
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 10, OCTOBER 1997 1199

(4), sincev00

out is ignored:

H11 =
f (z)

g(z)

H12 =
zf (z)

g(z)

(15)

where

f1(z) = �CBCDCK + CACECK + z2(�CACBCG
+ CBCDCI + 2CBCDCK � CACECK)

� z4(CBCDCI + CBCDCK)

f2(z) = CACBCH � CBCDCJ � CACECK + CACBCL
+ z2(CBCDCJ + CACECK � CACBCL)

g(z) = C2
BCD � CACBCE + z2(CACBCC
� 2C2

BCD + CACBCE � CBCDCF)

+ z4(C2
BCD + CBCDCF):

(16)

In the bilinear SC resistor simulation all the switches change position
twice for each input sample [1]. The transfer function is given by

H(z) =
vin(z)H11(z

1=2
) + z�1=2vin(z)H12(z

1=2
)

vin(z)

=
f1(z

1=2
) + f2(z

1=2
)

g(z1=2)
(17)

which gives

H(z) = (CACH � CDCJ � CDCK + CACL

+ z(�CACG + CDCI + CDCJ + 2CDCK � CACL)

� z
2
(CDCI + CDCK))=(CBCD � CACE

+ z(CACC � 2CBCD + CACE � CDCF) + z
2
(CBCD

+ CDCF)): (18)

The exact analytic results produced by symbolic methods are
generally difficult to interpret due to the large number of terms
involved. Fortunately, we are able to approximate these expressions
based on the magnitude of the individual circuit parameters. There
are several methods that can be used for the approximation procedure
[3], [5]. For example, CASCA truncates all terms that are some factor
smaller than the largest term.

VII. CONCLUSION

This paper presents a method that can be used to perform time-
discrete analysis using any symbolic analysis tool intended for
analysis of time-continuous networks. An equivalent analog circuit is
used to describe the capacitors in the SC network and the inductive
transsusceptance is used to model the interaction between clock
phases. Simple variable substitutions allow us to model the time-
discrete behavior using only time-continuous network elements. The
nullor is used to model switches and ideal operational amplifiers
where each nullor reduces the rank of the compacted nodal analysis
matrix by one.

REFERENCES

[1] P. E. Allen and E. S´anchez-Sinencio,Switched Capacitor Circuits.
New York: Van Nostrand Reinhold, 1984.

[2] P. E. Fleischer and K. R. Laker, “A family of active switched capacitor
biquad building blocks,”Bell Syst. Tech. J., vol. 58, no. 10, pp.
2235–2269, Dec. 1979.

[3] H. Floberg, “Computer aided symbolic circuit analysis,” Thesis, Dept.
Appl. Electron., Lund University, Lund, Sweden, Dec. 1992.

[4] H. Floberg, “CASCA” Tutorial, Dept. Appl. Electron., Lund University,
Lund, Sweden, 1994.

[5] G. Gielen, H. Walscharts, and W. Sansen, “ISAAC: A symbolic sim-
ulator for analog integrated circuits,”IEEE J. Solid-State Circuits, pp.
1587–1597, Dec. 1989.

[6] P.-M. Lin, Symbolic Network Analysis. Amsterdam, The Netherlands:
Elsevier, 1991.

[7] C. F. Kurth and G. S. Moschytz, “Nodal analysis of switched-capacitor
networks,” IEEE Trans. Circuits Syst., vol. CAS-26, pp. 93–105, Feb.
1979.

[8] , “Two-port analysis of switched-capacitor networks using four-
port equivalent circuits in thez-domain,” IEEE Trans. Circuits Syst.,
vol. CAS-26, pp. 166–180, Mar. 1979.

[9] E. Hökenek and G. S. Moschytz, “Analysis of general switched-
capacitor networks using indefinite admittance matrix,”Proc. Inst. Elect.
Eng., vol. 127, pp. 21–33, Feb. 1980.

