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Multiway Partitioning Via Geometric Embeddings, 
Orderings, and Dynamic Programming 

Charles J. Alpert, Student Member, IEEE, and Andrew B. Kahng, Associate Member, IEEE 

Abstruct- This paper presents effective algorithms for mul- 
tiway partitioning. Confirming ideas originally due to Hall, we 
demonstrate that geometric embeddings of the circuit netlist can 
lead to high-quality k-way partitionings. The netlist embeddings 
are derived via the computation of d eigenvectors of the Laplacian 
for a graph representation of the netlist. As Hall did not specify 
how to partition such geometric embeddings, we explore various 
geometric partitioning objectives and algorithms, and find that 
they are limited because they do not integrate topological infor- 
mation from the netlist. Thus, we also present a new partitioning 
algorithm that exploits both the geometric embedding and netlist 
information, as well as a Restricted Partitioning formulation that 
requires each cluster of the k-way partitioning to be contiguous in 
a given linear ordering. We begin with a d-dimensional spectral 
embedding and construct a heuristic 1-dimensional ordering of 
the modules (combining spacefiling curve with 3-Opt approaches 
originally proposed for the traveling salesman problem). We then 
apply dynamic programming to efficiently compute the optimal 
k-way split of the ordering for a variety of objective functions, 
including Scaled Cost and Absorption. This approach can trans- 
parently integrate user-specified cluster size bounds. Experiments 
show that this technique yields multiway partitionings with lower 
Scaled Cost than previous spectral approaches. 

I. INTRODUCTION 

ARTITIONING optimizations are critical to the system- P level synthesis of complex VLSI designs. Systems with 
several million transistors are now common, and entail prob- 
lem complexities that are unmanageable for existing logic- and 
physical-level design tools. Thus, partitioning is used to divide 
the system into smaller, more manageable components, with 
the traditional goal being to minimize the number of signals 
which pass between the components. 

An increasingly typical design flow will synthesize an HDL 
program via logic synthesis tools, then place and route the 
resulting netlist using back-end tools. This flexible methodol- 
ogy improves design cycle time, allows rapid design changes, 
and avoids human error in layout. However, even with the 
increased maturity of the high-level synthesis tools that are 
available for such a strategy, netlist-level partitioning remains 
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central to the success of the design procedure. This is for 
reasons such as the following: 

HDL subroutines may not correspond to ideal physical 
block partitions. Thus, while previous building-block 
physical design methodology gave a small number of 
function blocks that could be optimally hand-partitioned, 
experience with HDL-based synthesis is that partitioning 
a flattened design representation often leads to improved 
solution quality [ 151. Flattened partitioning inputs may 
also be required by such applications as technology 
migration or the design of precursor systems (i.e., finding 
the packaging tradeoffs that correspond to optimum cost- 
performance points at early stages in the product cycle). 
System designers are now software designers who write 
HDL code and pass synthesized gate-level netlists to 
floorplanning and physical layout tools, without neces- 
sarily understanding the hardware resource implications 
of the HDL code. In particular, an a priori understanding 
of interconnect attributes (for example, the effect of the 
few lines of code that specify a register file or crossbar) 
is difficult to achieve. Because the function-to-layout 
transformation cannot be predicted (this is exacerbated 
by synthesis tools' well-known difficulties with control 
logic and exception handling), system partitioning must 
be performed at a lower level of the hierarchy. 
As noted above, system complexity has reached such 
levels that partitioning is required simply to enable the 
application of current toolsets to smaller pieces of the 
design. 

Beyond its layout-directed applications, the partitioning task 
also arises in other phases of system synthesis and verifi- 
cation, such as aredperformance estimation, partitioning for 
testability, and hardware simulation and emulation. 

Definition: A k-way partitioning Pk of a set V is a 
set of IC disjoint, nonempty clusters (i.e., subsets of V) 
{ C I , C ~ , . . . , C ~ }  s u c h t h a t C 1 U C 2 u . . . U C k  = V. 

Most of the previous work in partitioning has focused on 
two-way partitioning algorithms that in practice are recursively 
applied to generate k-way partitionings. As noted in [12], 
this top-down approach can lead to unnatural partitioning 
solutions. Our work seeks to reveal the natural circuit structure 
via a (nonhierarchical) decomposition into I; subcircuits with 
minimum connectivity between the subcircuits. Our general 
problem statement as follows: 

General IC-Way Partitioning: Given a circuit netlist hy- 
pergraph H = (V? E )  with modules V = { V I ,  212, . . . , TI,} and 
nets E = {el,e2 . . . . ,  e,}, and a value 2 5 IC 5 n, find a k- 
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way partitioning P k  that optimizes a given objective function 
f (P”. 

A. Previous Work 

Previous work on 2-way partitioning has centered on the 
minimum bisection and minimum ratio cut [46] objectives. 
Approaches to multiway partitioning have involved seeded 
epitaxial growth, extensions of the Fiduccia-Mattheyses it- 
erative bipartitioning algorithm [41], a primal-dual iteration 
motivated by a generalization of the minimum ratio cut metric 
[47], and spectral approaches [25] (see [3] for an extensive 
survey). 

For multiway partitioning, [48] proposed a “shortest-path 
clustering” method, where each iteration partially erases edges 
of a shortest path between a random pair of modules. The 
iterations terminate when enough edges have been erased for 
there to remain k connected components, i.e., the clusters. The 
algorithm probabilistically captures the relationship between 
multicommodity flow and minimum ratio cut, and yields high- 
quality solutions when measured by Cluster Ratio, which [48] 
characterizes as the “proper” k-way generalization of the ratio 
cut objective: 

Cluster Ratio: Minimize: 

i=l j=i+l  

where c ( P k )  = { e  E E13u,w E e such that U E Ci,w E 
Cj, i # j }  is the number of nets that cross between two or 
more clusters in P k .  

Another multiway partitioning approach extends well- 
established spectral methods. Hall [27] showed that the 
eigenvector corresponding to the second smallest eigenvalue 
of the netlist Laplacian’ minimizes a squared-wirelength 
objective. Hagen and Kahng [25] based their work on the 
relationship between this second eigenvalue and the optimum 
ratio cut cost. Chan et al. [ 121 generalized such spectral results 
to k-way ratio cut partitioning, using the first k eigenvectors of 
the netlist Laplacian to map an n-dimensional space into a k-  
dimensional space. Ideally, the n elementary unit vectors (the 
modules) in the n-space will be mapped to exactly k distinct 
points (the clusters) in the k-space. Since this is not the case 
in practice, Chan et al. [ 121 uses a heuristic (called KP) based 
on directional cosines to obtain a k-way partitioning of the 
modules embedded in k-space. 

Chan et al. [12] proposed Scaled Cost as the natural multi- 
way generalization of the ratio cut objective. 

‘Given an edge-weighted graph representation of the netlist, G(V, EG) ,  
we may construct from G the n x n adjacency matrix A = A ( G )  in which 
-4tJ has weight equal to that of e@,, u j )  E EG (by convention A,, = 0 for 
all z = 1, . . . , n ) .  If we let deg(v,) denote the degree of ut (it. ,  the sum 
of the weights of all edges incident to u t ) ,  we obtain the n x n diagonal 
degree matrix D defined by D,, = deg(v,). The hplaciun of the netlist 
graph, denoted as Q. is given by Q = D - A. The Laplacian provides the 
advantages of having all nonnegative eigenvalues and the multiplicity of the 
zero eigenvalue equals the number of connected components in G. 

Scaled Cost: Minimize: 

1 2 IEiI 
f ( p k )  = n ( k  - 1) , jEj 2=1 

where E, = {e E E I 3u,w E e such that U E Ci,w $! Ci} 
is the set of signal nets crossing the boundary of cluster C,. 
Both [ 121, [48] established robust generalizations of the ratio 
cut concept. Each metric automatically integrates both cut nets 
and size balance among the clusters, but each is also shown 
NP-complete by restriction to minimum ratio cut. For reasons 
that are clarified in Section VI-A, our work will address the 
Scaled Cost Objective of [ 121. 

While multiway partitioning typically entails finding k 
clusters for small values of k (e.g., IC 5 lo), large values 
of k (e.g., k = n/5) arise in the two-phase use of the 
Fiduccia-Mattheyses (FM) bipartitioning heuristic [ 191. Here, 
the k-way partitioning reduces the problem size by inducing a 
“compacted” netlist in which each cluster becomes a module, 
inducing a problem instance of size k ;  the smaller solution 
space can then be searched more effectively [34]. After 
compaction, heuristic FM bipartitioning is performed, then the 
solution is reexpanded into a “flat” initial configuration for a 
second FM phase. A successful two-phase FM implementation 
depends on a high-quality clustering decomposition, i.e., a 
good k-way partitioning for the regime of k = @(n). 

To achieve such a decomposition, [9] proposed the 
“matching-based compaction” (MBC) algorithm, where the 
edges of a maximal random matching in the netlist graph 
induce a compacted graph of n/2 vertices, and the compaction 
is iterated until the problem size becomes manageable. Ng 
et al. [37] proposed a clustering algorithm that attempts to 
minimize the Rent parameter of the compacted netlist; [16] 
also used Rent-based clustering to improve the performance 
of a placement algorithm. Hagen and Kahng [26] developed 
the probabilistic RW-ST method, which identifies clusters 
by recording multiple revisitations of modules by a random 
walk in the circuit netlist. The authors of [26] report that 
the RW-ST clusters lead to significant improvements in two- 
phase FM performance as compared to the MBC strategy, 
but @(n3)  time is required to process a random walk of the 
recommended @(n2) length. Chang and Wei [14] developed 
a “stable, two-way” algorithm that uses recursive FM-based 
ratio cut partitioning to construct the compacted netlist. In 
contrast to the other works, [14] reports two-phase FM results 
for bipartitioning with a 1 : 3 size ratio bound (as opposed 
to an exact bisection). 

Recently, [44] applied a similar two-phase clustering 
methodology in the TimberWolf7.0 placement algorithm: 
simulated annealing is used to derive a clustering that 
maximizes the following Absorption objective. 

Absorption: Maximize: 

k l  {eEElenC,#B} 

We call this the “Absorption” objective because it counts 
the number of nets which are “absorbed” by the clusters: 
if a net e is incident to cluster Ci. then it adds Absorption 
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= ( p  - 1) . l / ( le l  - 1) to the cluster, where p is the number 
of pins of e in the cluster. Put another way, if the ith net 
P ,  has its pins distributed among c, clusters, then f(Pk) = 
Cy;, (le,I - cz ) / ( l e l l  - 1). Maximizing Absorption is a very 
reasonable k-way partitioning heuristic for k = @(n) ,  but 
may not be as useful for small k since the objective does not 
consider cluster sizes. 

B. O\,en-iew of Contributions 

Definition: A d-dimensional geometric embedding of 
H(L: E )  is a set of points in d-space that are in one-to- 
one correspondence with the modules of V.’ A d-dimensional 
spectral embedding is a d-dimensional geometric embedding 
derived using d eigenvectors of the discrete Laplacian (see 
Section 11). 

Our main premise is that a multidimensional geometric 
embedding of the netlist can lead to effective multiway par- 
titioning solutions. The geometric representation can improve 
both algorithmic complexity and memory requirements since 
it captures implicitly the concept of “distance” or “separation” 
between netlist modules, i.e., the n points define @(n2) 
distances. 

