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Abstract

Multi-chip module (MCM) packaging techniques present several new technical challenges, no-
tably substrate testing. We formulate MCM substrate testing as a problem of connectivity ver-
i�cation in trees via k-probes, and present a linear-time algorithm which computes a minimum
set of probes achieving complete open fault coverage. Since actual substrate testing also involves
scheduling probe operations, we formulate e�cient probe scheduling as a special type of metric
traveling salesman optimization and give a provably-good heuristic. Empirical results using both
random and industry benchmarks demonstrate reductions in testing costs of up to 21% over pre-
vious methods. We conclude with generalizations to alternate probe technologies and several open
problems.
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1 Introduction

Multi-chip module (MCM) technology has recently emerged as an economically viable means for pack-

aging complex, high-performance systems [2] [11] [21] [24]. Traditionally, system performance is limited

by interconnection delays at the upper levels of the hierarchy (e.g., printed circuit board or backplane),

and may be improved by increasing circuit density and die size. However, as we approach wafer-

scale integration, poor manufacturing yield and incompatibility with mixed technologies make such a

monolithic system implementation unattractive. The MCM approach resolves this dilemma, improving

circuit density and yield while decreasing interconnect delay.

MCMs eliminate individual integrated circuit (IC) packages, allowing dies to be situated closer

together. This shortens interconnect length and enables up to a three-fold increase in clock frequency,

a seven-fold decrease in area, and a 30% decrease in power consumption over the best values achievable
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using high-density printed circuit boards (PCBs) [8]. A typical MCM (see Figure 1(a)) consists of

a substrate containing inter-chip wiring, upon which are mounted a number of bare die. The MCM

substrate is made of silicon, alumina, or co�red ceramic, and usually consists of multiple layers (up to

thirty or more wiring layers). The bare die are bonded to pads on the upper-most \chip layer" of the

substrate using solder bumps or tape-automated bonding (TAB) technology [22].

substrate

die

interconnect

die

die

Figure 1: An example of a multi-chip module, showing the underlying substrate
containing interconnect, as well as several mounted die.

The increased use of multi-chip module packaging for large, high-performance systems has focused

attention on several new and challenging CAD problems, especially those related to layout, thermal

reliability, and testing [9] [21]. Testing in particular presents one of the most persistent challenges of

the MCM approach [1] [11] [24]. It is desirable to discover defects in the MCM substrate as early as

possible, since the cost of locating and �xing a system fault increases geometrically with each successive

stage of the system manufacturing and marketing process. Certainly, the fully-assembledMCM package

can be tested using combinatorial IC testing techniques. However, the pre-assembly MCM substrate

contains a set of disjoint wiring connections with no active devices; thus, the substrate cannot be tested

using conventional techniques. With this in mind, we address veri�cation of electrical connectivity in

MCM substrates.

We model interconnect in the MCM substrate as follows. A net is a set of pins pi that are to be

electrically connected. Each signal net is routed on multiple routing layers using a tree topology, where

we assume without loss of generality that each leaf is a net terminal, each edge is a wire segment on a

single wiring layer, and each internal node is a via between two or more routing layers (Figure 2). We

wish to verify that the routing topology of each net is properly implemented, with no faults.

Two fault classes are of interest in MCM substrate testing: open faults, and short faults. An open

fault is an electrical disconnection between two points that are to be connected. As will be discussed in

2



L1

L3

L2

L4
V1

V2

L1 L2 L3 L4

V2

V1

Figure 2: A sample net (left) and its corresponding tree representation (right); pins
become leaf nodes while vias become internal nodes.

Section 2 below, there are two types of open faults: wire opens, which correspond to edge failures in the

tree topology, and cracked vias, which correspond to a physical form of node failure which arbitrarily

disconnects subtrees and is not necessarily detected by tests designed to cover wire opens. A short

fault is de�ned to be an electrical connection between two nets that are not intended to be connected.