On Implementation Choices for Iterative
Improvement Partitioning Algorithms

Lars W. Hagen, Dennis J.-H. Huang, and Andrew B. Kahng

Abstract—Iterative improvement partitioning algorithms such as the
FM algorithm of Fiduccia and Mattheyses [8], the algorithm of Krish-
namurthy [13], and Sanchis’s extensions of these algorithms to multiway
partitioning [16] all rely on efficient data structures to select the modules
to be moved from one partition to the other. The implementation choices
for one of these data structures, thegain bucket, is investigated. Surpris-
ingly, selection from gain buckets maintained as last-in-first-out (LIFO)
stacks leads to significantly better results than gain buckets maintained
randomly (as in previous studies of the FM algorithm [13], [16]) or as first-
in-first-out (FIFO) queues. In particular, LIFO buckets result in a 36%
improvement over random buckets and a 43% improvement over FIFO
buckets for minimum-cut bisection. Eliminating randomization from the
bucket selection not only improves the solution quality, but has a greater
impact on FM performance than adding the Krishnamurthy gain vector.
The LIFO selection scheme also results in improvement over random
schemes for multiway partitioning [16] and for more sophisticated parti-
tioning strategies such as the two-phase FM methodology [2]. Finally, by
combining insights from the LIFO gain buckets with the Krishnamurthy
higher-level gain formulation, a new higher-level gain formulation is
proposed. This alternative formulation results in a further 22% reduction
in the average cut cost when compared directly to the Krishnamurthy
formulation for higher-level gains, assuming LIFO organization for the
gain buckets.

Index Terms—Fiduccia–Mattheyses algorithm, gain bucket implemen-
tation, hypergraph partitioning, iterative movement, Kernighan–Lin al-
gorithm, multiway partitioning, VLSI netlist partitioning.

I. INTRODUCTION

In production software for circuit partitioning, iterative improve-
ment is a nearly universal approach, either as a postprocessing
refinement to other methods or as a method in itself. Iterative

Manuscript received January 26, 1995; revised September 22, 1995. This
work was supported in part by NSF Grant MIP-9257982 and matching funds
from High-Level Design Systems. This paper was recommended by Associate
Editor C.-K. Cheng.

L. Hagen is with Cadence Design Systems, Inc., San Jose, CA 95134 USA
(e-mail: lars@cadence.com).

D. Huang is with AvanWise, Inc., Fremont, CA 94538 USA (e-mail:
dhuang@avanticorp.com).

A. Kahng is with the Department of Computer Science, University of
California, Los Angeles, CA 90095-1596 USA.

Publisher Item Identifier S 0278-0070(97)09243-9.

0278–0070/97$10.00 1997 IEEE

1200 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 10, OCTOBER 1997

Fig. 1. Average number of modules in the highest-gain bucket at each move during the first pass of FM for two, three, and four-way balanced partitioning
for test case Primary1 (833 modules). The average numbers were generated from 1000 separate FM runs.

improvement partitioning algorithms are typically variants of the
Kernighan-Lin method (KL) [11], [18] or its algorithmic speedup by
Fiduccia and Mattheyses (FM) [8]. Examples of more recent methods
are due to Krishnamurthy [13], Sanchis [16], Dutt [7], Hoffman
[10], Dasdan and Aykanat [6], and Saab [15]. Iterative improvement
algorithms such as KL and FM start with a current feasible solution
and iteratively perturb it into another feasible solution, adopting the
perturbation as the next solution only if it improves the cost function.
The type of perturbation (or “move”) used determines a topology over
the set of feasible solutions, known as aneighborhood structure. For
the cost function to be “smooth” over the neighborhood structure,
the perturbation (also known as aneighborhood operator) should be
small and “local.” In netlist partitioning, the cost function is typically
the number of nets cut; a given move hasgain corresponding to the
decrease in cut nets that would result from the move.

Over the past decade, FM has become perhaps the single most
widely used and cited partitioning algorithm in the very large scale
integration (VLSI) CAD area. The primary difference between the KL
and FM algorithms lies in their respective neighborhood operators.
KL iteratively makes a highest-gain swap of a pair of modules
between two partitions; FM iteratively makes a highest-gain shift of
a single module from one partition to another.1 This subtle difference
allows FM to achieve significant improvement in runtime with little
loss in solution quality. FM amortizes the cost of updating the module
gains, such that the total cost of finding the highest-gain module is
O(p) per pass, wherep is the total number of pins. The enabling data
structure is an array of “gain buckets” which groups the modules of
a given partition according to their gains.