Hall’s pioneering work [27] discusses partitioning a spectral 
embedding of a graph in order to obtain a graph partitioning. 
However, Hall did not specify how to partition the geometric 
embedding. Thus, we first examine various geometric parti- 
tioning objectives and heuristics from the literature, as well 
as the partitioning solutions derived when these heuristics are 
applied to spectral embeddings of circuit netlists. Although 
a strictly geometric approach can yield useful partitioning 
solutions, it cannot directly utilize the netlist topology. We 
address this limitation via a new approach to partitioning that 
utilizes both information from the spectral embedding and the 
netlist topology. Our contributions are the following: 

In the geometric partitioning, both the partitioning objec- 
tive and the heuristic used to optimize the objective dra- 
matically affect solution quality. We find that diameter- 
related objectives and the K-Center (KC) and Complete- 
Linkage (CL) heuristics yield the highest quality solutions 
for k-way (and two-phase FM) partitioning applications. 
Our results support the observation of [12] that the 
“proper” embedding dimension which reveals a k-way 
partitioning will grow with k .  However, we also observe 
that a strictly geometric approach has inherent limitations. 
We propose a new method based on a restricted parti- 
riming (RP) formulation. Given a “tour” or “ordering” 
of the modules, the k-way RP formulation seeks a k-way 
partitioning such that each cluster is a contiguous subset 
of the tour. The advantage of the RP formulation is that it 
can be solved optimally using dynamic programming; this 
makes the ordering the “bottleneck” in our methodology, 
leading us to seek good ordering methods. 
For an RP solution to be of high-quality, the order- 
ing must preserve connectivity attributes of the netlist. 

We use 1. = { 1‘1. v 2 . . .  ’ .  r,,} to denote either the modules of the 
netlist or the points of the geometric embedding, i.e., r t  can denote either 
3 netli<t module or a point  in Rd .  We overload these meanings for notational 
cnn\enience. the meaning hhould be clear from the context 
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Fig. I .  (a) Methodology proposed by Hall; (b) our study of specific im- 
plementations of Hall’s methodology; and (c) our new multiway partitioning 
algorithm. 

. 

We hypothesize that a good solution to the traveling 
salesman problem (TSP) on the spectrally embedded 
instance will yield such an ordering. Such an ordering 
can be viewed as a 1-dimensional representation of the 
d-dimensional geometric embedding (which was in turn 
a representation of the original circuit netlist). Our TSP 
heuristic uses the spacejlling cuwe (SFC) construction 
of [5]  and then applies the fast 3-Opt implementation 
described in [6]. Empirically, these orderings are more 
useful for multiway partitioning information than the 
1 -dimensional single-eigenvector ordering used in, e.g., 
1231, 1251. 
Finally, we describe the DP-RP algorithm which uses 
dynamic programming to optimally solve the RP formula- 
tion for various objective functions in the literature. These 
objectives include Scaled Cost [ 121, Absorption [44] 
and diameter-related objectives. DP-RP can transparently 
handle user-specified cluster size bounds. We show that 
the use of DP-RP together with our heuristic (SFC + 
3-Opt) orderings achieves improvements over previous 
spectral methods. 

Fig. 1 contrasts the original methodology of Hall (a) with 
our specific implementations of Hall’s methodology (b), and 
our new multiway partitioning algorithm (c). 

The remainder of this paper is organized as follows: Section 
I1 describes the construction of the spectral embedding via a 
given clique net model and the eigenvectors of the Laplacian. 
Section 111 gives taxonomies of traditional geometric parti- 
tioning objectives and algorithms, and presents experimental 
results indicating both the promise and the limitations of the 
“basic Hall approach” [Fig. l(a) and (b)]. Section IV motivates 
and describes the Restricted Partitioning problem formulation. 
Section V describes the SFC + 3-Opt ordering heuristic, while 
Section VI presents the DP-RP algorithm and shows how 
it may be applied to Scaled Cost and Absorption. Finally, 
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Section VI1 gives experimental results and directions for future 
research . 

11. THE SPECTRAL EMBEDDING 

Three motivations for netlist partitioning based on a geo- 
metric embedding are notable as problem instances grow large. 
First, algorithm speedups often result when a graph input is 
known to be embedded in a geometric space [39]. Second, 
storage requirements for a geometric pointset are less than 
for the original (hyper)graph representation. Third, we obtain 
a natural measure of “distance” or “proximity” between two 
modules which can be evaluated in O( 1) time. 

Intuitively, a successful geometric embedding is “distance- 
preserving”: the distance between two points in the embedding 
should reflect the connectivity between the corresponding 
modules in the netlist. We adopt the two-step spectral approach 
(see, e.g., [12] and its survey of previous works). 

The netlist H(V,  E )  is first transformed into an edge- 
weighted graph G(V,EG) using a clique net model 
(we give results for three such models including the 
“partitioning-specific” net model with edge weight 
4 / ( p ( p  - 1)) for a p-pin net).3 
The first d eigenvectors corresponding to the smallest 
nonzero eigenvalues of the Laplacian of G(V, EG) are 
then used to embed the netlist into d dimensions. 

As with previous works of [ 121, [23], [25], we are motivated 
by the well-established relationships between eigenvectors of a 
graph’s Laplacian and either min-cut partitionings or minimum 
squared-edgelength placements of the graph (see, e.g., [4] for 
a concise overview). Let p i ,  pC, . . . , p: be the n eigenvectors 
of Q corresponding to eigenvalues XI 5 XZ 5 . . . 5 A n .  
Every eigenvector gives a distinct, 1 -dimensional spatial 
embedding of the circuit graph. Reference [27] showed that 
the total squared wirelength of the 1 -dimensional placement 
given by $i is X i .  Hence, the eigenvectors with the lowest 
eigenvalues will correspond to embeddings that are the most 
“distance-preserving”. 

A useful property of the Laplacian of G is that A1 = 0 
(hence, = [1/&, l/&, . . . , l / f l  is uninteresting) and 
X2 > 0 if G is connected. Since this is the case with all of 
our test circuits, we derive a d-dimensional embedding using 
the eigenvectors $2, . . . , ,&+I. The ith component of $j gives 

3This edge weight is motivated by a 2-way partitioning analysis such 
that the expected cost of cutting the net is one [I] .  We choose this as 
an alternative to the “standard” l / ( p  - 1) net model [I31 that has been 
used by [25]. While experimental results in Section 111 and VI support this 
choice, many other reasonable net model choices are available as well. For 
example, [20], [28], [30], [45] have proposed using the clique net model 
with weights ( 2 / ~ ) ~ / ’ ,  2 / p .  6 / ( p ( p  + l)), and respectively. Our 
choice of 4/(p(p - 1)) is motivated by 2-way partitioning, while most of 
the other net models are motivated by placement formulations. Hadley et al. 
[23] also proposed a partitioning-based net model, where the edge weight is 
a function of p and k. However, since our methodology constructs a single 
set of eigenvectors which is then used to find k-way partitionings for a range 
of k values, the [23] model is not appropriate for our study. (Appropriate 
net models for k-way partitioning remain an open area of research.) In our 
experiments, we compare the partitioning-specific net model to both the 
standard net model and the Frankle net model used in [12] in their KF’ 
algorithm. The experiments show that the standard net model is inferior, 
but more importantly show that the benefits of our approach are relatively 
independent of the net model used. 

the ( j  - 1)st coordinate of module wi in !Rd. The eigenvectors 
may be computed using readily availcable Lanczos codes 
which efficiently solve the sparse symmetric eigenproblem. 
For example, 1251 used the code of Simon reported in [38]. 
Chan et al. [12] and Hadley et al. [23] use the more widely 
distributed LASO package of Scott [43].4 

111. A STUDY OF GEOMETRIC PARTITIONING 

We seek a k-way partitioning of the geometric embedding 
that will correspond to a k-way partitioning of the netlist. As 
noted earlier, this is the approach of [27], but [27] specifies 
neither an objective nor an algorithm for the partitioning. In 
this section, we explore the taxonomy of geometric partitioning 
objectives and algorithms in the classification literature, and 
show the effects of these choices on solution quality. We make 
the following observations: 

Minimizing the maximum cluster diameter appears to be 
the best geometric partitioning objective in terms of the 
netlist partitioning solution. 
The bottom-up complete-linkage (CL) algorithm [3 11 
yields excellent results when used within the two-phase 
FM approach. 
The O(dkn) K-Center (KC) algorithm [21] is competitive 
with previous netlist partitioning methods despite relying 
on purely geometric considerations. 
Multidimensional spectral embeddings provide more in- 
formation than a single-eigenvector embedding and seem 
to permit better k-way partitioning solutions. 

A.  A Taxonomy of Geometric Partitioning Objectives 

A large body of work in the classification literature has 
established various objectives f ( P k )  to assess the quality 
of a given partitioning Pk. Intuitively, clusters should be 
compact and well-separated. Clusters with small diameter, 
defined as diam(C) = maxu,uEc dist(u, w), where dis t (u ,  U) 
denotes the Euclidean distance between U and w, are com- 
pact. Clusters with large split, defined as spZit(C1, C Z )  = 
minuECl , V E ~ 2  dist(u, v )  are well-separated. Some standard 
geometric partitioning objectives include the following: 

1 )  Max-min-split: Maximize 

2) Min-max-diameter: Minimize 

4For sparse matrices, the Lanczos iteration solves the symmetric eigenprob- 
lem with O(n’.4) expected complexity; its runtimes are generally competitive 
with those of iterative partitioning methods. For the Parlett-Scott LASO 
code, the relative CPU cost of achieving a d-dimensional embedding (d 
eigenvectors) versus a I-dimensional embedding is indicated in Table VI 
below. The reader may note that the spectral computation does have a worst- 
case O( n 2 )  space complexity. However, netlist representations are typically 
quite sparse; in practice they may be made even sparser by discarding large 
signal nets (e.g., with le( > 20 pins as in the work of Hadley et al. 1231) or 
le1 > 99 pins as in the work of [12]. 
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3) Min-sum-diameters: Minimize 
k 

j ( P )  = diam(C2) 
i=l 

Each of these objectives seems reasonable for our purposes. 
For the k-way partitioning of a pointset in Euclidean d-space, 
the following results are known: 

Objective 1 can be solved optimally in polynomial time 
for all k and all dimensions d [31]. 
Objectives 2 and 3 can be solved optimally in polynomial 
time for k = 2 and all d [29]. 
Objectives 2 and 3 are NP-complete for k 2 3 and d 2 2 
1361. 
Objective 2 can be solved within a factor of two of 
optimal in polynomial time for all k and all d ;  however, 
achieving an error bound less than = 1.97 is NP-complete 
for k 2 3 and d 2 2 [18]. 

Thus, although some of these formulations are NP-complete, 
the geometric embedding allows us optimal algorithms for k = 
2 and constant-factor approximation algorithms for k > 2. 
We now give a taxonomy of algorithms used to address these 
partitioning objectives. 

B. A Taxonomy of Geometric Partitioning Algorithms 

The Single-Linkage algorithm [3 I ]  optimally solves Ob- 
jective 1; it begins with each point in its own cluster, then 
iteratively merges the two closest clusters into a single cluster. 
The same solution can be obtained by removing the k - 1 
largest edges from a minimum spanning tree over V, and 
letting each of the remaining k connected components define 
a cluster. 

For k = 2 ,  algorithms that optimally solve Objectives 2 and 
3 are given in [22], [29]. These algorithms can be extended to 
generate heuristic &way partitionings for k > 2 by iteratively 
reapplying the algorithm to the largest remaining cluster. We 
call these extensions Divisive Max-Diameter and Divisive 
Sum-Diameters, respectively. 

