
ELSEVIER INTEGRATION, the VLSI journal 19 (1995) 1 81

theVLSl journal

INTEGRATION Report (Invited)

Recent directions in netlist partitioning: a survey*

Charles J. Alpert, Andrew B. Kahng*
UCLA Computer Science Department, Los Angeles, CA 90024-1596, USA

Abstract

This survey describes research directions in netlist partitioning during the past two decades in terms of both problem
formulations and solution approaches. We discuss the traditional min-cut and ratio cut bipartitioning formulations
along with multi-way extensions and newer problem formulations, e.g., constraint-driven partitioning (for FPGAs) and
partitioning with module replication. Our discussion of solution approaches is divided into four major categories:
move-based approaches, geometric representations, combinatorial formulations, and clustering approaches. Move-based
algorithms iteratively explore the space of feasible solutions according to a neighborhood operator; such methods
include greed, iterative exchange, simulated annealing, and evolutionary algorithms. Algorithms based on geometric
representations embed the circuit netlist in some type of "geometry", e.g., a 1-dimensional linear ordering or a multi-
dimensional vector space; the embeddings are commonly constructed using spectral methods. Combinatorial methods
transform the partitioning problem into another type of optimization, e.g., based on network flows or mathematical
programming. Finally, clustering algorithms merge the netlist modules into many small clusters; we discuss methods
which combine clustering with existing algorithms (e.g., two-phase partitioning). The paper concludes with a discussion
of benchmarking in the VLSI CAD partitioning literature and some perspectives on more promising directions for future
work.

Contents

1 Introduction 2
2 Partitioning formulations 5

2.1 Preliminaries 5
2.2 Circuit representations 7
2.3 Bipartitioning formulations 9
2.4 Multi-way partitioning formulations 10
2.5 Constraint-driven (satisficing) formulations ! 3
2.6 Replication formulations 14

3 Move-based approaches 16
3.1 Iterative improvement 17

3.1.1 The Kernighan-Lin (KL) algorithm 17
3.1.2 The Feduccia-Mattheyses (FM)

algorithm 18
3.1.3 Tie-breaking strategies 19
3.1.4 Sanchis' multi-way partitioning

algorithm 20

*Partial support for this work was provided by NSF Young Investigator
* Corresponding author.

0167-9260/95/$29.00 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0 1 6 7 - 9 2 6 0 (9 5) 0 0 0 0 8 - 9

Award MIP-9257982.

2 Cd. Alpert, A.B. Kahng/INTEGRATION, the VLSldournal 19 (1995) 1-81

3.2 Simulated annealing 21
3.3 Tabu search 23
3.4 Genetic algorithms 24
3.5 Adaptations of move-based algorithms 26

3.5.1 Alternative move strategies 27
3.5.2 Relaxed size constraints 27
3.5.3 FPGA partitioning 28
3.5.4 Layout-driven formulations 29
3.5.5 DAG partitioning 29
3.5.6 Perspectives on 'iterative variants' 30

4 Geometric representations 30
4.1 Hall's quadratic placement 32
4.2 Mapping k clusters to k eigenvectors 33
4.3 Probes in multi-dimensional vector space 36
4.4 Vector partitioning 38
4.5 From orderings to partitionings 40

4.5.1 The net-based approach 40
4.5.2 Dynamic programming for restricted

partitioning 40
4.5.3 Placement-based approaches 41

5 Combinatorial formulations 42
5.1 Min-Delay Clustering by graph labelling 42
5.2 Network flows 45

5.2.1 Preliminaries 45

5.2.2 The Min-Cut replication problem 46
5.2.3 Max-Flow Min-Cut approaches 47
5.2.4 Bipartite flow 50
5.2.5 Shortest path clustering and

probabilistic methods 52
5.3 Mathematical programming 53

5.3.1 Quadratic formulations 53
5.3.2 Retiming 54
5.3.3 A transportation problem 56
5.3.4 Programming and placement 57

5.4 Fuzzy partitioning 59
5.5 Boolean set covering 60

6 Clustering approaches 60
6.1 Motivations for clustering 61
6.2 Agglomerative clustering 62
6.3 Hierarchical strategies 63
6.4 Intuitive cluster properties 65
6.5 Clustering of boolean networks 66
6.6 Integration of clustering into a bipartitioning

heuristic 67
7 Conclusions 69

7.1 Benchmarking 69
7.2 Perspectives 72

Acknowledgements 74
References 74

1. Introduction

The essence of netlist partitioning is to divide a system specification into clusters such
that the number of intercluster connections is minimized. The partitioning task is ubiquitous
to many subfields of VLSI CAD: any top-down hierarchical (i.e., "divide and conquer") ap-
proach to system design must rely on some underlying partitioning technique. There are several
reasons why partitioning has recently emerged as a critical optimization in many phases of VLSI
system synthesis, and why the past several years have seen so much research activity on the subject.