Many works have investigated possible improvements and ex-
tensions to the FM algorithm. One often cited extension is that of
Krishnamurthy [13], which introduces efficient “look-ahead” into the
FM algorithm to improve tie-breaking when the highest-gain bucket
contains more than one module. Specifically, Krishnamurthy extends
the gain value of a module into a gainvectorwhich stores a sequence
of potential gain values corresponding to sets of future moves. Given
a U=W partition, Krishnamurthy defines thebinding number�U (s)
of signal nets with respect to partitionU to be the number of

1A passof each algorithm generates such moves until every module has
been moved exactly once, then adopts the prefix of this move sequence with
highest total gain. When a pass results in zero gain, the algorithm terminates.

unlocked modules ofs in partitionU , unless there is a locked module
of s in partitionU , in which case�U (s) =1. Intuitively, the binding
number�U (s) is a measure of how difficult it is to move nets out
of partitionU . The binding number�W (s) is similarly defined. The
kth-level gaink(vi) of modulevi 2 U is then given by2

k(vi) = jfs 2 E j vi 2 s; �U (s) = k; �W (s) > 0gj

� jfs 2 E j vi 2 s; �U (s) > 0; �W (s) = k � 1gj:

Each elementk(vi) in the gain vector corresponds to thekth-level
gain of modulevi. Note that the first-level gain1(vi) corresponds
to the gain used in the FM algorithm.

Intuitively, the positive term (i.e., first term) in the formula for
k counts nets with binding numberk � 1 that are “created” (for
the partition that the module is moving “from”) by the move, while
the negative term (i.e., second term) counts nets with binding number
k�1 that are “destroyed” (for the partition that the module is moving
“to”) by the move. Krishnamurthy’s method uses lexicographic
ordering of the vectors (1; 2; 3; � � �) to break ties when an
FM gain bucket contains more than one module. Krishnamurthy
compared his FM plus higher-level gain (FM+HL) algorithm with the
original FM algorithm and found that adding second- and third-level
gains improved the average solution quality with onlyO(kp) added
computational expense, wherek is the number of values maintained
in (i.e., the size of) the gain vector. This was confirmed by Sanchis
[16], who extended FM+HL (and thus implicitly FM as well) to
multiway partitioning.

II. TIE-BREAKING IN THE FIDUCCIA–MATTHEYSES ALGORITHM

During a typical pass of FM, there are usually many ties (i.e.,
the highest-gain bucket will contain more than one module). Fig. 1
shows the number of modules in the highest-gain bucket at each

2The notation used for the Krishnamurthy formulas are adapted from [13].
Note that in order to handle 1-pin nets correctly, the term�U (s) > 0 should
be changed to�U (s) > 1. However, 1-pin nets can also be eliminated while
reading in the netlist, obviating the need for such a change.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 10, OCTOBER 1997 1201

TABLE I
AVERAGE CUTSIZE RESULTS FOR100 RUNS OF FM (COLUMN 3) AND KRISHNAMURTHY HIGHER-LEVEL GAINS (COLUMNS 4-6) USING LIFO, RANDOM, AND FIFO

ORGANIZATION SCHEMES FOR THEGAIN BUCKETS. THE NUMBERS IN PARENTHESESGIVE THE MINIMUM CUTSIZES OBSERVED OVER 100 RUNS

move throughout the first pass of FM for the Primary 1 test case
in two-way, three-way, and four-way balanced partitioning (we plot
the average over 1000 runs). Note that on average there are more
modules in the highest-gain bucket during two-way partitioning than
during three-way or four-way partitioning.