Just as there are divisive hierarchical approaches for Ob- 
jectives 2 and 3, it is also reasonable to use bottom-up 
hierarchical, or agglomerative, methods. We have observed 
that the Complete-Linkage (CL) algorithm of (see Fig. 2) is 
an excellent heuristic for addressing Objective 2, especially for 
large k [I] .  CL starts with each point in its own cluster and 
then iteratively merges the pair of clusters which minimizes 
the increase in maximum cluster diameter; BenzCcri [8] has 
given an O(dn2) implementation of the CL algorithm. The ag- 
glomerative technique can also address Objective 3: iteratively 
merging the pair of clusters that minimize the increase in the 
sum of cluster diameters yields the Agglom Sum-Diameters 
heuristic. 

Last, we note that the K-Center (KC) algorithm of Gon- 
zalez [21] (see Fig. 3) achieves a 2-approximate solution for 
Objective 2 and can be implemented to run in O(dkn)  time. 
KC iteratively constructs a set of k "cluster centers" such that 
the next center chosen is as far as possible from the previously 
chosen centers. After k centers have been selected, each point 
i5 clustered with the nearest cluster center. 

Complete-Linkage (CL)  Algorithm 
Input: 

Output:  P' = {C,,  Cz,. . . , C'} E k-way partitioning 
Vas: 
1. fori = 1 to n d o  
2. ci = { U i }  

3. P" = {C,,CZ,. . . ,G} 

Points V = {U], vz,  . . . , U , }  in d-space 
k Number of clusters 

Pn, P"-', . . . , P' Set of partitionings 

4. for m = n downto  k + 1 d o  
5.  Find clusters C;. C; s. t .  diarnlC, UC;) is minimum 

Fig. 2. Complete-Linkage (CL) algorithm. 

K-Center  (KC)  Algori thm 
Input: Points V = { V I ,  u z . .  . .,U,,} in d-space 

k z Number of clusters 

W z Set of cluster centers 
Output:  P' = {CI, Cz, . . . , C'} G k-way partitioning 
Vas:  
1. W = {U) for some random U E V 
2. while  JWI 5 k d o  
3. 

5. Let W = { w ~ , w z , .  . . , w k )  
6. for i = 1 to n do 
7. 
8. 

Find U E V s. t .  min dist(v,ur) is maximized 
WUEW 

4. W = WU{v} 

Let j be the index s.t. dist(w,, G,) is minimized, 1 5 j 5 k 
Cj = Cj U { ~ i )  

Fig. 3. K-Center (KC) algorithm 

TABLE I 
BENCHMARK CIRCUIT CHARACTERISTICS 

Test Case 
19ks 
bml 

Prim1 
Prim2 
Test02 
Test03 
Test04 
Test05 
Test06 

# Modules 
2844 
882 
833 

3014 
1663 
1607 
1515 
2595 
1752 

rn 
3282 
903 
902 
3029 
1720 
1618 
1658 
2750 
1541 

E 
10547 
2910 
2908 
11219 
6134 
5807 
5975 
10076 
6638 - 

We now examine the performance of these six algorithms 
(single-Linkage, Divisive Max-Diameter, Divisive Sum- 
Diameters, Complete-Linkage, Agglom Sum-Diameters, and 
K-Center) in terms of netlist partitioning quality. 

C. Experimental Results 

Our first set of experiments compared performance of the six 
algorithms on nine standard test cases from ACWSIGDA and 
Hughes Aircraft Co., with the partitioning-specific net model 
used to generate the spectral embedding. Some characteristics 
of these benchmarks are given in Table I. We generated k-way 
partitionings of d-dimensional embeddings for 2 5 k 5 10 
and 1 5 d 5 10 (recall that a d-dimensional embedding is 
constructed using the eigenvectors $2;. . . , The two- 
dimensional spectral embedding for Primary 1 is illustrated in 
Fig. 6(b). In Fig. 4, we compare the performance of the six 
algorithms for each benchmark in terms of Scaled Cost. Each 
graph point represents the best Scaled Cost value observed for 
a given number of clusters k from the ten k-way partitionings 
generated. We make the following observations: 

Algorithms that address Objective 3 (divisive sum- 
diameters and agglom sum-diameters) tend to isolate 
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Fig. 4. Comparison of the various partitioning objectives and algorithms for nine ACMMCNC benchmarks, using the partitioning-specific net model to 
construct the d-dimensional spectral embeddings for 1 5 d 5 10. Each data point represents the lowest Scaled Cost (x105) observed for each of the 
ten k-way partitionings generated. We use "DivMin" for Divisive Min-Diameter, "Slinkge" for Single-Linkage, "AggSum" for Agglom Sum-Diameters, 
and "DivSum" for Divisive Sum-Diameters. 

outliers, resulting in poorly balanced clusters and high 
Scaled Cost values. 

diameter, but is noticeably inferior to CL and KC. Since 
Single-Linkage solves Objective 1 optimally, we conclude 
that Max-Min-Split is not a good objective for netlist 
partitioning. 

Algorithms that address Objective 2 (Divisive Min- 
Diameter, KC, and CL) perform best. We conjecture that 

Single-Linkage slightly outperforms divisive min- Divisive Min-Diameter is inferior to KC and CL because 
our spectral embeddings are dense with few outliers. 

CL and KC are clearly the best geometric partitioning algo- 
rithms for our purposes, with CL appearing marginally better 
(0.8%) on average. Because KC has better time complexity 
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Standard FM MBC 
151 (140) 156 
65 (61) 54 
66 (66) 48 
59 (59) 61 

242 (234) 187 
235 (235) 175 

42 (42) 42 
84 (84) 59 
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RW-ST CL 
146 124 
58 48 
47 49 
58 49 
165 146 
159 144 
42 42 
71 50 

~ 

1995 

~~ 

Test04 317 12 (12) 20 
Test05 423 37 (37) 37 
Test06 477 87 (65) 83 

TABLE I1 
SCALED COST VALUES OBTAINED BY KC USING BOTH THE STANDARD AND PARTITIONING-SPECIFIC NET MODELS. 

EACH V A L E  IS l K E  BEST OBSERVED OVER  DIMENSIONAL SPECTRAL EMBEDDINGS FOR 1 5 d 5 10: THE 
BEST EMBEDDING DIMENSION d (TIES BROKEN IN FAVOR OF LOWER DIMENSION) IS SHOWN IN PARENTHESES 

14 12 
28 32 
82 63 

(O(dlcn) versus O(dn2) ) .  we chose KC for more detailed 
study, summarized in Table 11. (Comparisons of KC with 
other spectral algorithms according to Scaled Cost can be 
made using data in Section VII.) Table I1 suggests that with 
the KC approach, the partitioning-specific net model leads 
to slightly improved Scaled Cost, but the results are erratic, 
ranging from 30.2% worse for Test06 to 43.5% better for 
Test02. When recording the best of the ten partitionings that 
KC generated (for 1 5 d 5 10) for each IC, we also recorded 
the embedding dimension that yielded the best solution. This 
number is shown in parentheses in Table I1 (ties are broken in 
favor of lower values). Table I1 trivially indicates that using the 
added information contained in higher-dimensional spectral 
embeddings leads to improved results. 

D. Digression: Applying Cl Clusters in Two-Phase FM 

While the time complexity of KC is superior to that of CL, 
the bottom-up nature of CL suggests that it can yield good 
results for large IC = @(n).  Indeed, our separate studies in 
[ l ]  have shown that CL is effective in addressing Objective 
2 for large k .  

Table I11 gives two-phase FM bisection results obtained 
using the CL partitioning of the geometrically embedded 
netlist. These are compared against analogous results for 
1)  standard FM (on flat netlists), 2) two-phase FM using 
MBC partitionings [9], and 3) two-phase FM using RW-ST 
partitionings. These results are quoted from (261 with the 
exception of the Test05 example, for which FM min-cuts had 
to be regenerated due to a faulty area file used in the original 
experiments of [26]. For each benchmark, we use the same 
number of clusters IC as used in [26]. We report the best two- 
phase FM result for the CL partitionings generated from 1- 
through 10-dimensional embeddings with 20 FM runs for each 
partitioning (the results of 200 “flat” FM runs are shown in 
parentheses under “Standard €34”). Our partitionings yield an 
average of 26.9% improvement over the flat FM partitioning 

TABLE I l l  
UTILITY OF CL RESULTS WITHIN TWO-PHASE FIDUCCIA-MATTHEYSES 

PARTITTONING. THE RESULTS OF 200 FLAT FM RUNS ARE SHOWN IN PARENTHESES 

Test02 
Test03 

results, in contrast to the 17.4% improvement obtained by RW- 
ST partitionings [26]. (Despite using a total of 200 FM runs, 
our best results were always obtained with d 5 3; this is 
perhaps surprising in view of the correlation between IC and 
the best embedding dimension when IC is small.) Again, the 
results suggest that the spectral embedding is conducive to 
high-quality partitioning solutions. 

IV. THE RESTRICTED PARTITIONING (RP) FORMULATION 

While a spectral embedding seems to usefully capture 
connectivity properties of the netlist, purely geometric par- 
titioning approaches such as CL or KC have an obvious 
shortcoming: the geometric partitioning objectives (e.g., Min- 
Max-Diameter) have only a rough correlation to netlist parti- 
tioning objectives (e.g, Scaled Cost). When applied to a given 
spectral embedding, a purely geometric partitioning algorithm 
will always be handicapped since it ignores the actual netlist 
topology. Seemingly, the spectral embedding should serve 
as a partitioning guide and not an absolute: we therefore 
seek a partitioning approach that integrates both the spectral 
embedding and the netlist topology. One such approach has 
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been given in the KP algorithm of [12]. (Given a spectral 
embedding, KP begins by clustering according to directional 
cosine proximity, but then uses the netlist topology to make 
the more difficult clustering decisions.) 

The genesis of our new approach can be said to lie in the 
TSP heuristic proposed in [32], which uses a partitioning of 
a planar pointset to construct a tour. Karp’s heuristic tour 
visits every point in a particular cluster before moving to the 
next cluster, until all points in all clusters have been visited. 
We ask whether an “inverse” methodology can succeed, i.e., 
whether we can use a tour of the geometric pointset to generate 
a partitioning. We require each cluster of the partitioning 
to be a contiguous “slice” of the tour, thereby obtaining 
the following general approach: 1) construct a “good tour” 
over the geometric points, then 2) minimize some partitioning 
objective, subject to clusters being contiguous slices of the 
tour. 

We represent a tour U,, , U,, , ’ . ‘ , U,, of the points V = 
{ V I ,  212, . . . , U,} by the circular permutation (i.e., bijection) 
T :  [l . . . n] + [l . . - n]. We say v, is the j t h  point visited in 
the tour if ~ ( j )  = i (so that w, = U,,). In other words, U,, is 
the first point visited, U,, is the second point visited, etc. A 
slice [i, j ]  of T is a contiguous subset of U,, , U,, , ‘ . . , U,,, 
with [i,j] = {w,~,w,~+,,~~~,u,~} if i 5 j and [ i , j ]  = 
{U,,, U,%+, , . . . , U,,,} U {vT1, U,, , . . . , wTJ } if i > j .  We now 
define the “restricted’ k-way partitioning problem. 

Restricted k-Way Partitioning (RP): Given a circuit netlist 
hypergraph H = (V, E ) ,  a permutation T : [l . . . ,711 .+ 
[l . . . n],  cluster size bounds L and U, and a value 2 5 k 5 
/VI, find the k-way partitioning Pk that optimizes a given 
objective function f ( P k )  such that the following conditions 
hold. 