Above all, partitioning heuristics are used to address the increasing complexity of VLSI design.
Systems with several million transistors are now common, presenting instance complexities that
are unmanageable for existing logic-level and physical-level design tools. Partit ioning divides
a system into smaller, more manageable components; the number of signals which pass between the
components corresponds to the interactions between the design subproblems. In a top-down
hierarchical design methodology, decisions made early in the system synthesis process (e.g., at the
system and chip levels) will constrain succeeding decisions. Thus, the feasibility - not to mention
the quality - of automatic placement, global routing and detailed routing depends on the quality of
the partitioning solution. A bot tom-up clustering may also be applied to decrease the size of the
design, typically in cell- or gate-level layout. The current emphasis on a quick-turnaround ASIC
design cycle reinforces the need for reliable and effective algorithms.

Partitioning heuristics also have a greater impact on system performance as designs become
interconnect-dominated. In current submicron designs, wire delays tend to dominate gate delays

C.J. ,41pert, A.B. Kahng /1NTEGRATION, the VLSI Journal 19 (1995) 1-81 3

[15]; the differences between on-chip and off-chip signal delays and the increasingly pin-limited
nature of large chips make it desirable to minimize the number of signals traveling off a given chip.
Larger die sizes imply that long on-chip global routes between function blocks will more noticeably
affect system performance. Other considerations (e.g., design for testability, low-power design, etc.)
also require partitioning algorithms to identify interconnect structure, albeit at more of a func-
tional or communication-based level.

Finally, partitioning heuristics affect the layout area: wires between clusters at high levels of the
hierarchy will tend to be longer than wires between clusters at lower levels, and total wirelength is
directly proportional to layout area due to minimum wire spacing design rules. The traditional
minimum-cut objective is natural for this application: if the layout area is divided into a dense
uniform grid, total wirelength can be expressed in "grid" units or equivalently as the sum over all
gridlines of the number of wires crossing each gridline. This view can also improve auto-routability
since it suggests reducing the wire congestion in any given layout region.

All of these considerations motivate the development of netlist partitioning tools that identify
interconnection and communication structure in a given system design. Indeed, one of the five-year
predictions issued by participants at the 1991 CANDE workshop [142] was that stand-alone
partitioning for every phase of system synthesis would comprise the next major class of CAD tools
to emerge in the marketplace. That this prediction has come to pass is evident from the various new
tools and startup companies which focus almost exclusively on partitioning.1

Today, leading applications of partitioning include the following:

• General design packaging. Logic must often be partitioned into clusters, subject to constraints on
cluster area as well as possible 1/O bounds. This problem is known as design packaging and is
still the canonical partitioning application; it arises not only in chip floorplanning and place-
ment, but also at all other levels of the system design. 2 The design packaging problem also arises
whenever technology improves and existing designs must be repackaged onto higher-capacity
modules ("technology migration"). Note that the problem is usually associated with large cluster
sizes, with few constraints on the internal structure of the clusters. When a finite library of
available module types is specified, the optimization is more along the lines of "covering" or
"technology mapping".

• Netlist-level partitioning in HDL-based synthesis. Synthesis tools have emerged which reduce the
design cycle by automatically mapping a high-level functional description to a gate- or cell-level
netlist. However, even with increased maturity of such high-level synthesis tools, netlist par-
titioning remains central to the success of the design procedure. This is essentially because
writing HDL code - as opposed to performing layout - can abstract away the physical layout
effects of design choices (for example, a few lines of HDL code that specify a register file or

1Two notable examples are: High Level Design Systems, whose "advanced design planner" performs design planning at
the floorplan level, and ACEO, whose "SoftWire" tool performs communication-based partitioning of multiple-FPGA
systems. Partitioning is also at the heart of new tools for system-level design optimization and mapping of designs onto
emulation or prototyping architectures composed of multiple field-programmable gate arrays (FPGAs).