From the figure accompanying the algorithm description in [8]
one can infer that the Fiduccia and Mattheyses gain buckets function
as last-in-first-out (LIFO) stacks (remove at head, insert at head).
However, the gain buckets could just as easily function as first-
in-first-out (FIFO) queues (remove at head, insert at tail) while
supporting the same algorithmic complexity. Neither Krishnamurthy
nor Sanchis points out any tie-breaking schemes for cells with
identical gains. In fact, both used randomized selection in case of
ties.

In the following section we compare LIFO selection with random
selection (used by Sanchis [16]) and FIFO selection (an alternative
organization which as far as we know has never been used before).
Our testbed is the code distributed by Sanchis [17] with appropriate
modifications made for handling LIFO and FIFO selection. In all of
our experiments, we assume the modules have unit area and constrain
the partition sizes to differ by at most one.

III. EXPERIMENTAL RESULTS FORMIN CUT BISECTION

Our first experiment compares tie-breaking schemes in (two-way)
minimum-cut bisection. Table I gives the average and minimum
cutsizes for 100 FM runs using the three selection schemes (LIFO,
random, and FIFO). The “Pure FM” column of Table I clearly
shows the effects of the selection methodology. Surprisingly, the
FIFO scheme is much worse than random selection. The LIFO
scheme, on the other hand, gives considerable improvement over
random selection. An explanation for this improvement may be
that organizing the buckets such that the “most recently visited”
modules are placed near the beginning of the buckets implicitly
causes neighborhoods or clusters of modules to be moved together.
Furthermore, since there are two bucket gain structures, one for each
partition, it is possible for each partition to “pull” on different clusters
while maintaining the balance. If these clusters are noninterfering, i.e.,
widely separated, more of the early moves will result in positive gain,
enabling the current pass to reach a lower-cost point in the solution
space. In other words, within each pass the solution cost curve will

have a relatively sharper decline, and stay at lower costs as it returns
back to the initial cost.3

Columns 4–6 of Table I show the effects of LIFO, random, and
FIFO selection schemes on the Krishnamurthy higher-level gains
[13]. Introducing second-level (k = 2) and in some cases third-level
(k = 3) gain seems to improve the solution quality for random and
FIFO selection schemes. With regard to LIFO selection, we note the
following.

• For constantk, the LIFO results are consistently better than the
random or FIFO results.

• For each of the test cases, thek = 1 (FM) results using LIFO
selection are significantly better than the results for anyk using
random or FIFO selection. In other words, the gain bucket
organization has a greater effect on solution quality than the
number of gain elements considered.

• For test cases industry3 and avq.small, thek = 1 (FM) results
are better than thek > 1 results under the LIFO scheme. Recall
that the Krishnamurthy gain formula favors a module in a net
that is locked to the side the module is moving to, and disfavors
a module in an unlocked net having few modules on the side the
module is moving to. In some sense, the LIFO organization has
a similar function but with no penalty for moving a module that
belongs to unlocked nets. That Krishnamurthy gains occasionally
perform worse than LIFO FM suggests that following previously
moved modules (i.e., moving to the side to which a net is locked)
is more important than “staying away from the minority” (i.e.,
not moving to the side having very few modules of the incident
nets).

IV. EXPERIMENTAL RESULTS FORMULTIWAY PARTITIONING

We have also tested the LIFO, random, and FIFO selection
schemes for three-way and four-way balanced partitioning using
Sanchis’s [16] extension to multiway partitioning of the FM algorithm
and Krishnamurthy’s higher-level gains. Tables II and III give the
average and minimum cutsizes over 50 FM runs using the three
selection schemes. We measure cutsize as the number of nets cut
by the partitioning. The results show that although LIFO gives

3In bipartitioning, the cost at the end of the pass is exactly the same as the
cost at the beginning of the pass.

