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Abstract. In Clock routing research, such practical considerations as hierarchical buffering, rise-time and over-
shoot constraints, obstacle- and legal location-checking, varying layer parasitics and congestion, and even the
underlying design flow are often ignored. This paper explores directions in which traditional formulations can
be extended so that the resulting algorithms are more useful in production design environments. Specifically,
the following issues are addressed: (i) clock routing for varying layer parasitics with non-zero via parasitics; (ii)
obstacle-avoidance clock routing; and (iii) hierarchical buffered tree synthesis. We develop new theoretical analyses
and heuristics, and present experimental results that validate our new approaches.

1. Preliminaries

Control of signal delay skew has become a dominant
objective in the routing of VLSI clock distribution net-
works and large timing-constrained global nets. Thus,
the “zero-skew” clock tree and performance-driven
routing literatures have seen rapid growth over the past
several years; see [1, 2] for reviews. “Exact zero skew”
is typically obtained at the expense of increased wiring
area and higher power dissipation. In practice, cir-
cuits still operate correctly within some non-zero skew
bound, and so the actual design requirement is for
a bounded-skew routing tree(BST). This problem is
also significant in that it unifies two well-known rout-
ing problems—theZero Skew Clock Routing Problem
(ZST) for skew boundB = 0, and the classicRec-
tilinear Steiner Minimum Tree Problem(RSMT) for
B = ∞.

In our discussion, thedistancebetween two pointsp
andq is the Manhattan (or rectilinear) distanced(p, q),
and the distance between two sets of pointsP and
Q is d(P, Q) = min{d(p, q) | p∈ P andq ∈ Q}. The
costof the edgeev is simply its wirelength, denoted
|ev|; this is always at least as large as the Manhattan
distance between the endpoints of the edge, i.e.,|ev| ≥
d(l (p), l (v)). Detour wiring, or detouring, occurs

∗Support for this work was provided by Cadence Design Systems,
Inc.

when |ev| > d(l (p), l (v)). The cost ofT , denoted
cost(T), is the total wirelength of the edges inT . We
denote the set of sink locations in a clock routing in-
stance asS = {s1, s2, . . . , sn} ⊂ <2. A connection
topologyis a binary tree withn leaves corresponding
to the sinks inS. A clock tree TG(S) is an embedding
of the connection topology in the Manhattan plane, i.e.,
each internal nodev ∈ G is mapped to a locationl (v)

in the Manhattan plane. (IfG and/orSare understood,
we may simply useT(S) or T to denote the clock tree.)
The root of the clock tree is thesource, denoted bys0.
When the clock tree is rooted at the source, any edge
between a parent nodep and its childv may be iden-
tified with the child node, i.e., we denote this edge as
ev. If t (u, v) denotes the signal delay between nodes
u andv, then theskewof clock treeT is given by

skew(T) = max
si ,sj ∈S

|t (s0, si ) − t (s0, sj )|
= max

si ∈S
{t (s0, si )} − min

si ∈S
{t (s0, si )}

The BST problem is formally stated as follows.

Minimum-Cost Bounded Skew Routing Tree (BST)
Problem: Given a setS = {s1, . . . , sn} ⊂ R2 of sink
locations and a skew boundB, find a routing topology
G and a minimum-cost clock treeTG(S) that satisfies
skew(TG(S)) ≤ B.
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1.1. The Extended DME Algorithm

The BST problem has been previously addressed in
[3–5]. Their basic method, called theExtended DME
(Ex-DME) algorithm, extends the DME algorithm of
[6–9] via the enabling concept ofmerging region,
which is a set of embedding points with feasible skew
and minimum merging cost if no detour wiring occurs1.
For a fixed tree topology, Ex-DME follows the 2-
phase approach of the DME algorithm in constructing
a bounded-skew tree: (i) a bottom-up phase to con-
struct a binary tree of merging regions which represent
the loci of possible embedding points of the internal
nodes, and (ii) a top-down phase to determine the exact
locations of the internal nodes. The reader is referred
to [4, 3, 5, 10] for more details (the latter is available by
anonymous ftp). In the remainder of this subsection,
we sketch several key concepts from [4, 3, 5].

Let max t (p) and min t (p) denote the maximum
and minimum delay values (max-delay and min-delay,
for short) from point p to all leaves in the subtree
rooted atp. The skew of pointp, denotedskew(p),
is max t (p) − min t (p). (If all points of a pointset
P have identical max-delay and min-delay, and hence
identical skew, we similarly use the termsmax t (P),
min t (P) andskew(P).) As p moves along any line
segment the values ofmax t (p) andmin t (p), along
with skew(p), respectively define thedelayandskew
functionsover the segment.

For a nodev ∈ G with childrena andb, its merg-
ing region, denotedmr(v), is constructed from the so-
called “joining segments”La ∈ mr(a) andLb ∈ mr(b),
which are the closest boundary segments ofmr(a) and
mr(b). In practice,La and Lb are either a pair of
parallel Manhattan arcs (i.e., segments with possibly
zero length having slope+1 or−1) or a pair of paral-
lel rectilinear segments (i.e., horizontal or vertical line
segments). The set of points with minimum sum of dis-
tances toLa andLb form aShortest Distance Region
SDR(La, Lb), where the points with skew≤ B (i.e.,
feasible skew) in turn form the merging regionmr(v).
[5] prove that under Elmore delay each line segmentl =
p1 p2 ∈ SDR(La, Lb) is well-behaved, in that the max-
delay and min-delay functions of pointp ∈ l are of the
formsmax t (p) = maxi =1,...,n1 {αi ·x+βi }+K ·x2 and
min t (p) = mini =1,...,n2 {α′

i ·x+β ′
i }+K ·x2, wherex =

d(p1, a) or d(p2, b). In other words, the skew values
along a well-behaved segmentl can be either a constant
(whenK = αi = α′

i = 0) or piecewise-linear decreas-
ing, then constant, then piecewise-linear increasing
alongl . This important property enables [5] to develop

a set of construction rules for computing the merging
regionmr(v) ∈ SDR(La, Lb) efficiently in O(n) time.
The resulting merging region is shown to be a convex
polygon bounded by at most 2 Manhattan arcs and 2
horizontal/vertical segments whenLa andLb are Man-
hattan arcs, or a convex polygon bounded by at most 4n
(with arbitrary slopes) segments wheren is the number
of the sinks. The empirical studies of [5] show that in
practice each merging region has at most 9 boundary
segments, and thus is computed in constant time.

Since each merging region is constructed from the
closest boundary segments of its child regions, the
method for constructing the merging region is called
Boundary Merging and Embedding(BME). [5] also
propose a more general method calledInterior Merg-
ing and Embedding(IME), which constructs the merg-
ing region from segments which can be interior to the
children regions. The routing cost is improved at the
expense of longer running time. For arbitrary topol-
ogy, [3] propose the Extended Greedy-DME algorithm
(ExG-DME), which combines merging region compu-
tation with topology generation, following the Greedy-
DME algorithm approach of [11]. The distinction
is that ExG-DME allows merging at non-root nodes
whereas Greedy-DME always merges two subtrees at
their roots; see [3] for details.