Condition 1: If U,,, U,) E C for some cluster C, then either 
(a) [i,j] G C,  or 
(b) b,i] C C. 
Condition 2: L 5 IC,/ 5 U,  1 5 j 5 k.  
Condition 1 captures the restriction that clusters must be 

slices of 71, and Condition 2 adds cluster size bounds. The 
RP formulation in effect seeks to partition a 1-dimensional 
representation of V, namely, T .  We will show that we can solve 
RP optimally for a large class of objectives (including Scaled 
Cost) in polynomial time. Note that the general partitioning 
formulations are NP-complete for these objectives. 

Given the spectrally embedded netlist modules V, our 
multiway partitioning methodology constructs a tour K over V 
by combining a spacefilling curve heuristic [5] with a single 
greedy 3-Opt descent [6]. We then apply an efficient dynamic 
programming algorithm to solve the RP formulation. A variant 
of RP removes Condition l(b), thus requiring clusters to be 
slices from a linear ordering rather than from a tour. Such a 
restriction of the solution space (all slices [z , j]  have i 5 j )  
allows an O ( n )  factor speedup, and our experiments below 
use linear orderings to capitalize on this complexity savings. 

V. A FAST TSP HEURISTIC 

The first part of our approach seeks a tour of the points V 
in the d-dimensional spectral embedding, such that proximity 

Fig. 5. 
sequence of recursive constructions. 

The Sierpinski spacefilling curve in the plane is the limit of a 

in d-space is preserved. Certainly, one such tour directly 
results from a one-dimensional spectral embedding, namely, 
the sorted entries of the eigenvector that gives the one- 
dimensional embedding. However, the experiments given in 
Section III-C (and confirmed below in Section VII) indicate 
that this single-eigenvector “tour” does not completely capture 
d-dimensional partitioning information that is needed when 
k > 2. 

Recall that two modules that are strongly connected in the 
netlist will tend to be near each other in d-space. We now 
require that points of V that are close to each other in d- 
space should remain near each other with respect to T .  In this 
way, modules that are strongly connected in the netlist will be 
close to each other in the tour. Additionally, when two strongly 
connected modules are nor actually adjacent in the tour, they 
will ideally be separated by modules with which they may 
profitably share a cluster. From this intuition, a low cost TSP 
solution should adequately preserve proximity since the tour is 
unlikely to wander out of, and then back into, a natural cluster. 
However, it is not obvious which TSP heuristic to choose. 

A.  Spacejilling Curves in d-Space 

Bartholdi and Platzman [5] have used spacefilling curves 
(SFC’s) as the basis of a provably good TSP heuristic. They 
use the recursive construction due to Sierpinski (1912), the 
two-dimensional case of which is shown in Fig. 5. In the figure, 
the successive approximations become progressively refined 
until the curve “fills” up the unit square (to the necessary 
precision), i.e., it passes over every point. The order in which 
points of a TSP instance are visited by the curve yields the 
heuristic TSP solution. Fig. 6 shows the SFC tour for (a) a 
uniformly random set of 150 points in the plane, and (b) the 
two-dimensional spectral embedding of the Primary 1 test case. 

The Sierpinski construction appears suitable since it tends to 
avoid edges that are significantly longer than necessary (e.g., 
as compared with the distance to a nearest neighbor), so that 
if two points are adjacent in the tour, they likely will be close 
to each other in the d-space. On the other hand, the curve will 
explore one orthant entirely before moving on to the next, so 
that two points that are close together but in different orthants 
might be widely separated in the ordering. In general, this 
imperfect behavior seems unavoidable and some relatively 
long edges may occur. 

The Sierpinski construction is also attractive because it 
easily extends to higher dimensions and can be computed in 
just O(dn + n log n) time. We assume that the coordinates 
for the vertices of V have been scaled to lie inside the unit 
d-dimensional cube. Since it “fills up” the entire d-space, the 
Sierpinski curve can be viewed as a mapping from the unit 
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Fig. 6. 
benchmark (833 modules). In (b), the .r and y axes give the coordinates of the second and third eigenvectors, respectively. 

The tour generated by a spacefilling curve over (a) 150 random points in the plane, and (b) the two-dimenslonal spectral embedding of the Primary1 

interval into the d-space. To compute the tour, we must find 
the value on the unit interval that maps to each point in V. i.e., 
we must compute the inverse of the Sierpinski curve mapping. 
For this inverse mapping 0: [O, l)d + [O. 1). we require that 
@ ( U )  < O(v) if and only if U precedes v in the tour. Once 
e)( t , )  is computed for all v E V, the tour is generated by sorting 
the points by their 8 values, i.e., the point U with the smallest 
0 value is uT1 .  the point U with the second smallest 0 value 
is r T 2 .  etc. It turns out that for the Sierpinski construction, 0 
can be evaluated in constant time (assuming d is constant) for 
a given point. Hence, the overall construction requires O(dn)  
time to compute all the 0 values plus O ( n  log n )  time to sort 
the values, yielding O ( d n  + n log n )  total time complexity. 

Fig. 7 reproduces from [5] the calculation of 0 ,  both for 
completeness and also to show its simplicity. Step 7 does not 
appear in [5]  and we believe it was omitted as an oversight. 
We number the 2d orthants from 0 to 2d - 1. corresponding 
to the order in which they are visited by the Sierpinski curve. 
This numbering can be represented by a d-bit Grey code since 
each orthant will be adjacent to the previous one; specifically, 
we use the Grey code that flips the rightmost bit possible 
without repeating an earlier sequence. In Fig. 7, the function 
Grey accepts an orthant and returns a value Q between 0 and 
2d - 1. i.e., Grey ( 0 . . . 0 )  = 0, Grey (0 . . .01)  = 1, Grey 
( 0 ' . . 0 1 1 )  = 2, Grey (0 . . .010)  = 3, Grey (0. . .0110) = 
1. . . . . Grey (10 '  . ' 0 )  = 2d - 1. The function Theta itself 
accepts parameters X (a point in Rid) and dep th  (the minimum 
number of bits needed to store a point in V ) .  It is easy to 
see this construction requires O(d . d e p t h )  time, where d e p t h  
reflects the depth of recursion needed to resolve the entire 
pointset. In other words, d e p t h  is the number of significant 
bits needed; the constant d e p t h  = 10 corresponding to about 
three significant figures is generally sufficient. 

B. 3-Opt Post Processing 

Although the SFC heuristic tends to avoid long edges, the 
merall cost of the tour can be quite high. Bartholdi and 

Platzman [5]  observed that in practice, the SFC heuristic yields 
tours having cost within 25% of optimal for uniformly random 
instances in 2-space. Yet, Fig. 6(b) suggests that the points 
in the spectral embedding are not uniformly distributed. The 
authors of [5]  noted that other spacefilling curves may be better 
suited for such nonuniform distributions and even outlined 
a method for creating application-specific spacefilling curves. 
Instead, we choose to improve the SFC tour by applying a 
simple, greedy 3-Opt post-processing heuristic. 

3-Opt uses the strategy of iterative improvement, that is, 
local optimization by iteratively constructing an improved 
solution from the current solution. The new solution is derived 
by finding three edges in the current tour which can be deleted, 
and replaced with three new edges such that the tour cost is 
reduced. tour with lower cost.' If no such edges exist, then 
the algorithm terminates and returns the current tour, which is 
also a local minimum. 

Our 3-Opt code is based on an efficient implementation 
[6] that utilizes a K-d tree data structure. We also apply the 
method of [35],  [40] for restricting the number of candidate 
edges for the tour to O ( n ) .  Intuitively, since a nearly-optimal 
tour should not contain any long edges, it should be possible 
to consider a subset of O ( n )  short edges without significantly 
degrading the solution quality as compared to a method that 
considers all O ( n 2 )  edges. Hence, we disallow any edge 
that connects vi with vJ if vJ is not one of the r closest 
neighbors to vi  (we choose r = 25), thereby limiting the 
number of candidate edges for the tour to O(nr ) .  To find 
a possible 3-opt move, each of the n edges in the tour is 
considered in turn to be removed. For each such edge, all 
possible improving moves can be examined by examining 

'For example, 3-Opt might find indices h.  i . j  such that if 
(7 .1.  7'2. ' ' '  . L'h. l ' h + i .  ' ' '  . l ' L .  7 ' , + 1 .  ' ' '  . t ' ,  . t ' J+ l .  ' ' . . L l n }  iS the CUITent 
tour, then { V I .  ('z. ' ' ' . l ' h .  L ' c + l .  t ' , + j  . ' ' . 7 > 5 .  L ' / L + l .  t 'h+2.  . . . . t'<. U J + l .  

ts1+2. . . . v n  } is a tour with lower cost. In this case, the three deleted 
edges ( 1 . h .  ). ( v l .  { '&+I) .  and ( v, .  t ' j + ~  ) were replaced with the edges 
( r h .  ~ ' , c I  ). (v,. r . h + l ) .  and ( r ? .  t'5+j ) .  In general, there will be four 
different sets of edges that may possibly replace the deleted edges. 
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Function Theta (X,depth) 
Input: point in P = X :array [I . . . d] of real 

depth - granularity measure 
Output: 0 
Vars: Temporary d-dimensional point Y 

real number in ( 0 , l )  which indicates place on curve 

Orthant number Q 
Recursive subsolution - SubTheta 

1. C = Gny(1..  . 1)/2d 
2. if (depth = 0 or X = ( 1 . .  . 1)) then return C 
3. for i = 1 to d do 

4. Q=Grey(Y[l] . . .  Y[d]) 
5. for i = 1 to d do 

Y[i] = 2 IX[tl- 0.51 
6. SubTheta = Theta(Y, depth - 1) 
7.  if (Q mod 2 = 1) then SubTheta = 1 - SubTheta 
8. Num = (Q + SubTheta - C)/2d 
9. return Num - [Num] 

Y [ i ]  =min{[2.X[i]J, l]  

Fig. 7. Computation of 0. the inverse mapping of the spacefilling curve. 

O(r2)  edges, and this is reduced further using the “gain” 
method of Bentley. Hence, finding an improving 3-opt move 
requires no more than O(nr2)  time in the worst-case. Although 
the number of 3-opt moves needed to reach a local minima 
is exponential in the worst-case, in practice, Bentley observed 
between @(log n)  and @(n) moves were required for random 
instances. In practice, the runtimes for this post-processing 
are only a fraction of the runtimes needed for our overall 
methodology (see Table VII). 

VI. DYNAMIC PROGRAMMING FOR 
RESTRICTED PARTITIONING (DP-RP) 

Since each module of the netlist is in one-to-one correspon- 
dence with a point of the spectral embedding. the Sierpinski 

14.4(5) 1 13.7(5) 1 12.6(5) 1 11.3(8) I 10.4(8) I 8.98(3) 
12.3(5) I 11.0(5) I 10.2(5) I 7.33(5) I 7.11(5) I 5.78(1) 

18.3(10) 16.2(10) 16.5(10) 14.0(2) 13.5(10) 7.82(4) 
15.9(10) 15.1(10) 14.2(10) 12.0(10) 10.6(4) 8.21(5) 
+3.12 +3.39 +1.57 +5.02 +5.12 -2.02 
+10.6 +11.3 +7.52 +8.69 +5.02 +0.60 

tour over the spectral embedding naturally defines a tour over 
the netlist modules. With respect to this tour of modules, we 
now show how dynamic programming efficiently finds optimal 
RP solutions for a variety of partitioning objectives f .  