1202 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 10, OCTOBER 1997

TABLE II
AVERAGE CUTSIZE RESULTS FOR50 RUNS OF THREE-WAY FM AND KRISHNAMURTHY HIGHER-LEVEL GAINS (COLUMNS 4-6) USING LIFO, RANDOM,

AND FIFO ORGANIZATION SCHEMES FOR THEGAIN BUCKETS. THE NUMBERS IN PARENTHESESGIVE THE MINIMUM OBSERVED CUTSIZES

TABLE III
AVERAGE CUTSIZE RESULTS FOR50 RUNS OF FOUR-WAY FM AND KRISHNAMURTHY HIGHER-LEVEL GAINS (COLUMNS 4–6) USING LIFO, RANDOM,

AND FIFO ORGANIZATION SCHEMES FOR THEGAIN BUCKETS. THE NUMBERS IN PARENTHESESGIVE THE MINIMUM OBSERVED CUTSIZES

TABLE IV
AVERAGE CUTSIZE RESULTS FOR100 RUNS OF TWO-PHASE FM FOR MINIMUM -CUT BISECTION USING LIFO, RANDOM, AND FIFO

ORGANIZATION SCHEMES FOR THEGAIN BUCKETS. THE NUMBERS IN PARENTHESESGIVE THE MINIMUM OBSERVED CUTSIZES

better results than both random and FIFO, the overall gain is much
less than was observed for two-way partitioning. Furthermore, the
Krishnamurthy higher-level gains appear to play a bigger part for
multiway partitioning than for two-way partitioning.

Notice that there is much less variability in the multiway par-
titioning results, i.e., the minimum is relatively close in value to
the average. One explanation for the lack of solution variance is

that having on average fewer modules in the highest-gain bucket
(recall Fig. 1) may reduce the importance of tie breaking. Another
observation, which may help explain why the Krishnamurthy gain
vector is more important for multiway partitioning, is that there are
now several possible destination partitions for a given module; thus,
the direction in which a module may be “pulled” by previously moved
modules is no longer unique.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 10, OCTOBER 1997 1203

TABLE V
RESULTS COMPARING OUR NEW MULTILEVEL GAIN FORMULATION WITH KRISHNAMURTHY’S MULTILEVEL GAIN FORMULATION USING THE LIFO ORGANIZATION

SCHEMES FOR THEGAIN BUCKETS. THE AVERAGES ARE BASED ON 100 RUNS; NUMBERS IN PARENTHESESGIVE THE MINIMUM OBSERVED CUTSIZES

TABLE VI
AVERAGE CUTSIZE RESULTS FOR100 RUNS OF OUR NEW MULTILEVEL GAIN FORMULATION (COLUMNS 4–6) USING LIFO, RANDOM, AND FIFO

ORGANIZATION SCHEMES FOR THEGAIN BUCKETS. THE NUMBERS IN PARENTHESESGIVE THE MINIMUM OBSERVED CUTSIZES

V. EXPERIMENTAL RESULTS FORTWO-PHASE FM

Our third set of experiments tests the LIFO, random, and FIFO
selection schemes within the so-called two-phase FM approach. Two-
phase FM [3], [9], which has gained attention recently due to much
better results than “single-phase” FM, is essentially the state of the
art in iterative partitioning (see, e.g., [5]). The method generates a
partition by running two FM phases on the netlist. In phase I, a
clustering of the netlist is constructed and FM is run on this clustered
instance, after which phase II uses the “flattened” solution from phase
I as the starting solution for running FM on the original netlist.4

Table IV gives the LIFO, random, and FIFO results for two-phase
FM using the recent WINDOW clustering of [2].5 As in Table I,

4The balance constraint of the FM algorithm on the clustered netlist is set
to half the total area� the size of the largest cluster. This “relaxation” of
the balance constraint is necessary to allow FM to find a good partitioning
solution of the clustered netlist. In phase II, which uses the clustered netlist
solution as the starting point, an initial set of greedy moves is performed to
get a solution satisfying the balance constraints for bisection (half the total
area�1).

5The WINDOW clustering algorithm first generates a linear ordering of
the modules according to a specific “attraction function” and then uses
dynamic programming to split the linear ordering optimally based on the
clustering objective function. The orderings used correspond to the “scaled
cost” (generalized ratio-cut) metric proposed by Chanet al. [4].

there is a noticeable difference among the three selection schemes.
LIFO selection is consistently better than either random or FIFO
selection, with average improvement of LIFO over random being
12%. Furthermore, the LIFO two-phase FM results are 41% better
than the LIFO results for single-phase FM. These results demonstrate
that the bucket organization also plays a part within sophisticated
partitioning approaches.