Experimental results show that ExG-DME can pro-
duce a set of routing solutions with smooth skew and
wirelength trade-off, and that it closely matches the
best known heuristics for both zero-skew routing and
unbounded-skew routing (i.e., the rectilinear Steiner
minimal tree problem).

1.2. Contributions of the Paper

In this paper, we will show that these nice properties of
merging regions and merging segments still exist when
layer parasitics (i.e., the values of per-unit capacitance
and resistance) vary among the routing layers and when
there are large routing obstacles. Therefore, the ExG-
DME algorithm can be naturally extended to handle
these practical issues which are encountered in the real
circuit designs. Section 2 extends the BME construc-
tion rules for the case of varying layer parasitics. We
prove that if we prescribe the routing pattern between
any two points, any line segment inSDR(La, Lb) is
well-behaved whereLa andLb are two single points.
Hence, the BME construction rules are still applicable.
Section 3 proposes new merging region construction
rules when there are obstacles in the routing plane. The
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solution is based on the concept of aplanar merging
region, which contains all the minimum-cost merging
points when no detouring occurs. Finally, Section 4
extends our bounded-skew routing method to handle
the practical case of buffering hierarchies in large cir-
cuits, assuming (as is the case in present design method-
ologies) that the buffer hierarchy (i.e., the number of
buffers at each level and the number of levels) is given.
Some conclusions are given in Section 5.

2. Clock Routing for Non-Uniform
Layer Parasitics

In this section, we consider the clock routing problem
for non-uniform layer parasitics, i.e., the values of per-
unit resistance and capacitance on the V-layer (vertical
routing layer) and H-layer (horizontal routing layer)
can be different2. We first assume that via has no re-
sistance and capacitance, then extend our method for
non-zero via parasitics.

Let nodev be a node in the topology with children
a andb, and let merging regionmr(v) be constructed
from joining segmentsLa ⊆ mr(a) andLb ⊆ mr(b).
When bothLa andLb are vertical segments or are two
single points on a horizontal line, only the H-layer will
be used for mergingmr(a) andmr(b). Similarly, when
La andLb are both horizontal or are two single points
on a vertical line, only the V-layer will be used for merg-
ing mr(a) andmr(b).3 The original BME construction
rules [5] still apply in these cases.

Corollary 1 below shows that for non-uniform layer
parasitics, joining segments will never be Manhattan
arcs of non-zero length. Thus we need consider only
the possible modification of BME construction rules
for the case where the joining segments are two sin-
gle points which do not sit on a horizontal or vertical
line. In this case, both routing layers have to be used
for mergingmr(a) andmr(b). One problem with rout-
ing under non-uniform layer parasitics is that different
routing patterns between two points will result in differ-
ent delays, even if the wirelength on both layers are the
same. However, if we can prescribe the routing pattern
for each edge of the clock tree, the ambiguity of delay
values between two points can be avoided. Figure 1
shows the two simplest routing patterns between two
points, which we call the HV and VH routing patterns.
Other routing patterns can be considered, but may re-
sult in more vias and more complicated computation
of merging regions.

Theorem 1. Let v be a node in the topology with
children a and b, with the subtrees rooted at a and b

Figure 1. Two simple routing patterns between two points: HV and
VH.

having capacitive load Ca and Cb. Assume that joining
segments La ⊆ mr(a) and Lb ⊆ mr(b) are two single
points. Under the the HV routing pattern, (i) any line
segment l∈ SDR(La, Lb) is well-behaved, (ii) merg-
ing region mr(v) has at most6 sides, and (iii ) mr(v)

has no boundary segments which are Manhattan arcs
of non-zero length.

Proof: Without losing generality, we assume that
La and Lb are located at(0, 0) and (h, v) as shown
in Fig. 2. Let A(x, y) and B(x, y) be respectively
the average max-delay froma and b to p under the
HV routing pattern. Letr1, c1 and r2, c2 be per-unit
resistance and capacitance of the H-layer and the V-
layer. We refer to the original delays and skew at
pointLa asmax t̄(La), min t̄(La), andskew(La). Sim-
ilarly, we refer to the original delays/skew at pointLb

as max t̄(Lb), min t̄(Lb), and skew(Lb). For point
p = (x, y) ∈ SDR(La, Lb),

A(x, y) = max t̄(La) + r1x(c1x/2 + Ca)

+ r2y(c2y/2 + Ca + c1x)

= K1 · x2 + Ex + K2 · y2

+ Fy + Gxy+ D. (1)
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Figure 2. The merging regionmr(v) constructed from joining seg-
mentsLa andLb which are single points by using the HV routing
pattern for non-uniform layer parasitics.

whereK1 = r1c1/2, E = r1Ca, K2 = r2c2/2, F =
r2Ca, G = r2c1, andD = max t̄(La). Similarly,

B(x, y) = max t̄(Lb) + r1(h − x)

× (c1(h − x)/2 + Cb) + r2(v − y)

× (c2(v − y)/2 + Cb + c1(h − x))

= K1 · x2 + J x + K2 · y2

+ Ly + Gxy+ M. (2)

whereJ, L, andM are also constants. Therefore,

max t (p) = max(A(x, y), B(x, y))

= max(Ex + Fy + D, J x + Ly + M)

+ K1 · x2 + K2 · y2 + Gxy (3)

Similarly, we can prove that

min t (p) = min(A(x, y), B(x, y))

= min(Ex + Fy + D′, J x + Ly + M ′)

+ K1 · x2 + K2 · y2 + Gxy (4)

whereD′ = min t̄(La) andM ′ = M − skew(Lb).

If line segmentl ∈ SDR(La, Lb) is vertical, then for
point p(x, y) ∈ l we have

max t (p) = K2 · y2 + max{Fv y + O, Lv y + P} (5)

min t (p) = K2 · y2 + min{Fv y + O′, Lv y + P′} (6)

where Fv = F + Gx, Lv = L + Gx, O = D + K1 ·
x2 + Ex, O′ = D′+K1·x2+Ex, P = M+K1·x2+Jx,
andP′ = M ′ + K1 · x2 + Jx are all constants. So,l is
well-behaved.

If l is not vertical and described by the equationy =
mx+ d wherem 6= ∞ (see Fig. 2), then from Eqs. (1)
and (2)

A(x, y) = K1 · x2 + Ex + K2 · (mx+ b)2

+ F(mx+ b) + Gx(mx+ b) + D

= K · x2 + Hx + I

B(x, y) = K1x2 + J x + K2(mx+ b)2

+ L(mx+ b) + Gx(mx+ b) + M

= K · x2 + H ′x + I ′,

whereK , H , I , H ′, andI ′ are all constants. Hence,

max t (p) = K · x2 + max(Hx + I , H ′x + I ′) (7)

min t (p) = K · x2 + min(Hx + Q, H ′x + Q′) (8)

Whenmax t (p) andmin t (p) are written as functions
of z = d(p, p1) = (1 + m)x, they will still have the
same coefficient in the quadratic term; this implies that
any line segmentl ∈ SDR(La, Lb) is well-behaved.