Traditional methods for connectivity checking involve either parallel probing of the circuit, or

combinatorial exercising of the logic, neither of which apply to MCM substrate testing [2]. In verifying

connectivity for PCBs, a bed-of-nails tester will simultaneously access every grid point, yielding an

e�cient, parallel checking procedure. However, this idea cannot be applied to MCMs as feature sizes

are too small to allow such a grid-based methodology. A combinatorial approach, e.g., the boundary-

scan method for hierarchical design, requires system-speci�c, built-in test circuitry [10] [23]. In general,

this method will apply only to a completely assembled MCM, but not to a substrate which contains

isolated interconnect with no active circuit elements.

Several groups have recently proposed new methods for verifying circuit connectivity during MCM

manufacturing. Each of these new methodologies relies on sequential probing of the MCM substrate,

in contrast to the standard approaches above which use parallel probing or combinatorial testing.

Golladay et al. [9] propose an electron-beam method to test MCM substrates for short/open faults

by injecting charge into individual nets and then scanning them for faults. Unfortunately, electron-

beam testers typically have a relatively small working window of access to the chip/substrate, so that

probing a location outside that window requires physical motion of an apparatus. Also, an electron-

beam may require a long time to charge up large nets, so that a testing methodology based on this

process can be prohibitively slow [20].

All other sequential probing approaches involve variants of k-probe testing, where k \ying" probe

heads simultaneously move around the circuit, measuring resistance and capacitance values to deter-

mine the existence of shorts between pairs of nets and opens between two pins of a single net. Formally,

we de�ne a k-probe to be a set of k distinct net terminals which are visited simultaneously by k movable
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probe heads (typical probe technology uses k = 2, but probe machines with higher values of k are under

development [19]). A single k-probe simultaneously veri�es all
�
k

2

�
paths between pairs of terminals in

the probe set by measuring resistance and capacitance values. For example, when k = 2 the unique

path between the two terminals is checked (Figure 3).

A

B

Figure 3: Testing the interconnect on the subsrate using probes: for example, the
(A,B) probe tests the shown A-B path for open faults.

A 2-probe sequential testing approach developed by Crowell et al. [7] for bare-board testing has

been adopted by some MCM manufacturers [17]. The method of Crowell et al. uses only one probe

for each net in the layout, placing the probe heads on the two pins of the net which are physically

farthest apart. Unless the measured resistance deviates signi�cantly from the value predicted for the

correct circuit, one assumes that no open fault exists. Similarly, only when capacitance is far from the

predicted value will a possible short fault between two nets be investigated more carefully.

The algorithm of Crowell et al. [7] is e�cient in that it uses just one probing operation per net.

However, an unfortunate choice of probe locations may yield measured capacitance and resistance very

similar to the predicted values, even in the presence of a fault. For example, an open fault caused by

a disconnected pad will be detected only by directly probing a path through the pad itself; probing

any other path will fail to notice the small deviation in capacitance and resistance values. Indeed, the

number of pads in the net induces a lower bound on the number of probe operations needed for fault

coverage.

The incomplete fault coverage a�orded by such methods as [7] is economically unacceptable. Thus,

MCM manufacturers are now adopting substrate test methodologies which provide complete open

fault coverage for all nets [19] [25]. With this in mind, Yao et al. [25] have proposed a quadratic-time

algorithm that determines a set of 2-probes which will check for all possible open faults (this work was

later further developed in [3] [4] [5] [6] [26] [27]). In this method, su�cient capacitance measurements
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are taken during the open fault checking process to determine whether two nets have been shorted

together (i.e., we will encounter a capacitance value that is too high) [7] [25]. Thus, the remainder

of this discussion is con�ned to the issue of complete open fault coverage. In this paper, we give a

linear-time algorithm which for any k � 2 determines a k-probe set which accomplishes complete open

fault coverage of each net, using the minimum possible number of probes.

Once probes are found which adequately test the required classes of open faults, we must schedule

the probes for execution by a mechanical tester. Obtaining a good schedule is critical, especially with

large production runs. Previous groups [7] [25] have used generic greedy or iterative traveling salesman

heuristics to attack this problem. We propose two e�ective heuristics for probe scheduling based on

new observations concerning the metricity and allowable structure of the probe set.