VI. A K RISHNAMURTHY VARIANT FOR MIN CUT BISECTION

The observation in Section III, that it may be more important
to move modules which are incident to locked nets, suggests an
alternative multilevel gain formulation for two-way partitioning. If
a net is cut, and only one partition contains locked modules incident
to this net, higher priority in moving should be given to the modules
in the partition having no locked modules incident to this net. Such
an objective can be achieved by increasing the gain elements of a
module each time it is incident to a net which becomes locked to the
opposite partition. For instance, assume modulea is being evaluated
for a move from partitionU to partitionW . If a net which contains
modulea has at least one module locked in partitionW , and only
free modules in partitionU , we will increase allkth-level gains by
1, for k � 2. We avoid changing the first-level gain since it should

1204 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 10, OCTOBER 1997

Fig. 2. Evolution of the gain vector for modulee in a five-pin net (a, b,
c, d, e) according to the Krishnamurthy level gain formulation and our new
gain formulation.

always reflect the “actual” gain resulting from a move of this module.
However, we add one to all the other gain levels so that the increased
priority is guaranteed to affect the tie-breaking.

Our alternative gain formulation can be expressed as follows for
k � 2:

k(vi) = jfs 2 E j vi 2 s; �U (s) = k; �W (s) > 0gj

� jfs 2 E j vi 2 s; �U (s) > 0; �W (s) = k � 1gj

+ jfs 2 E j vi 2 s; 0 < �U (s) <1; �W (s) =1gj:

The first two terms are identical to Krishnamurthy’s formulation
[13]. The third term is new and represents the “attraction” to
locked modules. Fig. 2 contrasts the evolution of Krishnamurthy’s
gain vector against that of the gain vector resulting from our new
formulation. Initially, an uncut net contains modulesa; b; c; d; ande
and both gain vectors for modulee are (-1, 0, 0, 0, 1). After modulea
is moved to the other partition and becomes locked, the gain vector of
modulee is changed to (0, 0, 0, 1, 0) in Krishnamurthy’s formulation,
but is changed to (0, 1, 1, 2, 1) in our formulation. When module
e is the only remaining module (case 5), the gain vectors are (1, 0,
0, 0, 0) and (1, 1, 1, 1, 1) for Krishnamurthy’s and our formulation,
respectively. Note that in this last case, the Krishnamurthy gain vector
will not distinguish between modulee and some other modulex
having gain vector (1, 0, 0, 0, 0), where none of the nets incident to
x have locked modules. Again, this may be an important difference
since one would seemingly prefer to “uncut” the locked net incident
to modulee before committing the unlocked net incident to module
x. Our experimental results also seem to support this view.

We tested our new gain formulation using the same LIFO, random,
and FIFO selection schemes described in Section II. Table V com-
pares LIFO results using our new formulation against LIFO results
using the original Krishnamurthy formulation. The third column
(pure FM) results are identical since our new formulation does not
affect the first-level gain. Overall, we achieve 22% improvement
over Krishnamurthy’s formulation; in some cases (e.g., industry2 and

avq.small) our formulation leads to substantial reduction in the size
of the minimum cuts found.

Table VI shows the LIFO, random, and FIFO results for our
new gain formulation. Just as with the Krishnamurthy formulation,
the results using a LIFO selection scheme with our new formu-
lation are significantly better than the results using random or
FIFO selection schemes. Notice, however, that the second-level gain
results (column 4) using random and FIFO selection schemes show
significant improvement over the pure FM results (column 3) with
our new formulation. This is in sharp contrast to the results using the
Krishnamurthy formulation, which did not show much improvement
with higher-level gains using either random or FIFO selection. An
explanation for this might be that with our new formulation, the
higher-level gains are computed more carefully and tend to obviate
the need for a “good” selection scheme (i.e., the results for random
and FIFO will more closely mirror the results of LIFO as the length
of the gain vectors increases). Also, our new formulation explicitly
gives higher priority to the neighbors of moved modules, which is
similar to the effect of the LIFO selection scheme.