A. Development of the DP-RP Algorithm 

Assume that there exists an “intracluster” cost function 
w(C)  defined over clusters C,  such that f can be written in 
terms of w (e.g., f(P’) = r n a x l < i < k  w ( C ~ ) ) . ~  In other words, 
w(C) is essentially the contribution of C to the value f (P’). 
The cluster corresponding to slice [ i , j ]  is denoted by C[i,jl 
and we let denote a k-way RP solution over the slice 
[ i , j ] .  The optimal k-way FW solution over [z,j] is denoted by 
Pk,jl. Notice that we always have Pr:,jl = Pr:,jl = {Cp,j]}. 
We will use the set of partitioning solutions as “building 
blocks” for solutions of the form where [ z , j ]  C [ i ’ , j ’ ]  
and k < k’. 

Since each cluster C[;,jl is uniquely determined by its first 
and last points ‘uT, and w T J ,  only (U - L + 1). clusters can 
be part of any Rp solution. Our DP-RP algorithm begins by 
computing the cost w(C[i,jl) for each of the (U - L + 1)” 
possible clusters; we assume the existence of a procedure 
Cluster-Costs that performs this operation (see Section VI-B). 
These clusters form the set of all optimal 1-way partitionings 
Ph,jl. We then build 2-way partitioning solutions Pg,jl from 

6 0 f  course, not every objective function f can be written in this manner. 
For example, DP-RP cannot be applied to optimize Cluster Ratio 1481. 

. . - 
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13.7 
13.7 
12.1 
11.2 
20.2 
34.3 
25.5 
21.4 
24.0 
31.3 
17.3 
30.6 
22.6 
19.7 
23.1 
20.3 
15.1 
37.9 
22.2 
14.8 
21.7 
14.3 
7.44 
11.7 
9.88 
7.89 
9.73 
7.50 
17.9 
31.7 
27.1 
24.4 
32.0 
17.8 

Test 
Case 
19ks 

b m l  

Prim1 

Prim2 

Test02 

Test03 

Test04 

Test05 

Test06 

DP-RP(l0) 

9 
8.58 
14.3 
14.3 
8.72 
15.0 
11.6 
21.8 
32.1 
22.8 
19.8 
27.6 
31.1 
38.5 
75.4 
36.7 
36.0 
34.6 
44.6 
12.2 
18.2 
13.3 
12.3 
11.7 
10.9 
19.4 
31.9 
24.1 
23.3 
21.5 
31.4 
16.2 
28.3 
21.1 
20.4 
21.0 
19.9 
14.1 
34.3 
19.9 
16.5 
22.1 
12.5 
7.19 
10.8 
8.66 
7.96 
11.0 
6.82 
17.0 
29.5 
25.1 
24.1 
31.0 
17.3 

TABLE V 
SC.ALED COST ( X 10' ) COMP.4RISONS USING THE PARTITIONING-SPECIFIC NET MODEL 

5 
6.57 
11.1 
11.1 
7.42 
14.4 
7.00 
14.8 
15.1 
11.5 
11.4 
17.9 
11.3 
24.5 
47.1 
26.0 
24.1 
27.5 
28.1 
9.20 
11.2 
9.43 
10.6 
10.4 
8.33 
15.9 
22.4 
16.1 
20.2 
23.1 
28.8 
13.5 
19.3 
15.2 
21.8 
22.2 
17.6 
10.2 
15.4 
15.1 
13.9 
27.2 
10.3 
5.99 
7.04 
6.56 
7.04 
10.3 
4.97 
12.7 
21.5 
16.5 
22.9 
28.8 
17.3 

ALG 

DP-RP( 1) 
SFC 
KP 
KC 
SB 

DP-RP(10) 

SFC 
KP 
KC 
SB 

DP-RP (10) 
DP-RP(1) 

SFC 
KP 
KC 
SB 

DP-RP(1) 
SFC 
KP 
KC 
SB 

DP-RP( 10) 
DP-RP( 1 ) 

SFC 
KP 
KC 
SB 

DP-RP( 1) 
SFC 
KP 
KC 
SB 

DPRP(10)) 
DP-RP(1) 

SFC 
KP 
KC 
SB 

DP-RP(1) 
SFC 
KP 
KC 
SB 

DP-RP(10) 
DP- RP( 1) 

SFC 
KP 
KC 
SB 

vs SFC 
vs KP 
vs SB 

DP-RP(1) 

'DP-RP(10) 

DP-RP(10) 

DP-RP( 10) 

4 
5.64 
9.51 
8.37 
11.4 
13.1 
6.51 
9.02 
9.02 
8.89 
8.67 
11.1 
8.63 
20.4 
38.4 
21.8 
19.5 
16.4 
23.9 
8.18 
9.45 
7.95 
10.9 
8.96 
7.85 
14.2 
19.7 
13.4 
16.5 
23.6 
18.4 
12.7 
16.5 
14.3 
15.9 
19.3 
16.0 
7.33 
11.6 
11.6 
9.05 
27.4 
9.08 
5.31 
6.33 
5.49 
7.00 
8.78 
4.26 
11.7 
19.2 
13.7 
13.0 
25.9 
19.9 

- 
G 

6.25 
5.44 
17.6 
17.6 
6.35 
5.53 
5.53 
5.53 
5.53 
5.80 
5.53 
13.4 
13.4 
13.4 
13.5 
13.5 
13.4 
4.77 
5.55 
5.05 
5.42 
5.88 

+37.4 
+35.2 
+29.9 
+52.7 
+18.1 
+o.oo 
+16.1 
-3.65 
-11.6 
+20.2 
+8.01 
+O.OO 
+44.0 
+1.90 
+1.36 
+1.02 
+14.0 
+o.oo 
+22.5 
+5.36 
+13.6 
+6.92 

- 
8 

8.22 
13.8 
13.8 
10.8 
15.8 
9.15 
20.0 
28.6 
20.7 
18.2 
30.6 
26.9 
34.0 
68.7 
35.2 
32.9 
33.6 
40.5 
11.6 
16.8 
12.8 
12.9 
12.0 
10.1 
18.6 
29.6 
22.8 
21.6 
21.2 
20.2 
15.5 
25.4 
19.2 
20.0 
22.4 
17.7 
13.1 
30.2 
17.8 
14.1 
23.8 
11.8 
6.96 
9.60 
8.06 
7.47 
10.6 
6.70 
16.5 
27.0 
23.7 
25.9 
32.4 
16.0 

+18.3 
+11.9 
+4.37 

- 

- 

- 

- 

- 

- 

- 

- 

__. 

- - 

- 

5.78 
5.78 
66.1 
66.1 
5.85 
3.09 
3.09 
3.09 
5.08 
10.6 
3.09 
8.80 
14.3 
9.21 
28.6 
28.6 
14.3 

- 
7.68 
13.2 
13.2 
7.37 
15.6 
8.74 
17.9 
25.4 
18.0 
15.7 
28.6 
22.7 
31.2 
61.6 
31.7 
32.2 
34.4 
38.1 
10.8 
15.4 
12.1 
12.7 
11.8 
9.73 
17.6 
27.8 
20.9 
18.7 
21.1 
29.8 
14.9 
23.1 
17.1 
19.7 
23.2 
17.0 
12.2 
25.1 
17.6 
11.7 
24.4 
11.1 
6.44 
8.78 
7.84 
6.78 
10.7 
6.12 
15.7 
24.2 
20.2 
27.6 
33.6 
15.6 

+17.1 
+8.22 
+8.66 

- 

- 

- 

- 

- 

- 

- 

- 

- - 

- 

+39.7 
+26.0 
+24.6 
+58.2 
-0.88 
+O.OO 
+20.0 
+11.4 
+14.7 
+42.4 
-10.3 
t0.00 
+39.7 
+21.8 
+38.4 
+51.9 
+17.1 

- 
7.12 
12.2 
12.2 
7.04 
15.1 
8.87 
16.8 
20.4 
14.4 
12.1 
19.8 
17.0 
28.2 
54.9 
28.8 
32.4 
30.7 
32.4 
9.99 
13.5 
11.0 
11.3 
11.5 
9.33 
17.2 
25.5 
18.5 
19.5 
21.2 
28.6 
14.1 
21.5 
16.2 
22.1 
22.4 
16.7 
11.0 
19.6 
16.5 
14.5 
24.3 
10.2 
6.24 
7.96 
7.32 
6.81 
11.1 
5.38 
13.5 
22.9 
18.4 
23.3 
26.4 
16.2 

+14.6 
+11.9 
+8.34 

- 

- 

- 

- 

- 

- 

- 

- 

~ - 

- 

- 
3 

5.45 
7.48 
7.48 
35.2 
12.5 
6.45 
6.61 
6.61 
6.61 
6.61 
7.02 
6.61 
14.7 
31.7 
14.6 
14.7 
17.4 
17.0 
6.98 
7.18 
6.86 
9.60 
7.54 
7.69 
12.0 
16.0 
10.9 
17.8 
19.1 
18.2 
11.4 
14.9 
13.0 
13.1 
21.4 
14.3 
7.11 
8.44 
8.19 
13.0 
36.0 
8.65 
4.78 
4.95 
4.90 
5.88 
10.2 
4.06 
10.3 
15.6 
11.3 
18.5 
19.3 
15.6 

+5.71 
+29.5 
+14.1 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- - 

- 

;17; 11 +18.1 
+o.oo 

the p[i 31. etc. until a k-way solution is derived. Fig. 8 formally 
descnbes the DP-RP algorithm. 

Whether the final Pk is indeed optimal depends on the 
objective f. For DP-RP to generate optimal solutions, a prin- 
ciple ofoptirnality must hold: all subsolutions of an optimal 
RP solution must themselves be optimal RP solutions. For 
example, if P3 = {Cl. C 2 .  C3) is an optimal 3-way RP 
solution, then { C 1 ,  C2) must be an optimal 2-way RP solution 
over {C,  U Cz}. Thus, given the set of all optimal Pt:jil. we 
can build the set of optimal Pi:3l by examining all Pi;il 
partitionings conjoined with single clusters. In other words, 
f':: can be expressed as p";;ml U{C r71+1 , } for some 112 with 

L 5 ~ C ~ m + l , l ~ ~  5 U. Since DP-RP considers each possible 
value of m (Step 5 )  and records the new partitioning that 
minimizes f (Step 7), every retained when the loop of 
Step 5 terminates must be optimal. DP-RP has O ( k (  U - L)n2)  
time complexity, assuming that Cluster-Costs has no worse 
than O(k(U - L ) n 2 )  complexity. When there are no cluster 
size bounds, DP-RP requires O ( k n 3 )  time. 