Let l1 and l2 be the non-rectilinear boundary seg-
ments ofSDR(La, Lb) which have non-zero length.
By the fact thatskew(l1) = skew(l2) = B and Eqs. (3)
and (4),l1 andl2 will be two parallel line segments de-
scribed by equations(E− J)x+(F −L)y+ D−M ′ =
±B. In practice,|E − J| 6= |F − L| unless both layers
have the same parasitics, i.e.,r1 = r2 andc1 = c2.
Thus,l1 andl2 will not be Manhattan arcs. 2

We similarly can prove that Theorem 1 holds when
the routing pattern is VH, or even when the routing
pattern is a linear combination of both routing patterns
such that each tree edge is routed by HV with prob-
ability 0 ≤ α ≤ 1 and VH with probability 1− α.
Notice that at the beginning of the construction, each
nodev is a sink withmr(v) being a single point. Thus,
no merging region can have boundary segments which
are Manhattan arcs with constant delays, and we have
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Corollary 1. For non-uniform layer parasitics, each
pair of joining segments will be either(i) parallel rec-
tilinear line segments or(ii) two single points.

Since any line segment inSDR(La, Lb) is well-
behaved for non-uniform layer parasitics, the BME
construction rules are still applicable, except that (i) we
have to prescribe the routing pattern for each tree edge,
and (ii) the delays are calculated based on Eqs. (5),
(6) for points on a vertical linel ∈ SDR(La, Lb),
and (7), (8) for points on a non-vertical linel ∈
SDR(La, Lb), wheneverLa and Lb are two single
points.

Theorem 2. With non-zero via parasitics(per-unit
resistance rv ≥ 0, per-unit capacitance cv ≥ 0), The-
orem 1 still holds except that there will be different
delay/skew equations for points on boundary segments
and interior segments of SDR(La, Lb).

Proof: Again, without losing generality we assume
the HV routing pattern. In Fig. 3(a), we assume that
pointsLa andLb are both located in the H-layer. Un-
der the HV routing pattern, most merging pointsp

Figure 3. Delay/skew equations for points on boundary segments
and interior segments ofSDR(La, Lb) are different when via resis-
tance and/or capacitance are non-zero.

are on the V-layer except the top and bottom bound-
aries of SDR(La, Lb) (e.g., pointq in the figure).
For point p on the V-layer, there is exactly one via
in the path fromp to La and Lb according to the
HV routing pattern. Then, delay equations for merg-
ing points p= (x, y) ∈ SDR(La, Lb) on the V-layer
become

A(x, y) = max t̄(La) + r1x(c1x/2 + Ca)

+ rv(Ca + c1x + cv/2)

+ r2y(c2y/2 + Ca + c1x + cv)

= K1 · x2 + J1x

+ K2 · y2 + L1y + r2c1xy + M1,

B(x, y) = max t̄(Lb) + r1(h − x)(c1(h − x)/2+ Cb)

+ rv(Cb + c1(h − x) + cv/2) + r2(v − y)

× (c2(v − y)/2 + Cb + c1(h − x) + cv)

= K1 · x2 + J2x

+ K2 · y2 + L2y + r2c1xy + M2

where J1, L1, M1, J2, L2, and M2 are all constants.
Since the quadratic termsK1 · x2 and K2 · y2 are the
same as before, Theorem 1 holds for the merging points
in SDR(La, Lb) on the V-layer.

For merging pointsq ∈ SDR(La, Lb) on the H-
layer, the number of vias fromq to La and Lb can
be either 0 or 2. The delay calculations for merging
pointsp andq will not be the same because of the un-
equal number of vias from the merging points toLa

andLb.
Figure 3(b) shows one of the three cases where

without loss of generality either pointLa or Lb is
located on the V-layer. As shown in the Figure, we
use pointq to represent the merging point on the
left or right boundary ofSDR(La, Lb) on the V-layer,
point q′ to represent the merging point on the top
or bottom boundary ofSDR(La, Lb) on the H-layer,
and point p ∈ SDR(La, Lb) to represent the other
merging points which are on the V-layer (but not on
the right or left boundaries). In this case, the num-
ber of vias from pointq, q′ and p to La or Lb are
not equal; their delay equations will not be identical,
but will still have the same quadratic termsK1 · x2

and K2 · y2. Therefore, Theorem 1 still holds except
that there will be different delay/skew equations for
points on boundary segments and interior segments of
SDR(La, Lb). 2
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Table 1. Comparison of total wirelength of routing solutions under non-uniform and uniform layer parasitics, with ratios
shown in parentheses. We mark by∗ the cases where the routing solution under non-uniform layer parasitics has smaller
total wirelength than the solution under uniform layer parasitics.

r1 r2 r3 r4 r5

Skew Wirelengths under non-uniform layer parasitics (normalized)
bound wirelengths under uniform layer parasitics

0 [11] 1253.2 2483.8 3193.8 6499.7 9723.7

0 1332.5 (1.01) 2623.8 (1.01) *3359.1 (0.99) *6810.7 (0.99) *10108.7 (1.00)
1320.7 2603.6 3382.4 6877.5 10138.5

1 ps 1283.5 (1.04) 2531.8 (1.05) 3207.0 (1.03) 6461.5 (1.04) 9610.8 (1.05)
1232.2 2401.7 3118.1 6241.1 9190.7

5 ps 1182.1 (1.05) 2333.3 (1.03) 2988.6 (1.04) 5979.8 (1.05) 8753.9 (1.05)
1130.6 2256.2 2875.1 5715.1 8371.2

10 ps 1158.6 (1.08) 2248.3 (1.03) 2810.7 (1.02) 5719.0 (1.05) 8482.4 (1.05)
1069.2 2183.5 2747.6 5453.8 8063.7

20 ps 1071.5 (1.03) 2183.4 (1.06) 2709.8 (1.05) 5474.6 (1.03) 8018.2 (1.04)
1039.6 2069.1 2569.0 5290.1 7695.9

50 ps 1058.6 (1.05) 2028.9 (1.06) 2557.0 (1.04) 5195.8 (1.04) 7562.9 (1.04)
1009.3 1917.8 2459.7 5008.0 7248.2

100 ps 989.0 (1.03) 1929.0 (1.03) 2463.9 (1.05) 4940.1 (1.03) 7193.1 (1.05)
964.3 1880.7 2350.1 4786.1 6869.6

200 ps 936.7 (1.05) 1886.7 (1.08) *2356.0 (0.99) 4734.4 (1.04) 6905.9 (1.04)
895.8 1741.6 2359.5 4540.1 6650.0

500 ps 919.4 (1.12) 1770.9 (1.01) 2205.2 (1.01) 4635.1 (1.02) 6564.1 (1.02)
820.4 1754.6 2187.4 4564.2 6449.3

1 ns 830.0 (1.01) *1664.2 (0.93) *2156.4 (0.99) *4500.5 (0.99) *6395.4 (0.99)
819.1 1709.4 2175.8 4531.4 6453.4

10 ns 775.9 (1.00) *1569.4 (0.97) *2160.6 (0.98) *4072.1 (0.97) 6168.5 (1.03)
775.9 1613.5 2212.4 4184.2 5979.3

∞ 775.9 (1.00) 1522.0 (1.00) 1925.2 (1.00) 3838.2 (1.00) 5625.2 (1.00)
775.9 1522.0 1925.2 3838.2 5625.2