2Despite the existence of partitioning applications throughout the system design cycle, calls for papers of major CAD
conferences still implicitly classify partitioning within placement and/or floorplanning. Interestingly, research activity in
"pure partitioning" arguably exceeds that in either of these mainstay categories.

4 c.J. Alpert, A.B. Kahng/INTEGRATION, the VLSIJournal 19 (1995) 1-81

crossbar connection can correspond to a large portion of the final layout area). As a result, the
block decomposition of the functional (software) description does not necessarily map well into
a decomposition of the physical layout. Hence, in contrast to previous building-block method-
ologies which yielded a small number of function blocks that could be optimally hand-
partitioned, HDL-based synthesis virtually requires the physical design methodology to shift
from working with a small number of building blocks to working with large, flattened design
representations 1-53]. Partitioning of flattened inputs is also necessary for such applications as
the design of "precursor systems" (i.e., finding the packaging tradeoffs that correspond to
optimum cost-performance points at early stages in the product life cycle).

• Estimation for design optimization. Accurate estimation of layout area and wireability has always
been a critical element of high-level synthesis and floorplanning. Now, such estimates are
becoming critical to higher-level searches over the system design space. Predictive models often
combine analysis of the netlist partitioning structure with analysis of the output characteristics of
placement and routing algorithms, in order to yield estimates of wiring requirements and system
performance. This use of system partitioning hierarchies is increasingly prominent as "design
optimization" and "electronic system design automation" capture the attention of CAD users
and vendors.

• System emulation and rapid prototyping (FPGA partitioning). Many logic emulation systems and
rapid system prototyping methodologies (e.g., those from Quickturn or Zycad/Inca) use par-
titioning tools to map complex circuit designs onto hundreds or even thousands of interconnec-
ted FPGAs. Typically, such partitioning instances are challenging because the timing, area, and
I/O resource utilizations must satisfy hard device-specific constraints. Furthermore, the par-
titioning optimization is affected by the discrete nature of system resources - e.g., interconnect
delay in routing segments, layout area in configurable logic blocks (CLBs), or individual FPGA
chips in a multiple-FPGA system - all of which have large "quanta".

• Hardware simulation and test. A good partitioning will minimize the number of inter-block
signals that must be multiplexed onto the bus architecture of a hardware simulator or mapped to
the global interconnect architecture of a hardware emulator. Reducing the number of inputs to
a block often reduces the number of test vectors needed to exercise the logic.

In this work, we survey the major research directions in netlist partitioning and establish
a taxonomy of existing works based on the underlying solution methodology. While we have tried
to make this survey both complete and self-contained, we emphasize more recent problem
formulations and solution approaches, possibly at the expense of methods that have been treated
in previous surveys. 3 Section 2 develops notation, discusses various graph and hypergraph
representations of the circuit netlist, and formulates basic variants of the partitioning problem.
These problem formulations include bipartitioning, multi-way partitioning, constraint-driven
partitioning, and partitioning with replication. Sections 3-6 survey four major categories of
partitioning approaches:

3Limited surveys are given in the textbooks [149] and [-171-]; the former contains a more personal perspective by
W. Donath on early works. The book by Lengauer [133] is noteworthy, especially for its complete development of
certain combinatorial algorithms (network flow, multicommodity flow, etc.).

c.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 5

• Section 3 discusses move-based approaches: we classify an algorithm in this category if it explores
the solution space by moving from one solution to another. Greedy and iterative exchange
approaches are most common - these always try to make the best move, but can easily be
trapped in local minima. To avoid this behavior, many other strategies have been proposed
including stochastic hill-climbing (simulated annealing), evolutionary algorithms, and the multi-
start strategy. We discuss these approaches along with many adaptations that have used these
methods to address more complex formulations.

• Section 4 discusses methods that construct a 9eometric representation of the partitioning
problem via such constructions as a l-dimensional linear ordering or a multi-dimensional vector
space. Such a representation offers possibilities for geometric approaches to solve problems that
are intractable for general graphs. Spectral methods are commonly used to construct geometric
representations, due to their ability to capture global netlist information.

• Section 5 discusses combinatorial approaches: we loosely classify an approach under this category
if the partitioning problem can be transformed into some other "classic" type of optimization, e.g.,
maximum flow, mathematical programming, graph labeling, or set covering. These approaches are
promising since complex formulations that include timing, module preassignment, replication, and
other hard constraints can often be expressed in terms of a mathematical program or flow network.
In addition, changing user requirements for solution quality and runtime, as well as improved
computing platforms, have made such approaches more practical.