A sufficient condition for the principal of optimality to hold 
is for f to be monotone in w. Given Pk = {cl, c2; . . . , c k )  

and Qk = {Ci, Ch.. . . , CL} with w(Ci) 5 w(C,!)(w(Ci) 2 
w ( C i ) )  for 1 5 i 5 k ,  we say f is monotone nondecreasing 
(nonincreasing) if and only if f ( P ' " )  5 f ( Q k ) ( f ( P k )  2 
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Test 
Case 
1 9 h  

bml 

Prim1 

Prim2 

1353 

ALG Number of Clusters - k Avg % 
10 9 8 7 6 5 4 3 2 improv 

K P  9.09 9.37 10.7 9.52 9.00 9.00 6.95 6.58 6.20 +4.98 
SB 11.1 9.53 9.18 9.12 7.90 6.34 6.28 6.65 6.32 -1.40 

K P  27.5 23.1 18.9 18.2 12.5 10.7 8.67 6.61 5.53 -19.5 
SB 43.4 36.1 30.2 24.7 19.6 13.8 8.67 6.61 5.53 +6.31 

DP-RP(10) 38.4 35.4 33.2 30.4 28.7 26.4 23.4 18.6 13.5 +O.OO 
KP 44.7 41.3 32.3 33.2 31.3 29.9 21.2 l4:: 1 i::: 11 $1.90 
SB 59.3 56.2 51.0 46.6 43.2 40.3 38.9 $29.7 

DP-RP(1O) 12.0 11.6 11.3 11.1 9.85 8.46 7.93 7.24 4.58 $0.00 
K P  15.0 15.2 13.5 11.0 10.5 10.1 9.23 7.25 4.64 +10.8 

DP-RP(1O) 9.65 9.37 9.12 8.80 8.62 8.46 6.58 6.28 5.67 +O.OO 

DP-RP(1O) 25.8 24.5 22.7 20.4 18.0 15.9 13.1 6.61 5.53 $0.00 

TABLE VI 
SCALED COST ( x105)  COMPARISONS USING THE FRANKLE NET MODEL 

Test03 

KP’ ‘ 24.4 22.6 22.1 19.1 19.3 18.7 17.4 
SB 32.7 26.8 24.0 21.1 19.2 15.7 13.6 

KP 20.3 22.4 19.1 17.3 18.4 22.8 19.9 
DP-RP(10) 16.4 15.5 15.2 14.4 13.7 12.6 11.3 

SB I 11.1 I 10.6 I 10.4 I 9.55 I 8.44 I 8.47 I 7.67 
Test02 I DP-RP(101 I 23.0 I 22.1 I 21.1 I 19.9 I 17.9 I 16.1 I 15.2 

Test04 
SB 19.0 18.6 18.9 17.3 15.4 14.1 13.9 

KP 18.3 16.3 15.0 12.2 13.7 12.5 8.98 
DP-RP(10) 13.6 13.4 12.2 11.0 10.1 9.15 7.98 

Test06 

SB I 15.8 1 14.3 I 14.0 I 12.2 I 11.8 1 9.13 1 8.04 
Test05 I DP-RP(10) I 8.15 I 7.88 I 7.41 I 6.75 I 6.46 I 5.61 I 5.33 

KP’ ’ 10.8 10.6 9.28 6.80 6.60 6.69 7.81 
SB 11.2 10.2 7.56 6.86 5.96 5.93 5.96 

K P  21.0 20.9 19.7 18.5 19.1 19.1 18.0 
DP-RP(10) 19.7 18.5 17.1 15.9 15.1 14.2 12.0 

SB I 22.4 I 20.7 I 20.6 I 21.7 I 23.1 I 19.0 I 21.1 
Average I vs K P  I +12.8 I +13.3 I +9.46 I +4.47 I +6.32 I +12.5 I +10.0 

DP-RP(10) I vs SB I +19.7 1 +15.0 I +12.8 1 +11.1 I +8.26 I +2.72 I +4.66 

f ( Q k ) ) .  The class of partitioning objectives f ( P k )  that are 
monotone in w includes the following: 

Min-Max-Diameter: Minimize: 

f ( P k )  = l y y k w ( C i )  with w(Ci) = diarn(Ci). 

Min-sum-Diameters: Minimize: 

f ( P k )  = ~ ( C Z )  with w(Ci) = diarn(C;) 
l < i < k  

Scaled Cost: Minimize: 

Absorption: Maximize: 

f ( P k )  = w(Ci) with 
l < i < k  

Experiments reported in [ 2 ]  show that when f is Min- 
Max-Diameter, DP-RP significantly outperforms KC, CL, and 
divisive Min-Diameter for uniformly random pointsets, illus- 
trating the powerful flexibility of the DP-RP approach. Since 
KC and CL applied to spectral embeddings yield reasonably 
good k-way netlist partitionings, DP-RP applied to spectral 
embeddings when f is Min-Max-Diameter should also yield 

17.4 I 13.0 11 +26.3 
+12.4 +11.8 +10.8 
+3.75 I +5.83 11 +9.32 

DP-RP Algori thm 
Input: Circuit Netlist H(V, E) . .  

Permutation T = {ur,, U-, , . . . , U*,} 

L, U E Lower and upper cluster size bounds 
k 3 Number of clusters 

Output :  P k  1 Optimal RP solution 
V ~ S :  i$,>] 1 Subsolutions 

k’ Index denoting current partitioning size 
m + 1 = Beginning index of possible new cluster 
f b e r f  2 Objective value for best current Pi’., 

1. for each i, j do compute f(pi,jl) = w(C[j,jl) using Cluster-Costs 
2. for k‘ = 2 to k do 
3. for each i, j do 

5. 
4. fbert = 03 

form = j-U to j -  L do 
6. iffbeat < f(@i:;: U {C[,,,+~,jl)) then 

^ k ’  - kkI-1 7. fbeaf = f(pi:Gi U {C[rn+lj]})! pj,j - U C[m+l,j] 
8. return Pk = P;: ,, for the i that minimizes f(Pkz ,,). 1 < i < n 

Fig. 8. The DP-RP algorithm. All index manipulations are performed modulo 
ti. The template assumes that the goal is to minimize f .  To maximize f ,  we 
change steps 4, 6, and 8 in the obvious manner. 

fairly good solutions. Now, however, we can directly opti- 
mize netlist partitioning objectives such as Scaled Cost and 
Absorption, so the heuristic Min-Max-Diameter objective is 
unnecessary. 

B. Optimizing Scaled Cost and Absorption 

We now complete our description of the DP-RP algorithm 
by showing how to efficiently calculate w(C) for all feasible 
clusters C. (Recall that we had previously assumed the exis- 
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Test 
Case 
19ks 

TABLE VI1 
RUNTIMES I N  SECOSDS ON A SUN SPARC 10, FOR A SINGLE RUN OF DP-RP FOR EACH OF THE TEN &DIMENSIONAL 

EMBEDDINGS (CONSTRUCTED FROM p>. . . . . c d + l  ). EACH EMBEDDING ENTRY GIVES THE TIME REQUIRED TO GENERATE d 
EIGENVECTORS. AND A DP-RP E h m Y  GIVES THE TIME NEEDED TO GENERATE 2- THROUGH IO-WAY PARTITIONING SOLUTIONS. 

Step Embedding Dimension - d 
1 0 1  9 1 8  1 7  1 6  1 5  1 4  1 3  1 2  1 1  

326 I 310 I 321 I 238 I 252 I 226 I 207 I 180 I 168 I 189 Embedding 

bml 

SFC+3-opi 125 129 123 123 123 121 123 135 126 122 

Total 612 600 605 522 536 508 491 476 455 472 
DP-RP 161 161 161 161 161 161 161 161 161 161 

Embedding 29 27 25 25 20 15 16 11 10 8 
SFC+3-opt 14 14 13 13 12 12 10 10 7 7 

Prim1 

DP-RP- 14 14 14 14 14 14 14 14 14 14 
Total 57 55 52 52 46 41 40 35 31 29 

Embedding 23 19 17 17 14 12 11 11 8 8 

Prim2 

I DP-RP- I 55 I 55 I 55 I 55 I 55 1 55 1 55 I 55 I 55 I 55 
I Total I 324 I310 I 281 I 251 I 240 I 229 I 225 I 206 I 187 I 172 

SFCS3-opt 12 12 12 11 10 10 9 9 7 7 

Total 47 43 41 40 36 34 32 32 27 27 
Embedding 133 98 77 81 64 56 48 51 36 35 
SFCS3-opt 127 130 117 116 115 111 114 101 82 77 

DP-RP 12 12 12 12 12 12 12 12 12 12 

DP-RP 185 185 185 185 185 185 185 185 185 185 

Test02 

L 

Total I 445 413 379 382 364 I 352 347 I 337 1 303 I 297 
Embedding I 221 208 179 148 142 I 134 132 1 114 I 104 I 84 

I DP-RP 
I Total 

I 137 I 137 1 137 1 137 I 137 I 137 I 137 I 137 I 137 I 137 
I 750 I 748 I694 I 671 I 655 I 657 1 627 I 582 I 558 I 550 

Test03 

Test04 

I 

Embedding 140 129 124 105 102 94 95 93 
SFC+3-opt 47 46 44 45 41 38 35 32 

DP-RP 98 98 98 98 98 98 98 98 
Total 285 273 266 248 241 230 228 223 

Embedding 219 211 195 188 172 164 147 143 
SFCS3-opt 44 42 42 40 37 35 32 30 

DP-RP 90 90 90 90 90 90 90 90 

tence of a Cluster-Costs procedure for computing w.) Figs. 
9 and 10 describe O ( n U )  implementations of Cluster-Costs 
for Scaled Cost and Absorption, respectively. The complexity 
bound assumes that the total number of pins is p = O ( n ) ,  
which holds for real circuit netlists due to fanout and cell U 0  
limits for any given technology. 

For Scaled Cost (Fig. 9), Cluster-Costs returns w(C[; . j l )  = 
IE[i.Jl l/lC[i,jl I for each possible cluster C[i,Jl. where E[i,jl 
is the “outdegree” of cluster C[i,jl. Steps 1-8 calculate 
lE~ t , J~ l  for each cluster, and w(C[i,jl) is computed in Step 
9. Given the value of w ( C [ t , j + ~ ~ ) ,  we compute w(C[ i , j l )  
by adding vnJ to cluster C[ i , j p l~  and checking whether 
any cut nets become completely contained in the cluster 
(Step 7), or whether any previously uncut nets become cut 
(Step 8). 

The desired O ( n U )  time complexity hinges on Steps 7 
and 8 being executed in constant time. To accomplish this, 
we maintain an array Cuf_Siys over the signal nets, where 

Test05 

Cut-Sigs[e] = 1 if e is cut by our current cluster and 
Cut_Sigs[e] = 0 otherwise. In Step 2, we start with the 
initial cluster C[+ and set Cut-Net[e] = 1 if e contains 
module urT .  and Cut_Net[e] = 0 otherwise. We also keep an 
array Count[e]; that records the number of pins of net e in 
the current cluster, and an array Pins[e] ,  which is the total 
number of pins of net e .  To execute Step 7, we verify the 
if condition using the Count array. If Count[e] = Pins[e], 
then e is completely contained in the current cluster, and we 
set Cut-Net[e] = 0 since this net is no longer cut. To execute 
Step 8, we check that Cut-Net[e] = 0, in which case adding 
U,, to the current cluster will cause e to be cut. For these 
newly cut nets we set Cut-Net[e] = 1 and Count[e] = 1. 
Step 7-8 are executed exactly pU times, and since these steps 
require only constant time, Cluster-Costs (Scaled Cost) runs 
in O ( n U )  time. 

For Absorption (Fig. lo), Cluster-Costs returns w(C l i ,~ )  
C { t E ~ l l e n ~ , l - f ~ }  ( l e  n C,I - l ) / ( I e l  - 1) for each possible 

Total 353 343 327 318 299 289 269 263 248 227 
Embedding 502 505 452 427 419 413 398 360 352 352 
SFC+S-opt 111 106 105 107 99 107 92 85 69 61 

Test06 Embedding 181 186 168 161 144 134 127 132 98 93 
SFC+3-opt 62 60 63 56 54 54 46 40 45 38 

DP-RP 83 83 83 83 83 83 83 83 83 83 
Total 326 329 314 300 281 271 256 255 226 214 
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Cluster-Costs (Scaled Cost) 
Input: Circuit Netlist H(V, E )  

Permutation ?r = { v , ~ ,  v,, , . . . , v,”} 
L ,  U E Lower and upper cluster size bounds 

Output: w(C~i,,l 
Vas: A one less than size of current clusters 

1. f o r i = l t o n d o  
2. 
3. 
4. 