The remainder of this paper is organized as follows. Section 2 formulates optimal open fault

detection as a tree testing problem and present linear-time algorithms which �nd an optimal number

of probes to cover all possible open faults. Section 3 shows that probe scheduling to minimize total

travel time is a form of metric traveling salesman problem (TSP); we present two e�ective heuristics,

one of which has small constant-factor error bound for scheduling any given set of probes. Section 4

gives experimental results on random and industry benchmark layouts, and Section 5 concludes with

directions for future research. Preliminary versions of this work have appeared in [13] [14] [18].

2 Open Fault Detection

In this section we address the following problem:

Minimal Probe Generation (MPG) Problem: Given a routing topology for a signal net with l

leaves (i.e., pins), determine a minimum set of k-probes needed to verify the net routing.

We consider two levels of open fault coverage: (i) coverage of all open faults on wire segments,

and (ii) coverage of all open faults on wire segments and \cracked" vias (see Subsection 2.2). This

section presents optimal solutions for the two corresponding versions of the MPG problem. Due to

the nature of current probing technology, the discussion assumes k = 2; extensions to arbitrary k are

straightforward.

2.1 Optimal Detection of Wire Open Faults

In order to test the integrity of all wire segments, every segment which is incident to a pin must be

tested. Thus, the number of pins l (leaves in the routing topology) induces a lower bound of d l2e probes

5



when k = 2. Our �rst probe generation algorithm orders the pins of a net as p1; : : : ; pl via an arbitrary

in-order traversal of the routing tree. Choosing the b l2c probes fpi; pi+b l
2
cg, 1 � i � b l

2c, will cover

all edges of the tree, as illustrated in Figure 4; if l is odd, an additional probe fp1; plg is generated.

Figure 5 gives a formal description of the algorithm, which we call PROBE1.

Probes
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4
p
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p

10
p

Figure 4: Selecting a minimal set of probes to detect the existence of any wire open
faults. The probes fpi; pi+b l

2
cg, 1 � i � b l2c, provide complete wire open fault

coverage.

PROBE1: Computing a minimum probe set for edge fault detection
Input: Tree T = (V;E) with l leaves p1; p2; : : : ; pl 2 V
Output: Minimum probe set which detects all possible edge faults
1: Root the tree arbitrarily at an internal node
2: Induce an in-order labeling p1; : : : ; pl of the leaves
3: Output the set of probes f(pi; pi+b l

2
c)j1 � i � b l2cg

4: If l is odd Then output the probe fp1; plg

Figure 5: PROBE1: Generation of minimum probe set for edge fault detection.

PROBE1 is time-optimal because it requires time linear in the size of the input tree T . Optimality of

PROBE1 in terms of its probe set size follows from two simple observations.

Lemma 2.1 Every edge which is incident to a leaf node must be tested, implying a lower bound of d l
2e

for the size of a probe set which detects all possible edge faults.

Lemma 2.2 For any edge e = fvi; vi0g in T where vi is the father of vi0 , let T 0 denote the proper
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subtree of T rooted at vi0 . Then algorithm PROBE1 outputs some probe which connects a leaf in T 0 to

a leaf not in T 0.

Proof: Assume toward a contradiction that every leaf vj0 in T 0 is connected by a probe edge to vk0

which is also in T 0. Because the set of leaves in T 0 is nonempty, the in-order labeling implies that leaves

pb l
2
c and pb l

2
c+1 are also in T 0. Our assumption then implies that p1 is also in T 0, along with pl when

l is even or pl�1 when l is odd. For l even, T 0 thus contains all leaves of T , contradicting the fact that

T 0 is a proper subtree of T . For l odd, any probe which tests the sole leaf pl not in T 0 must connect pl

to some leaf in T 0, contradicting the assumption that probes involving leaves of T 0 are internal to T 0.

Theorem 2.3 Given an interconnection tree T with l leaves, d l2e probes are necessary and su�cient

for detection of all possible edge faults in T .