• Section 6 treats clustering-based approaches, which traditionally consist of bottom-up approaches
that merge netlist modules into small clusters. We augment this class to include methods which use
clustering within another algorithm, such as for two-phase partitioning or placement. Clustering-
based approaches have received much recent attention since they are viewed as the most promising
method for handling the increasing problem sizes in VLSI CAD.

Section 7 concludes with a discussion of benchmarking practice, as well as a brief list of perspectives
on future research in the field.

2. Partitioning formulations

In this section, we describe the major variant formulations of the partitioning problem. We defer
the description of several less well-studied variants - e.g., retiming formulations - to the discussions
of their respective underlying solution strategies.

2.1. Preliminaries

Given a set of n netlist modules V = {U1, /')2, " ' " , l)n}, the purpose of partitioning is to assign the
modules to a specified number of clusters k satisfying prescribed properties. 4

*Many works distinguish between the partitioning problem where k is small (e.g., k ~< 15) and the clustering problem
where k is large (e.g., k = O(n)). Such works may refer to what we call as cluster as a "partition"; we choose not to make
this distinction, since our multi-way partitioning formulations are independent of the relative size of k. For reasons of
clarity, we will generally refer to pk as a "partitioning" for small k and as a "clustering" for large k.

6 C.J. Alpert, A.B. Kahng/INTEGRATION. the VLSIJournal 19 (1995) 1--81

Definition. A k-way partitioning pk= {C1, C2, . . . ,Ck} consists of k clusters (subsets of V),
C1, C2, . . . , Ck, such that CI u C2 u ... UCk = V. If k = 2, we refer to p2 as a bipartitioning.

The objective to be optimized is denoted by F(pk), i.e., the objective is a function of the
partitioning solution. We generally make the traditional assumption that the clusters are mutually
disjoint; note however that replication formulations permit a module to be a member of more than
one cluster.

The most common method for representing the circuit netlist connections is as a hypergraph
H(V, E) with E = {el, e2, ... ,era} being the set of signal nets (see, e.g., [23] for basic concepts of
graphs and hypergraphs). Each net is a subset of V containing the modules which the net connects,
and we assume that for each e e E, lel >~ 2. The equivalence between netlists and hypergraphs is
exact if each net has at most one pin on any module. The modules in e may also be called the pins of
e. We also assume a weighting function w: V ~ ~ , generally used for the area of each module. The
weighting function can be extended to clusters, i.e., w(C) = Y ~ c w(v). Another weighting function
w': E ~ ~ can be defined for nets (e.g., to give higher weights for critical nets or input -ou tpu t
paths), but for ease of presentation we omit net-weighting from our discussion, s

Definition. For each module v, the set of nets incident to v is denoted by N(v) = {e e E I v ~ e} and
the set of modules that are neighbors of v is denoted by M(v) -- {w ~ V 13 e ~ N(v), w ~ e, v -¢ w}.
We say that deg(v)= IN(v) I is the degree of v, and degmin--minv~vdeg(v) and degmax =
max v~v deg(v) are the respective minimum and maximum degrees of the hypergraph.

Definition. Each signal net e consists of a single source module S(e) and a set of destination modules
D(e) (so {S(e)} w D(e) = e), which indicates the direction of signal flow.

Many algorithms either ignore source and destination information or assume it is not available.

Definition. The set of hyperedges cut by a cluster C is given by E(C) = {e ~ E s.t. 0 < lenCI <
lel}, i.e., e ~ E(C) if at least one, but not all, of the pins of e are in C. The set of nets cut by
a partitioning solution pk can be expressed as E(P k) = ok= 1E(CI) or equivalently E(P k) = {e ~ E
13u, v e e, with u ~ Ch, v ~ C~ and h 4: l}. We say that IE(P~)I is the cutsize of pk.

Sometimes, it may be easier to represent a partitioning solution in terms of vectors and matrices,
hence our final definition:

Definition. Given pk, the indicator vector for cluster Ch is the n-dimensional vector Xh = (Xih) with
Xih = 1 if V~e Ch and Xih = 0 if vi¢Ch. The n× k matrix X with column h equal to Xh is the
assignment matrix for pk.