6. 
7. 
8. 
9. for each w(C[i,jl) computed do w(C[,,)]) = 

for every possible cluster C[i,,1 

Si = {e E E I v r ,  E e} 

w(C[i,i]) = IS;[, i.e., the outdegree of v,, 
for 6 = 1 t o  U do 

j = ((i+ 6 - 1) mod n) $1 

for each e E Sj do 
5.  w(C[i,jl) = w(C[i,j-~l) 

if (e is completely contained in C[,,jl) then decrement w(C[i,jl) 
if (e contains no modules of C[,,j-l)) then increment w(C[i,jl) 

Fig. 9. Cluster-Costs (Scaled Cost) 

Cluster _Costs (Absorption) 
Input: Circuit Netlist H(V,  E )  

Permutation r = {U-, , u r 2 , .  . . , ur.] 
L, U E Lower and upper cluster size bounds 

Count[e] I the number of pins of e in the current cluster 
Output: UJ(C[,~]) I &rEE , Ienc-.l+o) 
Vars: 

for every possible cluster CI,,~] 

s I -{e E E I U-. E e) 
1. f o r i = l t o n d o  
2. w(C~n,i]) = 0 
3. 
4. 

6. 
7. 
a. 

for each e E E do Count[e) = 0 
for j = i to min{i + U,  n) do 

5. if j # i then ~(C[ i j l )  = ~(C[i , j - i ] )  
for each e E Sj do 

Count[e] = Count[e] + 1 
if (Counf[e] > 0) then 

w(~[i,jl) = w(C[i,jl) + &i 

Fig. 10. Cluster-Costs (Absorption). 

cluster C[,,J1. For a given w( C[z,Jj) ,  Cluster-Costs initially 
assigns W ( C [ ~ , ~ I )  = W ( C [ ~ , ~ - ~ I ) ,  thereby giving credit to the 
nets “absorbed” by modules wn, , w,,+ , . . . , wn3 . Steps 6-8 
compute the number of nets absorbed when wn3 is added to 
C [ z , J - l ~ .  Steps 6-8 require constant time and are executed 
exactly pU times, hence Cluster-Costs (Absorption) also has 
O ( n U )  time complexity. 

C. Linear Orderings 

So far, we have considered the RP formulation where both 
Rules l(a) and (b) apply. In this case, DP-RP may require 
up to O( kn3) complexity, which is prohibitive for practical 
netlist sizes. However, recall that eliminating rule l(b) changes 
the tour into a linear ordering, restricting the solution space 
but allowing a factor n speedup. Fig. 11 illustrates how DP- 
RP can be modified to solve a given linear ordering with 
O(kn(U - L ) )  time complexity (i.e., O(kn2)  when there 
are no cluster size bounds). The speedup arises since we are 
guaranteed that some cluster begins with vertex T I .  Thus, for 
each value of k’, we need record only O ( n )  subsolutions of 
the form Pi:jl instead of the O(n2)  optimal subpartitioning 
solutions. 

In practice, there exists the question of how to derive a 
linear ordering from a tour. To generate the experimental 
results in the next section, we initially generated a linear 

ordering from the tour simply by removing the tour’s longest 
edge. Since this seemed somewhat crude, we also generated 
a subsequent linear ordering based on the split of the 2- 
way partitioning solution, i.e., if the original solution yielded 
P2 = {C[l,m~,C[m+l,n~}, then the second linear ordering 
was {rm+l, r m + 2 ,  . . . , 7rn, X I ,  7r2, . . . T,}. We repeated this 
procedure to generate a third linear ordering, and then recorded 
the best partitioning solution obtained using any of the three 
linear orderings. 

VII. EXPERLMENTAL RESULTS AND CONCLUSIONS 

Our experiments set L = 1 and U = n in order to consider 
the full range of solutions. For each test case, we computed d- 
dimensional spectral embeddings for 1 5 d 5 10 for both the 
standard net model and the partitioning-specific net model, 
and then computed a heuristic SFC + 3-Opt ordering for 
each embedding. To enable comparison with [12], we also 
computed orderings using the net model of [20], which uses 
uniform edge weight 

In our first set of experiments, we executed DP-RP on each 
ordering for IC = 2 through k = 10, using the minimum 
Scaled Cost objective and the three clique net models. Table 
IV shows the the lowest Scaled Cost values, along with the 
embedding dimensions that yielded these partitioning solutions 
(again, ties were broken in favor of lower dimensions). The 
partitioning-specific net model averaged 8.9% improvement 
over the standard net model and 2.7% improvement over the 
Frankle net model. There were also fluctuations in the relative 
utility of the net models, e.g., compared to the Frankle net 
model, the partitioning-specific net model averaged 13.5% 
improvement for 19ks, but 5.3% disimprovement for Test03. 
Thus, while we may conclude that the standard net model 
is not well-suited for partitioning (and that the partitioning- 
specific net model is better), it is unclear which among the 
many possible net models is best. We leave this question open 
for future study. 

Our second set of experiments compared the DP-RP 
methodology against previous methods [2], [ 121 which address 
k-way partitioning for minimum Scaled Cost. In Table V, 

in representing a p-pin net. 
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we use the notation DP-RP(d) to denote the best Scaled 
Co\t values observed for the k-way partitionings that DP-RP 
constructed from 1 - through &dimensional embeddings. In 
other words, for each 1 5 i 5 d. we computed the spectral 
embedding with eigenvectors [G. . . . . ,&+I and ran DP-RP on 
this embedding. Thus. e.g., DP-RP( 10) gives the best Scaled 
Cost results observed over all ten distinct embeddings.' We 
did not conduct experiments for Absorption, since this metric 
is more appropriate for I; = @(n)  and since no previous work 
has reported any Absorption partitioning results. Table V 
compares DP-RP( 10) to KC, SFC [2], KP [ 121 and successive 
spectral bipartitioning (SB); the last is equivalent to recursive 
application of the EIGl method of [25]. The codes for KP 
and SB were obtained from [12]. All results in Table V were 
generated using the partitioning-specific net model. Notice 
that the SFC results are equivalent to the DP-RP(10) results 
without the 3-Opt post-processing step (hence, the 13.1% 
average improvement of DP-RP( 10) over SFC reflects the 
contribution of the single 3-Opt descent in constructing the 
ordering). Other experiments also showed that the SFC + 
3-Opt methodology was more effective than 3-Opt starting 
from a random initial tour 

Since the results in [ 121 are based on the Frankle net model, 
Table VI presents similar comparisons between DP-RP( IO), 
KP, and SB.' The last sets of rows in Tables V and VI give the 
average percent improvement of DP-RP( 10) versus the other 
methods for each value of k :  the last column in each table 
gives the average improvement achieved by DP-RP( 10) for 
each benchmark. Overall, DP-RP( IO) averages 13.l%, 17.9%, 
and 10.0% improvement over SFC, KP, and SB, respectively 
when using the partitioning-specific net model and 10.8% and 
9.3% improvement over KP and SB when using the Frankle 
net model. We also observe that DP-RP(1O) gives lower 
Scaled Cost values on average over the range of k values. 
Interestingly, KP results generated using the Frankle net model 
were on average 3.0% better than the results generated with 
the partitioning-specific net model, which only emphasizes that 
the proper choice of net model is very much an open issue. 

We also observe that the 1-dimensional heuristic ordering 
indeed captures partitioning information from the multidi- 
mensional spectral embedding that is not available from the 
standard one-dimensional spectral embedding j& .  To show 
the utility of our orderings, we have provided the DP-RP(1) 
data of Table V, which gives results for DP-RP when run on 

With the KP algorithm of [12], only the k-dimensional spectral embed- 
dings were used to generate a I;-way partitioning. 

'Note that the KP and SB results given in Tables V and VI are considerably 
different than those reported in [ I ? ] .  The SB and KP experiments performed 
in [ 121 removed nets with more than 99 pins before the eigenvectors were 
computed; this was due to computational hardware limitations [ I  I]. For 
some of the netlists (Test03, Test04, and Test06), removing the large nets 
disconnected the graph, implying Xz = 0. Since SB uses /G to determine its 
vertex ordering, and since eigenvectors with eigenvalue zero are degenerate, 
the SB results were much worse than they would have been had the large 
nets not been removed. The SB results presented in Tables V and VI are 
respectively 11.04 and 9.5% better on average (over the applicable seven 
teht cases) than the SB results in [I?].  It also seems that thresholding hurt 
KP performance for the Frankle net model (by 3.3%). but that results for the 
partitioning-specific net model are 4.4% worse than the results reported in 
(121 due to the \er). poor result5 for small k for the 19ks. Test02. TestO3. 
TedN. and Te\to6 benchmark\. 

DP-RP Algorithm for Linear Orderings 
Input: Circuit Netlist H(V, E )  

Linear Ordering t u r L ,  u x 2 ,  . . . , urm} 
L ,  U f Lower and upper cluster size bounds 
k Number of clusters 

Output: P' E Optimal RP solution (without Condition l(b) 
Vars: E Subsolutions 

k' z Index denoting current partitioning size 
rn + 1 E Beginning index of possible new cluster 
fbeaf S Objective value for best current 

1. for each i , j  do compute f(pi,jl) = w(C[iJ1) using Cluster-Costs 
2.  for k' = 2 to k do 
3. 

5 .  

for j = 1 to n do 
4 .  f b e r t  =a 

for m = j - U  t o  j - L do 
6. if fbeat < f(P::;i U {C[,+I,,~}) then 
7. fbest = f(p[f,k; U { c [ m + l , j ] } )  

pk: = p k ' - l  
t.1 "%+1,j1 

8. return p k  = ?$ ,,, 

Fig. 1 I .  DP-RP algorithm for linear orderings. The template assumes the 
goal is to minimize f .  To maximize f .  simply change steps 4 and 6 in the 
obvious manner. 

the ordering corresponding to /G (the 3-Opt post-processing 
clearly does not change this ordering). In Table V, some DP- 
RP( 10) entries are identical to corresponding DP-RP( 1) entries, 
indicating one-dimensional orderings that are at least as good 
as the SFC + 3-Opt orderings derived from multidimensional 
spectral embeddings. However, we have observed that on 
average DP-RP(2-10) produces Scaled Cost 21.2% lower than 
DP-RP(1) (ranging from 13.7%43.9% higher for bml and 
Primary I ,  respectively), confirming the utility of multiple 
eigenvectors in constructing multiway partitionings. Finally, 
we note that the overall DP-RP methodology is reasonably 
efficient, as documented in Table VII. 

In conclusion, we have shown that spectral embeddings 
of a netlist can be an effective basis for multiway system 
partitioning. We have confirmed the utility of embeddings 
using the eigenvectors of the Laplacian when integrated with 
purely geometric partitioning objectives and algorithms. Since 
a strictly geometric partitioning methodology can only heuris- 
tically optimize topological partitioning objectives such as 
Scaled Cost and Absorption, we have also developed an 
approach that uses both the spectral embedding and the netlist 
topology within the restricted partitioning formulation. Our 
approach uses a spacefilling curve and a 3-Opt heuristic 
to achieve an ordering that captures information from the 
multidimensional embedding. We split the ordering into k 
clusters via dynamic programming, obtaining an optimal RP 
solution. User-specified cluster size bounds can be handled 
transparently. Experimental results show significant improve- 
ments over previous k-way partitioning methods for the Scaled 
Cost objective for 2 5 k 5 10. 