Proof: Necessity follows from Lemma 2.1. To see su�ciency, consider the graph G formed by adding

\probe edges" to T , i.e., add an edge to T between each pair of leaves that corresponds to a probe

output by PROBE1. Note that a set of probes will detect all possible edge faults if every edge e 2 T

lies on some simple cycle in G that contains only one probe edge. As in the statement of Lemma 2.2,

for any arbitrary edge e = fvi; vi0g in T with vi the father of vi0 , let T 0 denote the proper subtree

of T rooted at vi0 . By Lemma 2.2, PROBE1 outputs some probe (pj ; pk) with pj 2 T 0 and pk =2 T 0.

Then, the cycle vi0 ; : : : ; pj; pk; : : : ; vm; : : : ; vi; vi0 in G (vm is the lowest common ancestor of vi and pk

in T ) contains edge e (Figure 6). Because PROBE1 outputs only d l2e probes, this number of probes is

su�cient (and algorithm PROBE1 is optimal).

2.2 Detection of Cracked Via Faults

In manufacturing the MCM substrate, a via can physically \crack" due to factors such as misalignment

in lithography and thermal stress. In other words, subtrees rooted at this internal node of the net can

become electrically separated (see Figure 7) [25], so that certain sets of probes will detect this open

fault, while other sets will fail to �nd the cracked via. This section gives a linear-time algorithm,

called PROBE2, that tests for both wire faults and cracked vias using the minimum possible number

of probes.

PROBE2 (Figure 8) �rst chooses an internal node R of maximum degree d and then roots the tree

at R by orienting all edges towards R. Each leaf pi is given the label i. The algorithm propagates

message lists containing labels, starting from the leaves in bottom-up order. Initially, each leaf pi sends
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Figure 6: PROBE1 checks each edge e = fvi; vi0g for a fault using the probe (pj; pk),
whose probe edge completes a cycle containing e.
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Figure 7: A cracked via in a routing: the two routing layers are depicted using
di�erent shadings, while the cracked via (depicted in black) disconnects the circuit
as shown (left). The pair of probes f(A;B); (C;D)g will detect all edge faults
(middle), but may fail to detect some node faults arising from cracked vias (right).

to its parent a message list of size one, i.e., containing only is own label i. Phase I of the algorithm

(lines 4-13) pertains to internal nodes v 6= R: when such a node v has received message lists from all of

its children, it iteratively generates a probe by pairing two labels from distinct incoming message lists

as long as one of these lists is of size > 1; the two labels are then deleted from these lists. After the total

number of labels in the incoming message lists has been reduced to d or less, all remaining labels are

concatenated into a single message list that is passed up to v's parent. When only the root R remains

unprocessed, Phase II (lines 14-23) performs a simple cleanup step. Figure 9 traces the execution of

PROBE2 on a small example. The algorithm statement in Figure 8 allows non-deterministic choice of
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label pairings, e.g., at lines 7-9. This can easily be made deterministic; however, our optimality result

is stronger since it holds even for the given (non-deterministic) PROBE2 statement.

PROBE2: Computing a minimum probe set for edge and node fault detection
Input: Tree T = (V;E) with l leaves p1; p2; : : : ; pl 2 V
Output: Minimum probe set which detects all possible edge and node faults
1: Let W = V
2: Find internal node R 2W with maximum degree d
3: Root T by directing all edges towards R

/* Phase I: processing internal nodes other than R */

4: For i = 1 to l, send message list fig from pi to parent(pi)
5: While 9v 2W , v 6= R having received message lists M1; : : : ;Mdeg(v)�1

6: While �
deg(v)�1
k=1 jMkj > d

/* note that this implies 9i 3 jMij � 2 */
7: Choose arbitrary x 2Mi for some Mi with jMij � 2
8: Choose arbitrary y 2Mj for some j 6= i, jMjj � 1
9: Output probe (px; py)
10: Mi = Mi � fxg ; Mj = Mj � fyg
11: Concatenate message lists: L = M1 [ : : :[Mdeg(v)�1

12: Send message list L to parent(v)
13: W = W � fvg

/* Phase II: W = fRg; processing R which has received message lists M1; : : : ;Md from its children */

