7,971 11,989 (1.104) 1,306 2,693 3,375 6,713 9,816 (1.112)
H1 1,558 3,297 4,168 8,912 12,982 (1.149) 1,258 2,926 3,547 7,870 10,954 (1.198)
H2 1556 2989 3,808 7,594 11,368 (1.042) 1,234 2,470 3,136 6,379 9,204 (1.040)
H3 1,476 2877 3,636 7,374 10,921 (1.000) 1,193 2,361 3,020 6,152 8,813 (1.000)
Skew bound= 20 ps Skew boune: 50 ps

Buffer hierarchy: 2/n — 1
HO 1,185 2,375 2,950 6,021 8,736 (1.059) 1,074 2,168 2,780 5,630 8,245 (1.018)
H1 1,182 2,626 3,127 7,323 9,401 (1.155) 1,200 2,565 3,110 7,061 9,021 (1.174)
H2 1,147 2,245 2,893 5,816 8,397 (1.021) 1,109 2,170 2,745 5,530 7,918 (1.010)
H3 1,112 2,216 2,845 5,695 8,231 (1.000) 1,073 2,158 2,736 5,477 7,822 (1.000)

Buffer hierarchy:,/n — 1
HO 1,196 2,404 2971 5937 8,708 (1.058) 1,127 2,224 2,772 5504 8,416 (1.064)
H1 1,153 2,370 3,116 6,116 9,248 (1.077) 1,127 2,169 2,920 5,706 8,855 (1.089)
H2 1,146 2,280 2,944 5,743 8,397 (1.022) 1,061 2,115 2,685 5,404 8,005 (1.020)
H3 1,135 2,228 2,839 5,617 8,271 (1.000) 1,063 2,080 2,607 5,261 7,854 (1.000)

Buffer hierarchy:n?3 — n%/3 — 1

HO 1,267 2,538 3,125 6,396 9,350 (1.089) 1,132 2,344 2,913 5,823 8,551 (1.011)
H1 1,256 2,780 3,494 7,532 10,806 (1.206) 1,262 2,891 3,439 7,735 11,182(1.248)
H2 1,191 2,401 2969 6,077 8,811 (1.030) 1,145 2,301 2,856 5,786 8,475 (1.003)
H3 1,158 2,339 2,893 5,864 8,536 (1.000) 1,112 2,312 2,937 5,684 8,327 (1.000)

5. Conclusions parasitics, we prove that if we prescribe the routing
pattern between any two points, merging regions are
In this work, we have extended the bounded-skew rout- still bounded by well-behaved segments except that
ing methodology to encompass several very practi- no boundary segments can be Manhattan arcs of non-
cal clock routing issues: non-uniform layer parasitics, zero length. Our experimental results show that tak-
non-zero viaresistance and/or capacitance, existing ob-ing into account non-uniform layer parasitics can be
stacles in the metal routing layers, and hierarchical accomplished without significant penalty in the clock
buffered tree synthesis. For the case of varying layer tree cost. Our solution to obstacle-avoidance routing
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is based on the concept ofanar merging region
which contains all the feasible merging poimtsuch

that the shortest planar path between child merging 7

regions viap is equal to the shortest planar path be-
tween child merging regions taking into consideration
the given obstacles. Again, our experimental results are
quite promising: even for the relatively dense obstacle
layout studied, obstacle-avoidance clock routing seems
achievable without undue penalty in clock tree cost. Fi-
nally, we extend the bounded-skew routing approach to

required) but this did not result in noticeable performance im-
provement.

We also investigated less greedy iterative methods that have the
same general structure as the classic KL-FM partitioning heuris-
tics. For example, an analog of the KL-FM pass might always
expand the cluster with smallest estimated load capacitance by
shifting the closest “unlocked” node in another cluster; as in
KL-FM, a node that is moved becomes locked for the remain-
der of the pass to prevent cycling. In our experience, such more
complicated heuristics do not achieve noticeably different results
from the simple method we describe.

address buffered clock trees, assuming (as is the case ifgeferences

present design methodologies) that the buffer hierarchy

(i.e., the number of buffers at each leveland the number 1 A g kahng and G. RobinOn Optimal Interconnections for

of levels) is given. A bounded-skew buffered clock tree
is constructed by performing three steps for each level
of the buffer hierarchy, in bottom-up order: (i) cluster
sinks or roots of subtrees for each buffer; (ii) build a
bounded-skew tree using the ExG-DME algorithm un-
der Elmore delay [5] for each cluster; and (iii) reduce
the total wirelength by the H3 buffer sliding heuristic.
Our experimental results show that H3 achieves very
substantial wirelength improvements over the method
used by [19, 22], for a range of buffer hierarchy types
and skew bounds.

Notes

. One minor caveat is that the “merging region” of [3-5] is not
a complete generalization of the DME merging segment: when
detour wiring occurs or when sibling merging regions overlap, the
merging region may not contain all the minimum-cost merging
points.

. We assume that there are only two routing layers. Our approach
can easily extends to multiple routing layers.

. However, when detouring occurs, both the H-layer and V-layer
will be used for the detour wiring. It is easy to calculate the extra
wirelength on both layers if we prescribe the routing pattern for
detour wiring.

than+1, 0, andco although they are not encountered in practice.
For the case of joining segments with slopesvith |m| > 1
(Im| < 1), we expand obstacles as in Case Il (IV).

. The simplest approach is to divi@®RL,, Lp) into a set of
disjoint rectangle® that contains no obstacles, as shown in Fig.
10(a). Letc € R andd € R be the corner points closest to
joining segmentd 5 andLy,. If prescribed routing patterns are
assumed for the shortest paths fraro L, and fromd to Ly,

delays atc andd are well-defined. Since there are no obstacles 12.

inside R;, the planar merging region can be constructed from
pointsc andd for non-uniform layer parasitics using the methods
of Section 2.

. More accurate models for estimating the load capacitance of a
cluster are of course possible, but have surprisingly little effect.

Indeed, we implemented the best possible model (which is to ac- 14.

tually execute the BST construction whenever a BST estimate is
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