∞ [12] 769.3 1498.8 1902.6 3781.4 5571.1

Experiments and Discussion

Table 1 compares the total wirelength of routing solu-
tions under non-uniform and uniform layer parasitics
for standard test cases in the literature. The per-unit
capacitance and per-unit resistance for the H-layer are
c1 = 0.027 fF andr1 = 16.6 mÄ, respectively. For the
uniform layer parasitics, the per-unit capacitance and
per-unit resistance of the V-layer are equal to those of
the H-layer, i.e.,c2 = c1 and r2 = r1. For the non-
uniform layer parasitics, we setc2 = 2.0 · c1 and
r2 = 3.0 · r1, respectively. For simplicity, we use only
the HV routing pattern and ignore the via resistance
and capacitance. As shown in the Table, the solu-
tions under non-uniform layer parasitics have larger
total wirelength than those under uniform layer para-
sitics in most cases, especially when the skew bound

is small. This may be due to the fact that merging
regions under non-uniform layer parasitics tend to be
smaller (and hence have higher merging cost at the
next higher level) because the joining segments can-
not be Manhattan arcs of non-zero length. When the
skew bound is small, most of the merging regions are
constructed from Manhattan arcs, and hence the so-
lutions under non-uniform layer parasitics are more
likely to have larger total wirelength. When the skew
bound is infinite, no joining segments can be Manhat-
tan arcs of non-zero length, and thus the routing solu-
tions under non-uniform and uniform layer parasitics
have identical total wirelength. In all the test cases, the
wirelengths are evenly distributed among both routing
layers—differences between the wirelengths on both
layers are all less than 10% of the total wirelength, and
less than 5% in most cases.
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Figure 4. Examples of 8-sink zero-skew trees for the same uniform
and non-uniform layer parasitics used in Table 1. Note that the merg-
ing segments (the dashed lines) in (a) are Manhattan arcs while those
in (b) are not.

We also perform more detailed experiments on
benchmark r1 to compare the total wirelength of zero-
skew routing for different ratios ofr2/r1 and c2/c1.
When (r2c2)/(r1c1) changes from 1 to 10, the total
wirelength of solutions only varies between+4% and
−1% from that obtained for uniform layer parasitics
(i.e., (r2c2)/(r1c1) = 1). Hence, the routing solution
obtained by our new BME method is insensitive to
changes in the ratio of H-layer/V-layer RC values.

Figure 4 shows examples of 8-sink zero-skew clock
routing trees using the same HV routing pattern and
layer parasitics that are used in the Table 1 experiments.
We observe that no merging segments under non-

uniform layer parasitics are Manhattan arcs and joining
segments are all single points. Notice that under any
given routing pattern like HV or VH, some adjacent
edges are inevitably overlapped. For example, edges
av andvp in Fig. 4 are overlapped because both edges
are routed using the same HV patterns. If edgesav and
bv are routed according to the VH routing pattern, the
overlapping wire can be eliminated.

Finally, we note that under uniform layer parasitics
the IME method [5] is identical to the BME method
for zero-skew routing since all merging segments are
Manhattan arcs. However, the IME method might be
better than the BME method for non-uniform layer par-
asitics, since merging segments are no longer equal to
Manhattan arcs.

3. Clock Routing in the Presence of Obstacles

This section proposes new merging region construc-
tion rules when there are obstacles in the routing plane.
Without loss of generality, we assume that all obstacles
are rectangular. We also assume that an obstacle oc-
cupies both the V-layer and H-layer (this is of course
a strong assumption, and current work is directed to
the case of per-layer obstacles). We first present the
analysis for uniform layer parasitics, then extend our
method to non-uniform layer parasitics; we also give
experimental results and describe an application to pla-
nar clock routing.

3.1. Analysis for Uniform Layer Parasitics

Given two merging regionsmr(a) andmr(b), the merg-
ing regionmr(v) of parent nodev is constructed from
joining segmentsLa ⊆ mr(a) and Lb ⊆ mr(b). Ob-
serve that a pointp ∈ mr(v) inside an obstacle can-
not be the feasible merging point. Furthermore, points
p, p′ ∈ SDR(La, Lb) may have different minimum
sums of pathlengths toLa andLb because obstacles that
intersectSDR(La, Lb) may cause different amounts of
detour wiring fromp and p′ to La andLb. We define
theplanar merging region pmr(v) to be the set of fea-
sible merging pointsp such that the pathlength of the
shortest planar path (without going through obstacles)
from La throughp to Lb is minimum (when the min-
imum pathlength fromLa to Lb is equal tod(La, Lb),
pmr(v) ⊆ mr(v)). Just as the merging regionmr(v) be-
comes a merging segmentms(v) under zero-skew rout-
ing, the planar merging regionpmr(v) becomes thepla-
nar merging segment pms(v) under zero-skew routing.
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Figure 5. Illustration of obstacle expansion rules.

The construction ofpmr(v) is as follows. If join-
ing segmentsLa andLb overlap,pmr(v) = mr(v) =
La ∩ Lb. Otherwise, we expand any obstacles that in-
tersect with rectilinear boundaries ofSDR(La, Lb) as
illustrated in Fig. 5 for four possible cases; these define
theObstacle Expansion Rules.

Case I.(expand as in Fig. 5(a)).

1. La = {p1}, Lb = {p2}, andp1 p2 has finite non-
zero positive slopem, i.e., 0< m < ∞.

2. La or Lb is a Manhattan arc of non-zero length
with slope−1.

Case II.(expand as in Fig. 5(b)).

1. La = {p1}, Lb = {p2}, andp1 p2 has finite non-
zero negative slopem, i.e.,−∞ < m < 0.

2. La or Lb is a Manhattan arc of non-zero length
with slope+1.

Case III. (expand as in Fig. 5(c)). Both joining seg-
ments are vertical segments, possibly of zero
length.

Case IV.(expand as in Fig. 5(d)). Both joining seg-
ments are horizontal segments, possibly of zero
length.

Figure 6. A “chain reaction” in the obstacle expansion.

In Case I, an obstacleO which intersects with the top
(bottom) boundary ofSDR(La, Lb) is expanded hori-
zontally toward the left (right) side untilO reaches the
left (right) boundary ofSDR(La, Lb). If O intersects
with the left (right) boundary ofSDR(La, Lb), then
O is expanded upward (downward) untilO reaches
the top (bottom) boundary ofSDR(La, Lb). Case II is
symmetric. In Case III, an obstacleO intersecting with
SDR(La, Lb) is expanded along the horizontal direc-
tion until O reaches both joining segments. Case IV
is symmetric, with expansion in the vertical direction4.
Finally, note that in Cases I and II an expanded obsta-
cleO can intersect with another obstacle, which is then
expanded in the same way; this sort of “chain reaction”
is illustrated in Fig. 6.

With these obstacle expansion rules, we may com-
plete the description of the planar merging region con-
struction. For child regionsmr(a) andmr(b) of node
v, pmr(v) is constructed as follows.

1. Apply the obstacle expansion rules to expand ob-
stacles.

2. Calculatepmr(v) = {p | p ∈ mr(v) − expanded
obstacles}.

3. Restore the sizes of all the expanded obstacles.
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4. If pmr(v) 6= ∅ then stop; continue with next step
otherwise.