14: While there are at least 2 nonempty message lists with one having size � 2
15: Reorder M1; : : : ;Md such that jMij � jMi+1j for all 1 � i < d
16: Find maximum index k � d such that jMkj > 0 /* Mk is smallest non-empty list */
17: Choose arbitrary x 2M1, y 2Mk

18: Output probe (px; py)
19: M1 = M1 � fxg ; Mk =Mk � fyg
20: Concatenate message lists: L =M1 [ : : :[Md

21: If jLj > 1 Then output probes (pL1
; pLi

) 8 2 � i � jLj and terminate
/* note that Lk denotes the label at position k in the concatenated list L */

22: Else choose leaf node pi such that i, L1 were not both passed by the same child of R
23: Output probe (pi; pL1

) and terminate

Figure 8: PROBE2: Optimal detection of all edge and node faults.

Except at the root, each probe generated by PROBE2 will remove two distinct labels from the

message lists being passed. At most d labels will remain to be processed at the root R, requiring at

most d�1 additional probes. Therefore, to test an interconnection tree with l leaves, PROBE2 uses at

most l�d
2 + (d� 1) = l

2 +
d
2 � 1 probes; this bound is tight for, e.g., a star topology. Using a sequence

of technical lemmas [13] [18] we can prove that (i) that PROBE2 outputs a probe set which detects all

possible edge and node faults, and (ii) that PROBE2 uses the minimum possible number of probes for
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Figure 9: Execution of PROBE2 on a tree containing 9 leaves and 5 internal nodes;
a total of 5 probes are generated (shaded lines). Message lists are shown on the
edges of T .

complete fault detection.

The time complexity of PROBE2 is optimal as well: each node v passes no more than d labels to

its parent, and thus each node will receive fewer than d2 labels from its children. Assuming that d is

a technology-dependent constant, the amount of processing at each node is a constant, and since each

node is processed only once, the overall time complexity of PROBE2 is linear in the size of the input

tree.
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3 E�cient Probe Scheduling

E�cient probe scheduling algorithms are essential because testing cost depends largely on the total

travel time of the probe heads. In mechanical probing, individual stepper motors control the x� and

y�coordinates of each moving head. The distance dist(Ai; Bi) traveled by the ith probe head is given

by

dist(Ai; Bi) = max[ jAix �Bix j ; jAiy �Biy j ]:

This distance function (also known as the Chebyshev or L1 norm) reects the fact that the maximum

time interval for which any motor is engaged will determine the delay between consecutive probes; such

a metric is typical in manufacturing applications and is quite accurate despite second-order e�ects such

as acceleration and deceleration of the moving heads. For k-probes, when k = 2, the cost of moving

the probe heads from a set of pin locations A = fA1; A2g to another set of locations B = fB1; B2g is

given by

c(A;B) = min f max[ dist(A1; B1) ; dist(A2; B2) ] ; max[ dist(A1; B2) ; dist(A2; B1) ] g:

For k > 2, the cost of moving the probe heads from A = fA1; : : : ; Akg to B = fB1; : : : ; Bkg is given by

c(A;B) = min
f�g

max[dist(A1; B�(1)) ; dist(A2; B�(2)) ; : : : ; dist(Ak; B�(k))]

where f�g denotes the set of all permutations of the probe indices f1; : : : ; kg. In other words, we choose

the mapping of A onto B in such a way that the maximum travel time of any probe head is minimized

(see Figure 10).

Probe A

Probe B

B1=(0,0)

A2=(2,4)
A1=(6,5)

B2=(11,2)

Figure 10: An example showing the distance between two probes A = fA1; A2g,
B = fB1; B2g. We have dist(A1; B1) = 6, dist(A2; B2) = 9, dist(A2; B1) = 4,
and dist(A1; B2) = 5; thus, the distance between the two probes A and B is
min(max(6; 9);max(4; 5)) = min(9; 5) = 5 (i.e., the best strategy will move one
probe head from A2 to B1 while the other probe head moves from A1 to B2).

In some technologies, each probe head may be carried by its own moving horizontal bar, and

collisions between probes become a concern (i.e., no two such parallel bars are allowed to cross each
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other's path, so the y coordinates of the k probe heads must satisfy y1 � y2 � : : : � yk at all times).