VII. CONCLUSION

We have shown that implementation choices play an important part
for both the FM algorithm of Fiduccia and Mattheyses [8] and the
algorithm of Krishnamurthy [13]. In particular, selection from gain
buckets based on the implicit ordering of a linked list representation is
advantageous and will result in improved partitioning solutions. Elim-
inating randomization from the bucket selection not only improves
the solution quality, but has a greater impact on FM performance than
adding the Krishnamurthy gain vector. This reopens the question of
interpreting such seminal works in the literature as [16] and [13],
whose studies used random bucket selection. Organizing the gain
buckets as LIFO stacks leads to a 36% improvement versus random
bucket organization and a 43% improvement versus FIFO queues.
We have also presented an alternative higher-level gain formulation,
based on Krishnamurthy’s approach, which incorporates some of the
intuition behind the LIFO organization. This alternative formulation
results in a further 22% reduction in the average cut cost when
compared directly to the Krishnamurthy formulation for higher-level
gains, assuming LIFO organization for the gain buckets.

We believe that a more detailed study is necessary to better
understand the effect of choices in the FM implementation on the
solution quality and runtime. Thus, our future work investigates not
only further tie-breaking mechanisms, but also interesting effects that
result from the order imposed by the netlist representation and the
list of free modules.6

REFERENCES

[1] C. J. Alpert and A. B. Kahng, “Geometric embeddings for faster
and better multi-way netlist partitioning,” inProc. ACM/IEEE Design
Automation Conf., 1993, pp. 743–748.

[2] , “A general framework for vertex orderings, with applications
to netlist clustering,” inProc. IEEE Int. Conf. Computer-Aided Design,
1994, pp. 63–67.

[3] T. Bui, C. Heigham, C. Jones, and T. Leighton, “Improving the perfor-
mance of the Kernighan-Lin and simulated annealing graph bisection
algorithms,” in Proc. ACM/IEEE Design Automation Conf., 1989, pp.
775–778.

[4] P. K. Chan, M. D. F. Schlag, and J. Y. Zien, “SpectralK-way ratio-cut
partitioning and clustering,”IEEE Trans. Computer-Aided Design, vol.
13, pp. 1088–1096, Sept. 1994.

6The input format of a netlist is typically a function of how the other
development tools represent and output the circuit, and may group related
nets or modules together or far apart. This relatedness/unrelatedness will in
turn be reflected within the data structures used by FM to store the netlist
information.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 10, OCTOBER 1997 1205

[5] C.-K. Cheng and Y.-C. A. Wei, “An improved two-way partitioning al-
gorithm with stable performance,”IEEE Trans. Computer-Aided Design,
vol. 10, pp. 1502–1511, 1991.

[6] A. Dasdan and C. Aykanat, “Improved multiple-way circuit partitioning
algorithms,” in Proc. ACM/SIGDA Int. Workshop Field-Programmable
Gate Arrays, 1994.

[7] S. Dutt, “New faster Kernighan-Lin-type graph-partitioning algorithms,”
in Proc. IEEE Int. Conf. Computer-Aided Design, 1993, pp. 370–377.

[8] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for
improving network partitions,” inProc. ACM/IEEE Design Automation
Conf., 1982, pp. 175–181.

[9] L. Hagen and A. B. Kahng, “A new approach to effective circuit
clustering,” inProc. IEEE Int. Conf. Computer-Aided Design, 1992, pp.
422–427.

[10] A. G. Hoffman, “The dynamic locking heuristic—A new graph parti-
tioning algorithm,” inProc. IEEE Int. Symp. Circuits Systems, 1994, pp.
173–176.

[11] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,”Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
1970.

[12] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by
simulated annealing,”Science, vol. 220, pp. 671–680, 1983.

[13] B. Krishnamurthy, “An improved min-cut algorithm for partitioning
VLSI networks,” IEEE Trans. Comput., vol. 33, pp. 438–446, 1984.