ACKNOWLEDGMENT 

The authors thank P. K. Chan, M. Schlag and J. Zien for 
past research discussions, for the use of the LASO interface 
written by M. Schlag, and for the use of their KP and SB codes. 
K. D. Boese supplied the 3-Opt optimization code. L. Hagen 
and J.-H. Huang developed the ideas behind the partitioning- 



ALPERT AND KAHNG: MULTIWAY PARTITIONING VIA GEOMETRIC EMBEDDINGS. ORDERINGS, AND DYNAMIC PROGRAMMING 1357 

specific net model. The anonymous reviewers provided many 1261 -, “A new approach to effective circuit clustering,” in Proc. IEEE 
I - -  

Int. Con$ Compuk-Aided Design, NOV. 1992, pp. 4 i 2 4 2 7 .  

Sci., vol. 17, pp. 219-229, 1970. 
[28] M. Hanan, P. K. Wolff, and B. J. Agule, “A study of placement 

techniques,” J .  Design Automat. Fault-Tolerant Computing, vol. 2, pp. 

comments which substantially improved this PmiculalY [27] K, M, Hall, “An r-dimensiond placement algorithm,” Manag, 
in the experimental design. The hospitality of Professor E. S. 
Kuh and his research group is gratefully acknowledged. 

REFERENCES 

[ l ]  C. J. Alpert and A. B. Kahng, “Geometric embeddings for faster 
(and better) multiway netlist partitioning,” UCLA CSD TR-920052, 
Oct. 1992; abbreviated version appeared in Proc. ACM/IEEE Design 
Automat. Con$, June 1993, pp. 743-748. 

[2] __, “Multiway netlist partitioning using spacefilling curves,’’ UCLA 
CSD TR-930016, June 1993; abbreviated version appeared in Proc. 
ACM/IEEE Design Automat. Con$, June 1994, pp. 652-657. 

[3] -, “Recent directions in netlist partitioning: A survey,” to appear 
in Integration: The VLSI J., 1995. 

[4] S. T. Bamard and H. D. Simon, “A fast multilevel implementation 
of recursive spectral bisection for partitioning unstructured problems,” 
NASA AMES Research Center, Tech. Rep. RNR-92-033, Nov. 1992. 

[5] J. I. Bartholdi and L. K. Platzman, “Heuristics based on spacefilling 
curves for combinatorial problems in Euclidean space,” Management 
Sci., vol. 34, pp. 291-305, Mar. 1988. 

[6] J. L. Bentley, “Fast algorithms for geometric traveling salesman prob- 
lems,” ORSA J. Computing, vol. 4, no. 4, pp. 387410,  1992. 

[7] D. Bertsimas and M. Grigni, “Worst-case examples for the spacefill- 
ing curve heuristic for the Euclidean traveling salesman problem,” 
Operations Res. Lett., vol. 8, no. 5,  pp. 241-244, Oct. 1989. 

[8] J. P. BenzCcri, “Construction d’une classification ascendante 
hitrarchique par la rechereche en chaine des voisins rkciproques,” Les 
Cahiers de [’Analyse des Donnies vol. 7, no. 2, pp. 209-218, 1982. 

[9] T. N. Bui, “Improving the performance of the Kernighan-Lin and 
simulated annealing graph bisection algorithms,” in Proc. ACM/IEEE 
Design Automat. Con$, June 1989, pp. 775-778. 

[lo] P. Brucker, “On the complexity of clustering problems,” Optimization 
Operations Res., 1977, pp. 45-54. 

[ I  11 P. K. Chan, personal communication, Nov. 1994. 
[I21 P. K. Chan, M. D. F. Schlag, and J. Zien, “Spectral K-way ratio-cut 

partitioning and clustering,” IEEE Trans. Computer-Aided Design, vol. 
13, no. 9, pp. 1088-1096, Sept. 1994. (Some experimental results are 
quoted from: J. Zien, “Spectral K-way ratio cut graph partitioning,” M.S. 
thesis, Computer Eng. Dept., Univ. California, Santa Cruz, Mar. 1993.) 

[I31 H. R. Chamey and D. L. Plato, “Efficient partitioning of components,” 
in Proc. IEEE Design Auromation Workshop, 1968, pp. 16-0-16-21. 

[14] C. K. Cheng and Y. C. Wei, “An improved two-way partitioning algo- 
rithm with stable performance,’’ IEEE Trans. Computer-Aided Design, 
vol. 10, pp. 1502-1511, Dec. 1991. 

[15] H. L. Davidson and E. Kelly, personal communication, Sun Microsys- 
tems Labs, July 1993. 

[I61 C.-L. Ding, C.-Y. Ho, and M. J.  Irwin, “A new optimization driven 
clustering algorithm for large circuits (extended abstract),” Proc. 4th 
ACM/SIGDA Physical Design Workshop, 1993, pp. 13-19. 

[17] W. E. Donath, “Logic partitioning,” in Physical Design Automation of 
V U I  Syst., B. Preas and M. Lorenzetti, Eds. New York Benjamin- 
Cummings, 1988, pp. 65-86. 

[I81 T. Feder and D. H. Greene, “Optimal algorithms for approximate 
clustering,’’ Proc. 20th Ann. ACM Symp. Theory Computing, 1988, pp. 
434444.  

[I91 C. M Fiduccia and R. M. Mattheyses, “A linear time heuristic for 
improving network partitions,” Proc. ACMLEEE Design Automar. Con$, 
June 1982, pp. 175-181. 

[20] J. Frankle and R. M. Karp, “Circuit placement and cost bounds by 
eigenvector decomposition,” Proc. IEEE Int. Con5 Computer-Aided 
Design, Nov. 1986, pp. 414417.  

[21] T. F. Gonzalez, “Clustering to minimize the maximum intercluster 
distance,” Theoretical Comput. Sci., vol. 38, pp. 293-306, 1985. 

[221 A. GuBnoche, P. Hansen, and B. Jaumard, “Efficient algorithms for divi- 
sive hierarchical clustering with the diameter criterion.” J.  Classification. - 
vol. 8, pp. 5-30, 1991. 

1231 S. W. Hadlev. B. L. Mark, and A. Vanelli. “An efficient eigenvector . .  0 

approach for finding netlist partitions,” IEEE Trans. Computer-Aided 
Design, vol. 11, pp. 885-892, July 1992. 

[24] L. Hagen, Circuit Partitioning, Ph.D. dissertation, Computer Science 
Dept., Univ. California, Los Angeles, 1994. 

[25] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut 
partitioning and clustering.” IEEE Trans. Computer-Aided Design, vol. 
Il.pp. 10711085. Sept. 1992. 

~~ .~ 

28-61; 1978. 
[29] J. Hershberger, “Minimizing the sum of diameters efficiently,” in Proc. 

3rd Canadian Con$ Computat. Geometry, 1991, pp. 6 2 4 5 .  
[30] J. Huang, personal communication, 1992. 
[3 I ]  S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 

32, no. 3, pp. 241-254, 1967. 
[32] R. M. Karp, “Probabilistic analysis of partitioning algorithms for the 

traveling-salesman problem in the plane,” Mathemat. Operations Res., 
vol. 2, no. 3, pp. 209-224, 1977. 

[33] E. L. Lawler, J. K. Lenstra, A. Rinnooy-Kan, and D. Shmoys, The Trav- 
eling Salesman Problem: A Guided Tour of Combinatorial Optimization. 
Chichester, UK: Wiley, 1985. 

[34] T. Lengauer, Combinatorial Algorithms for Integrated Cimuit Layout. 
New York: Wiley, 1990. 

[35] S .  Lin and B. W. Kernighan, “An effective heuristic algorithm for the 
traveling-salesman problem,” Operations Res., vol. 21, pp. 498-5 16, 
1973. 

[36] N. Megiddo and K. J.  Supowit, “On the complexity of some common 
geometric location problems,” SIAM J. Computing, vol. 13, no. 1, pp. 

[37] T.-K. Ng, J. Oldfield, and V. Pitchumani, “Improvements of a mincut 
partition algorithm,” in Proc. IEEE Int. Conf Computer-Aided Design, 

182-196, 1984. 

i987, pp. 479473.  
1381 A. Pothen, H. D. Simon, and K. P. Liou, “Partitioning sparse matrices - -  

with eigenvectors of graphs,” SIAM J. Matrix Anal. Appi., vol. 1 I ,  pp. 
430-452, 1990. 

[39] F. P. Preparata and M. I. Shamos, Computational Geometry. New 
York Springer Verlag, 1985. 

[40] G. Reinelt, “Fast Heuristics for large geometric traveling salesman 
problems,” ORSA J .  Compuring, vol. 4, no. 2, pp. 2 6 2 1 7 ,  1992. 

[4 11 L. A. Sanchis, “Multiple-way network partitioning,” IEEE Trans. Com- 
puters, vol. 38, no. 1, pp. 62-81, 1989. 

[42] D. G. Schweikert and B. W. Kernighan, “A proper model for the 
partitioning of electrical circuits,’’ in Proc. ACM/IEEE Design Automat. 
Con$, 1972, pp. 57-62. 

[43] D. S .  Scott, “LAS02 documentation,” Computer Science Dept., Univ. 
Texas, Austin, Tech. Rep. 1980. 

[44] W. Sun and C. Sechen, “Efficient and effective placements for very 
large circuits,” in Proc. IEEE Int. Con$ Computer-Aided Design, Nov. 
1993, pp. 170-177. 

[45] R.-S. Tsay and E. S .  Kuh, “A unified approach to partitioning and 
placement,” IEEE Trans. Circuirs Syst., vol. 38, no. 5 ,  pp. 521-533, 
1991. 

[46] Y. C. Wei and C. K. Cheng, “Ratio cut partitioning for hierarchical 
designs,” IEEE Trans. Computer-Aided Design, vol. 10, pp. 91 1-921, 
July 1991. 

[47] C. W. Yeh, C. K. Cheng, and T. T. Lin, “A general purpose multiple 
way partitioning algorithm,” in Proc. ACM/IEEE Design Automat. Con$, 
June 1991, pp. 421426.  

[48] -, “A probabilistic multicommodity-flow solution to circuit clus- 
tering problems,” in Proc. IEEE Int. Con$ on Computer-Aided Design, 
Nov. 1992, pp. 428431.  

Charles J. Alpert (S’92), was born in Bethesda, 
MD in January 1969. He received the B.A. de- 
gree in history and the B.S. degree in math and 
computational sciences from Stanford University, 
Stanford, CA. He received the M.S. degree in com- 
puter science from the University of California, Los 
Angeles in 1993 He IS pursumg the Ph.D. degree 
at the latter university. His research interests in- 
clude hypergraph partitloning and clustering, matnx 
computations, and computational geometry. 



1358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 11,  NOVEMBER 1995 

Andrew B. Kahng (A'89), was born in San Diego, 
CA, in October 1963. He received the A.B. degree 
in applied mathematics and physics from Harvard 
University, Cambridge, MA, and the M.S. and Ph.D. 
degrees in computer science from the University of 
California, San Diego. 

Since July 1989, he has been on the faculty of 
the Computer Science Department at the University 
of California, Los Angeles, where he is now an As- 
sociate Professor. He codirects both the VLSI CAD 
and Commotion (cooperative motion) Laboratories. 

His research interests include computer-aided design of VLSI circuits, discrete 
and combinatorial algorithms, computational geometry, the theory of global 
optimization, and the theory of cooperative task-solving. 

Dr. Kahng has received National Science Foundation Research Initiation 
and Young Investigator Awards. He is a member of ACM, ORSA, and SIAM. 