Thus, the probe head coordinates are always sorted lexicographically [25]. This constraint clearly yields

a metric, which we call the collision-freemetric; in contrast, the metric discussed above will be referred

to as the generalized metric. The collision-free metric is more restrictive, since there is always a unique

feasible permutation of the probe heads in traveling from one set of locations to another. In particular,

for k = 2 the cost under the collision-free metric of moving the probe heads fromA = f(x1; y1); (x2; y2)g

to B = f(x3; y3); (x4; y4)g, y1 < y2, y3 < y4 is given by maxf jx1�x3j ; jy1�y3j ; jx2�x4j ; jy2�y4jg.

The Minimal k-Probe Scheduling (k-MPS) Problem: Given a set of k-probes, minimize the

total probe moving cost required in executing all probes.

A straightforward reduction from the geometric traveling salesman problem [15] yields:

Theorem 3.1 The k-MPS problem is NP-hard.

Proof: We can transform a geometric instance of TSP into an instance of MPS by introducing k copies

of each site, then considering each set of k identical copies of a site as a single k-probe. Distances

between probes will correspond to the original distances between the corresponding sites in the TSP

instance.

The probe scheduling problem seems quite unapproachable, both due to its theoretical intractability

and because the distance and travel cost functions are not easily intuited. Thus, previous work relies

on generic traveling salesman heuristics to optimize the probe schedule. For example, when k = 2

probe heads are available, Crowell et al. [7] use a bandsort algorithm to optimize the movement of one

of the probe heads. Unfortunately, the other probe head may be forced to travel very large distances

between probes, and indeed the resulting schedule is often exceedingly ine�cient. Yao et al. [25] use

simulated annealing and the Kernighan-Lin 2-opt criterion [16] as the basis of an iterative interchange

approach; their schedules save up to 83% of travel costs over the method of [7]. All of the heuristics

proposed in [7] and [25], however, have unbounded error.

In this section, we �rst show that the k-probe travel costs are actually metric (although clearly

not geometric), i.e., distances between k-probes satisfy the triangle inequality for all values of k � 1.

As a consequence, traveling salesman heuristics with constant-factor error bound apply [15]. Second,

we exploit exibility in the choice of probes to �nd probe sets which can co-exist in an e�cient probe

schedule.
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3.1 Metricity of the k-MPS Problem

For the collision-free metric, the travel costs of the probe heads satisfy the triangle inequality, since

the probe head coordinates are always in lexicographic order. Thus, moving the probe heads from A

to C via an intermediary B yields the same �nal probe permutation as would result by moving directly

from A to C. Metricity follows from the metricity of the Chebyshev norm.

For arbitrary k-probes A, B and C, we may view the travel costs c(A;B), c(B;C) and c(A;C)

in the generalized metric as being respectively determined by the optimal permutations �1 : A ! B,

�2 : B ! C and �3 : A ! C. Comparing the composed permutation �1 � �2 : A ! C with the

permutation �3 : A! C yields the following:

Theorem 3.2 For any three k-probes A, B and C, the travel costs c(A;B), c(B;C) and c(A;C) in

the generalized metric satisfy the triangle inequality, i.e., c(A;B) + c(B;C) � c(A;C).

Proof: Compare the set of edges of permutation �3 : A ! C that de�nes c(A;C), with the induced

permutation �1 � �2 : A ! C (see Figure 11). De�ne max(�) to be the maximum distance traveled

by any probe head according to the permutation �. Clearly c(A;C) � max(�1 � �2), since �1 � �2 is

not necessarily the minimum-cost permutation between A and C. On the other hand, max(�1 � �2) �

c(A;B) + c(B;C) by the triangle inequality and the metricity of the Chebyshev norm. It follows that

c(A;C) � c(A;B) + c(B;C).

A

B

C

σ1

σ2

σ1   σ2

c(A,C)

°

Figure 11: Metricity of the probe travel cost function.