5. Compute the shortest planar pathP betweenmr(a)

andmr(b).
6. Divide pathP into a minimum number of subpaths

Pi such that the pathlength ofPi , cost(Pi ), is equal
to the (Manhattan) distance between the endpoints
of Pi , i.e., if subpathPi = s ; t , thencost(Pi ) =
d(s, t).

7. Calculate delay and skew functions for each line
segment inP.

8. For each subpathPi which has a pointp with fea-
sible or minimum skew, use the endpoints ofPi as
the new joining segments. Then, calculate the pla-
nar merging regionpmri (v) with respect to the new
joining segments, using Steps 1, 2 and 3. (Note that
pmri (v) 6= ∅ sincep ∈ pmri (v)).

9. pmr(v) = ∪pmri (v), where subpathPi ⊆ P con-
tains a pointp with feasible or minimum skew.

Notice that the purpose of Step 6 is to maximize the
area ofpmr(v). As shown in Fig. 7, if we divide sub-
path P2 = y − z − t into two smaller subpathsy − z
and z − t , region pmr2(v) in the Figure will shrink
to be within the shortest distance regionSDR(y, z).
Thus, like the merging regions constructed by the BME
method, the planar merging regions will contain all the
minimum-cost merging points when no detouring oc-
curs. For the same reason stated in the Elmore-Planar-
DME algorithm [13] the planar merging regions along
the shortest planar path will not guarantee minimum
tree cost at the next higher level. Thus, it is possible
to construct and maintain planar merging regions along
several shortest planar paths. At the same time, if an in-
ternal nodev can have multiple planar merging regions,

Figure 7. Construction of planar merging regions along a shortest
planar path between child merging regions.

the number of merging regions may grow exponentially
during the bottom-up construction of merging regions
(this is the difficulty encountered by the IME method
of [5]). Our current implementation simply keeps at
mostk regions with lowest tree cost for each internal
node.

Finally, in the top-down phase of Ex-DME each node
v is embedded at a pointq ∈ Lv closest tol (p) (where
p is the parent node ofv), and thatLv ∈ mr(v) is one
of the joining segments used to constructmr(p). When
Lv is a Manhattan arc of non-zero length, there can
be more than one embedding point forv. However,
when obstacles intersectSDR(l (p), Lv), some of the
embedding pointsq ∈ Lv closest tol (p) may become
infeasible because the shortest planar path fromq to
l (p) has pathlength> d(l (p), Lv). To remove infeasi-
ble embedding points fromLv, we treatl (p) andLv as
two joining segments, then apply the obstacle expan-
sion rules as in Fig. 8(b). IfL ′

v denotes the portion of
Lv left uncovered by the expanded obstacles, the feasi-
ble embedding locations forv consist of the points on
L ′

v that are closest tol (p).

Figure 8. Modification of the embedding rule in the top-down phase
of the Ex-DME algorithm when there are obstacles in the routing
plane.
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Figure 9. A zero-skew solution for the 555-sink test case with 40
obstacles.

3.2. Experimental Results

Our obstacle-avoiding BST routing algorithm was
tested on four examples respectively having 50, 100,
150 and 555 sinks with uniformly random locations
in a 100 by 100 layout region; all four examples have
the same 40 randomly generated obstacles shown in
Fig. 9. For comparison, we run the same algorithm
on the same test cases without any obstacles. Details
of the experiment are as follows. Parasitics are taken
from MCNC benchmarks Primary1 and Primary2, i.e.,
all sinks have identical 0.5 pF loading capacitance and
the per-unit wire resistance and wire capacitance are
16.6 mÄ and 0.027 fF. For each internal node, we
maintain at mostk = 5 merging regions with low-
est tree cost. We use the procedure Find-Shortest-
Planar-Path of the Elmore-Planar-DME algorithm [13]
to find shortest planars-t paths. The current implemen-
tation uses Dijkstra’s algorithm in the visibility graph
G(V, E) (e.g., [14, 15]) whereV consists of the source
and destination pointss, t along with detour points
around the corners of obstacles. The weight|e| of edge
e = (p, q) ∈ E is computed on the fly; ife intersects
any obstacle, then|e| = ∞, else|e| = d(p, q). The
running time of obstacle-avoidance routing can be sub-
stantially improved with more sophisticated data struc-
tures for detecting the intersection of line segments and
obstacles, and faster path-finding heuristic in the geo-
metric plane. Table 2 shows that the wirelengths of

Table 2. Total wirelength and runtime for obstacle-avoiding BST
algorithm, for various instances and skew bounds. Sizes and locations
of obstacles are shown in Fig. 9. Numbers in parentheses are ratios to
corresponding (total wirelength, runtime) values when no obstacles
are present in the layout.

#Sinks 50 100 150 555

Skew Wirelength:µm (normalized)
bound CPU time: hr:min:sec (normalized)

0 8791.1(1.06) 11925.1(1.04) 14747.5(1.03) 28854.8(1.01)
00:00:04(4) 00:00:10(2) 00:00:15(2) 00:00:34(1)

1 ps 8048.7(1.09) 10761.4(1.04) 13388.5(1.03) 26240.0(1.04)
00:01:09(6) 00:05:20(7) 00:11:36(3) 00:44:14(10)

2 ps 7831.9(1.07) 10796.8(1.01) 12643.0(1.02) 25205.2(1.04)
00:01:47(8) 00:08:17(9) 00:20:55(10) 01:30:08(13)

5 ps 7140.9(1.04) 10493.6(1.08) 11598.8(1.01) 23648.0(1.04)
00:04:01(13) 00:15:16(11) 00:30:34(13) 01:30:08(13)

10 ps 7126.2(1.06) 9701.2(1.03) 11426.1(1.07) 22737.3(1.05)
00:06:13(14) 00:19:36(12) 00:36:30(12) 01:48:06(13)

20 ps 6831.6(1.13) 9296.4(1.03) 11606.0(1.10) 21641.7(1.05)
00:07:40(15) 00:21:56(10) 00:40:39(3) 03:42:52(24)

50 ps 6468.4(1.12) 8739.6(1.09) 10194.4(1.10) 22167.1(1.15)
00:10:36(15) 00:26:47(11) 01:00:50(13) 02:18:20(14)

100 ps 6484.7(1.20) 8588.2(1.11) 9295.6(1.02) 19086.6(1.01)
00:13:51(18) 00:30:16(9) 01:03:00(15) 03:06:23(17)

1 ns 6484.7(1.24) 8115.1(1.13) 9265.8(1.10) 17166.8(.99)
00:16:20(18) 00:36:52(11) 01:18:36(15) 07:24:38(12)

10 ns 6484.7(1.24) 8115.1(1.13) 9265.8(1.10) 16698.3(.99)
00:16:19(18) 00:36:43(11) 01:20:07(15) 03:18:20(7)

∞ 6484.7(1.24) 8115.1(1.13) 9265.8(1.10) 16698.3(1.02)
00:16:43(18) 00:36:52(11) 01:20:25(13) 03:21:11(7)

routing solutions with obstacles are very close to those
of routing solutions without obstacles (typically within
a few percent). Runtimes (reported for a Sun 85 MHz
Sparc-5) are significantly higher (by factors of up to
18 for the 50-sink instance) when the 40 obstacles are
present; we believe that this is due to our current naive
implementation of obstacle-detecting and path-finding.
Figure 9 shows the zero-skew clock routing solution for
the 555-sink test case.