[14] T. Lengauer,Combinatorial Algorithms for Integrated Circuit Layout.
New York: Wiley-Teubner, 1990.

[15] Y. Saab, “A fast and robust network bisection algorithm,”IEEE Trans.
Comput., vol. 44, 1995.

[16] L. A. Sanchis, “Multiple-way network partitioning,”IEEE Trans. Com-
put., vol. 38, pp. 62–81, 1989.

[17] , private communication, Mar. 1994.
[18] D. G. Schweikert and B. W. Kernighan, “A proper model for the par-

titioning of electrical circuits,” inProc. ACM/IEEE Design Automation
Conf., 1972, pp. 57–62.

[19] C. Sechen, “Placement and global routing of integrated circuits using
simulated annealing,” Ph.D. dissertation, Univ. California, Berkeley,
1986.

[20] Y.-C. Wei and C.-K. Cheng, “Toward efficient hierarchical designs by
ratio cut partitioning,” inProc. IEEE Int. Conf. Computer-Aided Design,
1989, pp. 298–301.

Delay Abstraction in Combinational Logic Circuits

Noriya Kobayashi and Sharad Malik

Abstract—In this paper we propose a data structure for abstracting the
delay information of a combinatorial circuit. The particular abstraction
that we are interested in is one that preserves the delays between all
pairs of inputs and outputs in the circuit. Such abstractions are useful
when considering the delay of cascaded circuits in high-level synthesis
and other such applications in synthesis. The proposed graphical data
structure is called the concise delay network, and is of size proportional
to (m + n) in best case, wherem and n refer to the number of inputs
and outputs of the circuit. In comparison, a delay matrix that stores the
maximum delay between each input–output pair has size proportional to
m � n. For circuits with hundreds of inputs and outputs, this storage
and the associated computations become quite expensive, especially when
they need to be done repeatedly during synthesis.

We present heuristic algorithms for deriving these concise delay net-
works. Experimental results shows that, in practice, we can obtain concise
delay network with the number of edges being a small multiple of(m+n).

Index Terms—Combinational logic circuits, data structures, delay esti-
mation, directed graphs.

I. INTRODUCTION

In this paper we propose a data structure for abstracting the delay
information of a combinatorial circuit. The particular abstraction that
we are interested in is one that preserves the delays between all pairs
of inputs and outputs in the circuit. There are several applications of
such an abstraction.

• Consider the problem of determining the delay of a pair of
cascaded operation units in high-level synthesis. (Such a cascade
is also referred to asoperator chaining.) The worst case delay of
the cascade is not necessarily the sum of the worst case delays
of the individual units. This is because the critical paths in the
two units need not be concatenated in the cascade. However, if
the delays between all pairs of inputs and outputs of the original
units are known, then this information can be used to derive the
correct worst case delay.

• Consider the case in logical and physical synthesis when only
one module is modified and the change in the delay needs to be
propagated through the entire design. A complete pass through
the design may be avoided, if for each combinational block we
can make available the delay between each input and output pair.

One such delay abstraction is adelay matrixthat stores the delays
for each input-output pair for each combinational block. This requires
large memory space since it hasm� n entries, wherem andn are
the number of input and output terminals of a circuit. All entries
of a delay matrix have to be referred to during delay computation.
Large matrices make the delay computation task slower. Another
alternative is to use a network with the same topology as the original
circuit. Such a network is typically quite large, and it makes the
delay computation task much slower.

In [1], delay matrices are used as the timing model for high-level
synthesis. In [2], bipartite graphs equivalent to delay matrices are

Manuscript received November 9, 1995; revised May 7, 1997. This paper
was recommended by Associate Editor K. Sakallah.

N. Kobayashi is with C&C Media Research Laboratories, NEC Corporation,
Kawasaki 216, Japan (e-mail: noriya@ccm.cl.nec.co.jp).

S. Malik is with Department of Electrical Engineering, Princeton University,
Princeton, NJ 08544 USA (e-mail: sharad@ee.princeton.edu).

Publisher Item Identifier S 0278-0070(97)09233-6.

0278–0070/97$10.00 1997 IEEE