Theorem 3.2 allows us to apply heuristics which achieve bounded error for metric TSP instances. In

particular, Christo�des' combination of a minimum spanning tree construction and minimummatching

[15] yields:
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Corollary 3.3 Given a set of n k-probes, for any �xed k � 1, a heuristic probe schedule with cost at

most 3
2 times optimal can be found within O(n3) time.

3.2 Varying the Probe Set

A further optimization of the tour schedule is possible because the set of probes is itself variable.

Figure 12 depicts an instance where a \smarter" choice of probes reduces the optimal tour cost by

one-quarter. Most tree topologies can be tested with the minimum number of probes in many distinct

ways. For example, each three-pin net in Figure 12 can be tested by a minimal set of 2-probes in three

distinct ways (i.e., any two of the three possible probes can be used); in fact, the 2-pin net is the only

connection topology with a unique minimum probe set.

A2

A1
A3

B2

B1 B3

A2

A1
A3

B2

B1
B3

Figure 12: An example of how judicious probe selection can reduce the total tour
length by as much as one-quarter: four probes are required for complete wire open
fault coverage over the two 3-pin nets fA1 = (0; 0); A2 = (0; 1); A3 = (1; 0)g
and fB1 = (�; �); B2 = (�; 1 + �); B3 = (1 + �; �)g. Assuming that the
probe tour must start and end at the origin, the probe set on the left will
be optimally ordered as ((A1; A2) ; (B1; B2) ; (B2; B3) ; (A1; A3)), requiring
about four units of travel time. The probe set on the right may be ordered as
((A1; A2) ; (B1; B2) ; (B1; B3) ; (A1; A3)), requiring only about three units of
travel time.

We thus obtain a new type of compatibility TSP problem, where sets of k-probes are selected to

cover every net such that the optimal tour cost for the union of all probe sets is minimized. In other

words, we wish to exploit the synergy between the choice of probes and the optimal tour cost:

The Minimal Probe Generation/Scheduling (MPG/S) Problem: Given a routing topology for

a signal net, determine and schedule a set of probes so that the total probe moving cost is minimized.

In order to hybridize the probe-generation phase with the tour-scheduling phase, and to take ad-

vantage of the non-determinism inherent in probe selection, we propose the heuristic PROBE3 (Figure

13). PROBE3 is based on a minimum-cost insertion strategy, i.e., it schedules all probes for a small

subset S of nets, then iteratively adds the probe which has lowest insertion cost in the tour while still
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allowing a minimum probe set. Note that a probe set which allows us to minimize travel cost may

have more than the minimum possible number of probes. However, the heuristics discussed in this

section require that the number of probes is minimum. As seen in the following section, PROBE3

yields signi�cantly shorter schedules than other methods.

PROBE3: Insertion-based method for probe selection
Input: A collection N of nets and their routing tree topologies
Output: An e�cient heuristic probe schedule
Compute a minimal set of probes P which veri�es a subset S � N of the nets
Compute a heuristic schedule (tour) P1; : : : ; Pm; P1 of P
While 9 a net not having complete fault coverage

Find a probe P � for any net Ni such that
(i) Ni is still coverable by a minimal number of probes after P � is added, and
(ii) the probe's minimum insertion cost between consecutive probes is
minimized, i.e., min

feasible P�

min
i

fc(Pi; P
�) + c(P �; Pi+1)� c(Pi; Pi+1) g

Insert P � into the tour between probes Pi and Pi+1,
where i was the tour index where P � had minimum insertion cost

Figure 13: PROBE3: An insertion-based heuristic for probe selection.

4 Experimental Results

We tested our algorithms on an MCM benchmark design obtained fromHughes Aircraft Co., containing

44 components and 199 nets (this is the same benchmark used by Yao et al. in [25]). We also used

two randomized versions of the Hughes benchmark, where the same net topologies were retained, but

with pin coordinates reassigned randomly from a uniform distribution in the layout region. Algorithm

PROBE2 was used to generate minimal probe sets which cover all possible wire open and cracked via

faults. The schedules for these probe sets were optimized using the 2-opt TSP heuristic, as well as by

2-opt followed by 3-opt (in a separate run).

We also tested a variant of PROBE3 on the same benchmark, as described in Section 3:2 above.