3.3. Extension to Non-Uniform Layer Parasitics

When the layer parasitics are non-uniform, no joining
segment can be a Manhattan arc, so Cases I.2 and II.2
of the obstacle expansion rules are inapplicable. In
Cases III and IV, only one routing layer will be used to
merge the child regions, so the construction of planar
merging regions will be the same as with uniform layer
parasitics. Hence, the construction of planar merging
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Figure 10. Obstacle-avoidance routing for non-uniform layer par-
asitics when joining segmentsLa andLb are single points not on the
same vertical or horizontal line.

regions changes only for Cases I.1 and II.1, i.e., when
the joining segmentsLa andLb are two single points
which are not on the same vertical or horizontal line.

Since larger merging regions will result in smaller
merging costs at the next higher level, a reasonable
approach5 is to maximize the size of the merging region
constructed within each rectangleRi ⊆ SDR(La, Lb),
by expandingRi as shown in Fig. 10(b). After expan-
sion, “redundant” rectangles contained in the expan-
sions of other rectangles (e.g., rectanglesR2 and R5

in Fig. 10 are contained in the union of expansions of
R1, R3, R4, R6 and R7) can be removed to simplify
the computation. The merging region construction for
Cases I.1 and II.1 with non-uniform layer parasitics is
summarized as follows.

1. DivideSDR(La, Lb) into a set of disjoint rectangles
Ri by extending horizontal boundary segments of
the (expanded) obstacles inSDR(La, Lb).

2. Expand each rectangleRi until blocked by obsta-
cles.

3. Remove rectanglesRi that are completely contained
by other rectangles.

4. For each rectangleRi do:

• Letc ∈ Ri andd ∈ Ri be the corner points which
are closest to joining segmentLa andLb. Apply
prescribed routing patterns fromc to La and from
d to Lb.

• Calculate delays atc andd.
• Construct the merging region from pointsc and

d as as described in Section 2.

Finally, we notice that in planar clock routing, all
wires routed at a lower level become obstacles to sub-
sequent routing at a higher level. Also, in the obstacle-
avoidance routing, if some obstacle blocks only one
routing layer, then the routing over the obstacle must
be planar. In such cases, we may apply the concept of
the planar merging region to improve the planar clock
routing. In particular, we improve the Elmore-Planar-
DME algorithm [13, 16] by (i) constructing the pla-
nar merging segmentpms(v) for each internal nodev
of the input topologyG, and (ii) replacing the Find-
Merging-Path and Improve-Path heuristics of Elmore-
Planar-DME by construction of a shortest planar pathP
connectingv’s childrensandt viav’s embedding point
l (v) ∈ pms(v). Total wirelength can be reduced be-
causel (v) is now selected by the DME method opti-
mally from pms(v) instead of being selected heuris-
tically by Find-Merging-Path and Improve-Path in
Elmore-Planar-DME. Our experiments [17] show that
Elmore-Planar-DME is consistently improved by this
technique.

4. Buffered Clock Tree Synthesis

Finally, we extend our bounded-skew routing method
to handle the practical case of buffering hierarchies in
large circuits. There have been many works on buffered
clock tree designs. [18–20] determine the buffer tree
hierarchy for the given clock tree layout or topology.
[21, 22] design the buffer tree hierarchy and the rout-
ing of the clock net simultaneously. However, the pre-
vailing design methodology for clock tree synthesis is
that the buffer tree hierarchy is pre-designed before the
physical layout of the clock tree (e.g., see recent vendor
tools for automatic buffer hierarchy generation, such as
Cadence’s CT-Gen tool). In practice, a buffer hierar-
chy must satisfy various requirements governing, e.g.,
phase delay (“insertion delay”), clock edge rate, power
dissipation, and estimated buffer/wire area. Also, the
placement and routing estimation during chip planning
must have reasonably accurate notions of buffer and
decoupling capacitor areas, location of wide edges in
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the clock distribution network, etc. For these reasons,
buffer hierarchies are typically “pre-designed” well in
advance of the post-placement buffered clock tree syn-
thesis. So our work starts with a given buffer hierarchy
as an input; this defines the number of buffer levels
and the number of buffers at each level. We use the
notationkM − kM−1 − · · · − k0 to represent a buffer
hierarchy withki buffers at leveli , 0 ≤ i ≤ M . For
example, a 170-16-4-1 hierarchy has 170 buffers at
level 3, 16 buffers at level 2, etc. Note that we al-
ways havek0 = 1 since there is only one buffer at
the root of the clock tree. As in [19, 20, 22], to min-
imize the skew induced by the changes of buffer sizes
due to the process variation, we assume that identical
buffers are used at the same buffer level. (From the
discussion of our method below, we can see that our
method can work without this assumption by minor
modification.)

We propose an approach to bounded-skew clock tree
construction for a given buffer hierarchy. Our approach
performs the following steps at each level of the hier-
archy, in bottom-up order.

1. Cluster the nodes in the current level (i.e., roots of
subtrees in the buffer hierarchy, which may be sinks
or buffers) in the current level into the appropriate
number of clusters (see Section 4.1).

2. Build a bounded-skew tree for each cluster by ap-
plying the ExG-DME algorithm under Elmore de-
lay [5].

3. Reduce the total wirelength by applying a buffer
sliding heuristic (see Section 4.2).

4.1. Clustering

The first step is to assign each node (e.g., sink or buffer)
in the current leveli of the buffer hierarchy to some
buffer in level i − 1. The set of nodes assigned to a
given level i − 1 buffer constitute acluster. If there
are k buffers in the next higher level of the buffer
hierarchy, then this is ak-way clustering problem.
Numerous algorithms have been developed for geo-
metric clustering (see, e.g., the survey in [23]); our
empirical studies show that the K-Center technique of
Gonzalez [24] tends to produce more balanced clus-
ters than other techniques. Furthermore, the K-Center
heuristic has onlyO(nk) time complexity (assumingn
nodes at the current level). The basic idea of K-Center
is to iteratively selectk clustercenters, with each suc-
cessive center as far as possible from all previously

selected centers. After allk cluster centers have been
selected, each node at the current level is assigned to
the nearest center. Pseudo-code for K-Center is given
in Fig. 11 (reproduced from [23]), with Steps 0 and 3a
added to heuristically maximize the minimum distance
among thek cluster centers.

We propose to further balance the clustering solution
from K-Center using the iterative procedure PostBal-
ance in Fig. 12, which greedily minimizes the objective
function

∑
i =1,k Cap(Xi )

w. Here,

• Cap(Xi ) is the estimated total capacitance of the BST
(to be constructed in the second major step of our
approach) over sinks in clusterXi . In other words,
Cap(Xi ) = ∑

v ∈ Xi
cv + d(l (v), center(Xi )) · c,

Figure 11. Pseudocode for a modified K-center heuristic.