We �rst generated a minimal set of probes for all nets other than the power, ground, and nets with

3 or less pins, then computed a heuristic tour for these probes, using the 2-opt TSP heuristic (again,

in a separate run, we used 2-opt followed by 3-opt). Finally, we iteratively added additional probes

for the remaining nets which (i) could be inserted into the current tour with minimum cost, and (ii)

were compatible with previously chosen probes in some minimumprobe set. In all cases, a total of 634

probes were generated by our algorithm, the same number as that generated by the algorithm of [25].

With each of the PROBE3 experiments, 226 probes were initially chosen to cover the nets which had
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> 3 pins and which were neither power nor ground; the remaining 408 probes were added incrementally.

In the PROBE3 experiments, we optionally ran 2-opt improvement after every 10 probes added, and

optionally ran 3-opt improvement after every 50 probes added. All of the above benchmarks were

run with the collision-free distance function, as well as with the generalized distance function. These

results are summarized in Table 1.

PROBE2 PROBE2 PROBE3 PROBE3
MCM metric + 2-Opt + 2-Opt + 2-Opt + 2-Opt

+ 3-Opt + 3-Opt
Hughes generalized 160,435,000 153,185,000 126,210,000 118,497,000

collision-free 163,202,000 157,600,000 131,010,000 126,637,500
Random1 generalized 294,164,000 286,679,000 265,276,000 257,838,000

collision-free 302,684,000 289,843,000 269,346,000 260,897,000
Random2 generalized 295,956,000 285,379,000 271,869,000 260,150,000

collision-free 304,885,000 294,421,000 270,767,000 263,113,000

Table 1: Performance of PROBE2 and PROBE3 variants on the industry bench-
mark and on random examples. Note that the best probe schedule cost obtained by
Yao et al. for the industry benchmark, using simulated annealing, was 150,525,000
units. The tour obtained by PROBE3 + 2-opt + 3-opt gives savings of up to 21%
over this value. Each benchmark was run with the collision-free distance function,
as well as with the generalized distance function.

As expected, the PROBE3 variants, being able to carefully choose probes while constructing the

heuristic tour, outperformed PROBE2 by a considerable margin. Results are somewhat better when

3-opt is incorporated, also as expected. For the benchmark design, the best tour obtained in [25] using

simulated annealing had cost 150,525,000; in comparison, our PROBE3 variants obtain up to 21%

improvement over the results of [25]. Since simulated annealing usually gives solutions quite close to

optimal [12], our results con�rm that careful choice of compatible probes is an important issue.

5 Future Work

Substrate testing for open faults is a critical phase in the production of multi-chip module packages.

We have formulated MCM substrate testing as a problem of connectivity veri�cation for trees using

k-probes, and presented linear-time algorithms for optimal probe generation. Our algorithms yield

minimum probe sets for covering all possible wire open and cracked via faults. Since the associated

probe scheduling problem is metric, a bounded-error scheduling heuristic can be obtained. We presented

an e�ective insertion-based heuristic which exploits the synergy between choice of probes and the

resulting optimal schedule cost.
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There remain a number of interesting open problems. The fact that many di�erent probe sets

can cover a given net yields an interesting TSP variant, as noted above. It is possible that a \prize-

collecting salesman" formulation (e.g., at least two of the three possible probes must be \collected" for

each three-pin net) can be solved with constant-factor error via an LP-relaxation scheme. This would

be quite useful, as the bounded error heuristic of Corollary 3.3 in Section 3 applies only when all of

the probes have been �xed. Analyzing the maximum error inherent in arbitrarily �xing the probes is

also of interest. Advances in probe technology allow k > 2 probe heads to move simultaneously, which

a�ords even greater freedom in choosing the probe sets. Thus, the interplay between probe choice and

tour cost will continue to be important. More sophisticated strategies for e�ciently inserting probes

into a partial tour are possible (e.g., we may iteratively look for the best improving combination of

added and deleted probes). Finally, the concept of verifying connectivity by checking paths, rather

than edges, as well as the \physical" node failure mode (via cracking), can be applied to both trees

and arbitrary graphs arising in other �elds of study.
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