Figure 12. Procedure PostBalance.
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where cv is the input capacitance of nodev and
center(Xi ) is the Manhattan center of the nodes in
clusterXi as defined in [25, 16].6

• The numberw is used to trade off between balance
among clusters and the total capacitive load of all
clusters. A higher value ofw favors balanced clus-
tering, which usually leads to lower-cost routing at
the next higher level but can cause large total capac-
itive load at the current level. On the other hand,
w = 1 favors minimizing the total capacitive load
at the current level without balancing the capacitive
load among the clusters. Based on our experiments,
we usew = 5 to obtain all the results reported below;
this value seems to reasonably balance the goals of
low routing cost at both the current and next higher
levels7.

4.2. Buffer Sliding

Chung and Cheng [20] shift the location of a buffer
along the edge to its parent node to reduce or eliminate
excessive detouring. The motivation for their technique
is straightforward. In Fig. 13, subtreeT1 rooted atv1 is
driven by bufferb1, and subtreeT2 rooted atv2 is driven
by bufferb2. Let t2 be the delay from parent nodep to
child nodev2, and lett ′

2 be the delay from parent node
p to child nodev2 after bufferb2 slides toward nodep
over a distance ofx units. Letl = d(l (p), l (v2)). We
now have

t2 = rl (cl/2 + cb) + tb + rb · Cap(T2)

t ′
2 = r (l − x)(c(l − x)/2 + cb) + tb

+ rb(cx + Cap(T1)) + r x(cx/2 + Cap(T2))

t ′
2 − t2 = rcx2 + rbcx + r (Cap(T2) − cl − cb)x (9)

Notice that the coefficient of the last term in Eq. (9),
Cap(T2) − cl − cb, is always positive in practice be-
cause (i) the total wirelength ofT2 is larger than that of
the parent edge ofT2, and (ii) the sum of sink capac-
itances inT2 is larger than the input capacitance of a
buffer, so thatt ′

2 > t2. Also, as bufferb2 is moved closer
to its parent nodep, delayt ′

2 will increasingly exceed
t2. In the case wheret1 is so much larger thant2 that de-
tour wiring is necessary, we can slide bufferb2 so that
delay balance is achieved at pointp using less detour
wiring (see Fig. 13(a)). Even when no detour wiring is
necessary, the buffer sliding technique can still be used
to reduce routing wirelength at the next higher level of
the hierarchy. In Fig. 13(b), we reduce the wirelength

by constructing a minimal Steiner tree overb1 andb2.
Suppose the delay fromp′ to buffer b1 is larger than
that fromp′ to bufferb2, we can slide bufferb2 toward
the left, thus increasing the delay fromp′ to b2 such
that p′ can become the delay balance point.

There is a similar idea in [21], which reduces wire-
length by inserting an extra buffer. However, adding
a buffer will cause large extra delay and power dissi-
pation. Indeed, whenTa and Tb have similar delays,
excessive detour wirelength is inevitable when a buffer
is added at the parent edge of just one subtree. Hence,
the technique of [21] will be effective in reducing power
dissipation and wirelength only when the delays ofTa

and Tb are very different. ([21] also consider buffer
insertion only for the zero-skew case.)

We now give a buffer sliding heuristic, calledH3 (see
Fig. 14) that does not add any extra buffers and that can
handle any skew bound (we find, however, that it is less
effective for large skew bounds; see Section 4.3). H3
builds a low-cost treeTopt over a set of of buffersS
= {b1, . . . , bk} as follows. First, we construct a BST
T̄ under a new skew bound̄B ≥ B without buffer slid-
ing. Next, we calculate the delaydi

max (di
min) which

is the maximum (minimum) delay along any root-sink
path in T̄ that passes through bufferbi (Line 7). We
then calculatedmax = maxi =1,k{di

max} at Line 8. At
Line 10, we slide each bufferbi such that the min-delay
at its input is increased by max{0, dmax−di

min− B} and
skew(T̄) is reduced towardB. Finally, we build a new
treeT by re-embedding the topology ofT̄ according to
the original skew boundB (Line 9); this will minimize

Figure 13. Two examples showing how the buffer sliding technique
can eliminate (a) detour wiring or (b) routing wirelength at higher
levels of the buffer hierarchy.
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Figure 14. Procedure H3 (buffer sliding).

any potential increase in tree costcost(T) − cost(T̄).
The above steps are iterated for different skew bounds
B̄ > B, and the treeT with smallest total wirelength is
chosen asTopt. In general, when the new skew bound
B̄ is increasing,cost(T̄) will be decreasing. However,
the length of the wire inserted between each buffer and
its subtree root will increase when thēB becomes too
large, andcost(T) will stop decreasing after a certain
number of iterations. In all of our experiments, the pro-
cedure stops within 50 iterations.

4.3. Experimental Results

For the sake of comparison, we have also implemented
the following buffer sliding heuristics.

H0 No buffer sliding.
H1 Slide buffers to equalizemax t (bi ) for all 1 ≤ i ≤

k, i.e., the max-delay from the input of each buffer
bi to sinks which are the descendants ofbi . This is
the buffer sliding technique used in [19, 22].

Figure 15. Total wirelength achieved by different buffer sliding
heuristics on benchmark circuit r1 with a 32-1 buffer hierarchy. The
wirelength unit is 100µm. Buffer parameters are output resistance
rb = 100 Ä, input capacitancecb = 50 fF, and internal delay
tb = 100 ps. Note that the X axis is on a logarithmic scale.

H2 Slide buffers to equalizemax t (bi ) andmax t (bj )

wherebi andbj are the sibling buffers.

Figure 15 shows the total wirelength reduction
achieved by the various buffer sliding heuristics on
benchmark circuit r1 with a 32-1 buffer hierarchy. H3
is consistently better than other heuristics for the skew
bound from 0 to 50 ps. When the skew boundB is larger
than 50 ps, the tree cost reductioncost(T) − cost(T̄)

is very slight for anyB̄ > B, and hence when we push
skew(T̄) back toB by buffer sliding, there is almost
no gain in the total wirelength. Therefore, heuristic
H3 will be the same as H0 when the skew bound is
sufficiently large. A more detailed comparison of total
wirelength reduction achieved by different buffer slid-
ing heuristics is given in Table 3, which shows that H3
is consistently better than other heuristics for different
skew bounds and buffer hierarchies. In the table, we
also report ratios of tree costs, averaged over the five
test cases, for each heuristic versus H3 (i.e., we norma-
lize the tree costs against the H3 tree cost). For the zero
skew regime, the heuristics H0, H1 and H2 respectively
require 6.9%, 10.6% and 3.0% more wirelength on av-
erage than our heuristic H3. And for the 50 ps skew
regime, the heuristics H0, H1 and H2 respectively re-
quire 3.1%, 17.0% and 1.1% more wirelength on aver-
age than our heuristic H3. Notice that heuristic H1, the
method used in [19, 22], actually has the largest total
wirelength in most cases.
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Table 3. Detailed comparison of total wirelength achieved by different buffer sliding heuristics on benchmark circuits
r1–r5 with two types of 2-level buffer hierarchy and one type of 3-level buffer hierarchy. The wirelength unit and buffer
parameters are the same as those in Fig. 15.

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

Skew bound= 0 Skew bound= 10 ps

Buffer hierarchy: 2
√

n − 1

H0 1,486 2,984 3,728 7,718 11,193 (1.059) 1,242 2,446 3,095 6,279 9,102 (1.061)

H1 1,483 3,207 3,855 8,829 11,567 (1.119) 1,232 2,850 3,175 7,710 9,785 (1.164)

H2 1,458 2,941 3,651 7,408 10,852 (1.032) 1,185 2,400 3,012 6,018 8,773 (1.025)

H3 1,404 2,802 3,553 7,261 10,589 (1.000) 1,172 2,314 2,921 5,907 8,549 (1.000)

Buffer hierarchy:
√

n − 1

H0 1,497 2,923 3,733 7,476 11,185 (1.044) 1,231 2,516 3,053 6,128 9,128 (1.060)

H1 1,447 2,896 3,848 7,661 11,418 (1.051) 1,219 2,408 3,207 6,297 9,470 (1.073)

H2 1,450 2,825 3,646 7,319 10,878 (1.015) 1,170 2,419 2,982 5,972 8,820 (1.023)

H3 1,432 2,797 3,584 7,175 10,713 (1.000) 1,159 2,340 2,893 5,872 8,597 (1.000)

Buffer hierarchy:n2/3 − n1/3 − 1

H0 1,626 3,259 4,017 7,971 11,989 (1.104) 1,306 2,693 3,375 6,713 9,816 (1.112)

H1 1,558 3,297 4,168 8,912 12,982 (1.149) 1,258 2,926 3,547 7,870 10,954 (1.198)

H2 1,556 2,989 3,808 7,594 11,368 (1.042) 1,234 2,470 3,136 6,379 9,204 (1.040)

H3 1,476 2,877 3,636 7,374 10,921 (1.000) 1,193 2,361 3,020 6,152 8,813 (1.000)

Skew bound= 20 ps Skew bound= 50 ps

Buffer hierarchy: 2
√

n − 1

H0 1,185 2,375 2,950 6,021 8,736 (1.059) 1,074 2,168 2,780 5,630 8,245 (1.018)

H1 1,182 2,626 3,127 7,323 9,401 (1.155) 1,200 2,565 3,110 7,061 9,021 (1.174)

H2 1,147 2,245 2,893 5,816 8,397 (1.021) 1,109 2,170 2,745 5,530 7,918 (1.010)

H3 1,112 2,216 2,845 5,695 8,231 (1.000) 1,073 2,158 2,736 5,477 7,822 (1.000)

Buffer hierarchy:
√

n − 1

H0 1,196 2,404 2,971 5,937 8,708 (1.058) 1,127 2,224 2,772 5,504 8,416 (1.064)

H1 1,153 2,370 3,116 6,116 9,248 (1.077) 1,127 2,169 2,920 5,706 8,855 (1.089)

H2 1,146 2,280 2,944 5,743 8,397 (1.022) 1,061 2,115 2,685 5,404 8,005 (1.020)

H3 1,135 2,228 2,839 5,617 8,271 (1.000) 1,053 2,080 2,607 5,261 7,854 (1.000)

Buffer hierarchy:n2/3 − n1/3 − 1

H0 1,267 2,538 3,125 6,396 9,350 (1.089) 1,132 2,344 2,913 5,823 8,551 (1.011)

H1 1,256 2,780 3,494 7,532 10,806 (1.206) 1,262 2,891 3,439 7,735 11,182 (1.248)

H2 1,191 2,401 2,969 6,077 8,811 (1.030) 1,145 2,301 2,856 5,786 8,475 (1.003)

H3 1,158 2,339 2,893 5,864 8,536 (1.000) 1,112 2,312 2,937 5,684 8,327 (1.000)

5. Conclusions

In this work, we have extended the bounded-skew rout-
ing methodology to encompass several very practi-
cal clock routing issues: non-uniform layer parasitics,
non-zero via resistance and/or capacitance, existing ob-
stacles in the metal routing layers, and hierarchical
buffered tree synthesis. For the case of varying layer

parasitics, we prove that if we prescribe the routing
pattern between any two points, merging regions are
still bounded by well-behaved segments except that
no boundary segments can be Manhattan arcs of non-
zero length. Our experimental results show that tak-
ing into account non-uniform layer parasitics can be
accomplished without significant penalty in the clock
tree cost. Our solution to obstacle-avoidance routing
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is based on the concept of aplanar merging region
which contains all the feasible merging pointsp such
that the shortest planar path between child merging
regions viap is equal to the shortest planar path be-
tween child merging regions taking into consideration
the given obstacles. Again, our experimental results are
quite promising: even for the relatively dense obstacle
layout studied, obstacle-avoidance clock routing seems
achievable without undue penalty in clock tree cost. Fi-
nally, we extend the bounded-skew routing approach to
address buffered clock trees, assuming (as is the case in
present design methodologies) that the buffer hierarchy
(i.e., the number of buffers at each level and the number
of levels) is given. A bounded-skew buffered clock tree
is constructed by performing three steps for each level
of the buffer hierarchy, in bottom-up order: (i) cluster
sinks or roots of subtrees for each buffer; (ii) build a
bounded-skew tree using the ExG-DME algorithm un-
der Elmore delay [5] for each cluster; and (iii) reduce
the total wirelength by the H3 buffer sliding heuristic.
Our experimental results show that H3 achieves very
substantial wirelength improvements over the method
used by [19, 22], for a range of buffer hierarchy types
and skew bounds.

Notes

1. One minor caveat is that the “merging region” of [3–5] is not
a complete generalization of the DME merging segment: when
detour wiring occurs or when sibling merging regions overlap, the
merging region may not contain all the minimum-cost merging
points.

2. We assume that there are only two routing layers. Our approach
can easily extends to multiple routing layers.

3. However, when detouring occurs, both the H-layer and V-layer
will be used for the detour wiring. It is easy to calculate the extra
wirelength on both layers if we prescribe the routing pattern for
detour wiring.

4. Strictly speaking, there can be joining segments with slopes other
than±1, 0, and∞ although they are not encountered in practice.
For the case of joining segments with slopesm with |m| > 1
(|m| < 1), we expand obstacles as in Case III (IV).

5. The simplest approach is to divideSDR(La, Lb) into a set of
disjoint rectanglesRi that contains no obstacles, as shown in Fig.
10(a). Letc ∈ Ri andd ∈ Ri be the corner points closest to
joining segmentsLa and Lb. If prescribed routing patterns are
assumed for the shortest paths fromc to La and fromd to Lb,
delays atc andd are well-defined. Since there are no obstacles
inside Ri , the planar merging region can be constructed from
pointsc andd for non-uniform layer parasitics using the methods
of Section 2.

6. More accurate models for estimating the load capacitance of a
cluster are of course possible, but have surprisingly little effect.
Indeed, we implemented the best possible model (which is to ac-
tually execute the BST construction whenever a BST estimate is

required) but this did not result in noticeable performance im-
provement.

7. We also investigated less greedy iterative methods that have the
same general structure as the classic KL-FM partitioning heuris-
tics. For example, an analog of the KL-FM pass might always
expand the cluster with smallest estimated load capacitance by
shifting the closest “unlocked” node in another cluster; as in
KL-FM, a node that is moved becomes locked for the remain-
der of the pass to prevent cycling. In our experience, such more
complicated heuristics do not achieve noticeably different results
from the simple method we describe.
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