SUseful information regarding the subcircuit function and the design hierarchy may be inferred from the module
uniquenesses (module IDs), depending on how other development tools represent and output intermediate design
representations. Current works in partitioning do not assume the availability of such information, but this may change in
light of new applications such as functional clustering.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 7

When k = 2, we have X~ = 1 - ?(2, so only one indicator vector is needed. For this case, we let
x = X2 represent the bipartitioning solution.

2.2. Circuit representations

The choice of netlist representation is typically a consequence of the objective or the algorithmic
approach, e.g., minimizing cut nets implicitly requires a hypergraph representation, and a max-
imum-flow solution for replication cut will require a directed network (graph) representation. Aside
from the hypergraph model discussed above, standard netlist representations include the following:

• Weighted undirected graph. A graph G = (V, E) is a special case of a hypergraph with all]eil -- 2.
When certain standard matrix computations or algorithm implementations are used (e.g.,
spectral computations or mathematical programming), an undirected graph representation is
often convenient. The netlist is represented by a symmetric n x n adjacency matrix A = (air) in
which the matrix entry aij ~> 0 captures the connectivity between modules vi and vj (so au - 0 is
typically assumed). Generally, for the adjacency matrix is useful only when it is sparse, i.e., aij > 0
for a very small percentage of the matrix entries.

• To construct a graph from a netlist, the clique net model is often used: a signal net e contains]e] pins
and will induce an edge between every pair of its pins; each edge has a weight that is a function of [el
(multiple edges with total weight W connecting a pair of modules are contracted into a single edge
with weight W). The "standard" clique net model [-133] assigns uniform weight 1/([e{ - 1) to each
clique edge, although many other weighting functions have been proposed. 6 It has been noted

6Ideally, no matter how modules of the clique are partitioned, the cost should be one, corresponding to a single cut of
a net. Ihler et al. 1,106] prove that such a "perfect" clique net model is impossible to achieve. In addition, Lengauer 1,133]

shows that no matter what weighting function is used, there exists a bipartit ioning with deviation t 2 (x ~) from the
desired cost of cutting a single net e. The standard clique model ensures that for every signal net cut in a partit ioning
solution, the total weight of cut edges for that net will be at least one. However, since a cut net can contribute up to
lelZ/(4(]e[- 1)) to the parti t ioning objective, large nets are less likely to be cut than smaller nets. A weight of
4/(I el(l el - 1)) was proposed by D.J.-H. H uang and adopted by 13] so that the expected weight of a cut signal net would
be one. Hadley et al. 1-79] propose a weighting scheme that is a function of both [el and k which guarantees that the cost of
splitting e into k clusters will be bounded above by one. For the maximum cost of a net cut in the transformed graph to be
one, Donath shows that the appropriate edge weighting is 4/(lel 2 - (lel rood 2)) since there are (lel 2 - (lel mod 2))/4
edges crossing between two clusters when half the modules ofe are in each cluster (also see 1,184]). Donath further shows
that when there are more than two clusters, 4/(lel 2 - (lelmod 2)) remains the correct uniform weighting to achieve this
upper bound. Many other net models are motivated by 1- and 2-dimensional cell placement. For example, the standard
1/(lel - 1) weight is inspired by linear placement into fixed slots separated by distance one [40]: since the minimum
wirelength of an [el-pin net must be at least le] - 1, the weighting should be inversely proportional to le[- 1 so that the
objective does not "try too hard" to place the modules into an impossibly small span of slots (also see 1-83]). If the span of
a net is exactly Fer - 1, then D.J.-H. Huang showed that a weighting function of6/(leJ(lel + 1)) gives the total wirelength
Jef - 1 for the clique representation. In a 2-dimensional layout, [91] assumes that the net will be a spanning tree with
lel - 1 edges; hence, if the weight for these edges is evenly distributed among the clique edges, the weight function should
be (J e f - 1)/(4~ 4) ---2/lel. Frankle and Karp 1,68] proposed the uniform weight (2/lel) 3/2 for linear placement with
min imum squared wirelength: if the span of a net is normalized to one and edges have weight w, the total edge cost may
vary from l e[w/2 to (I e[/2)2w depending on the distribution of pins; thus, Frankle and Karp set w = (2/[el) 3/2 to minimize
the worst-case deviation of cost from the square of the span (this model has also been used by 1,37]). Tsay and Kuh 1,183]
propose edge weight 2/let for minimizing squared wirelength and (2/le[) 3 for minimizing Manhat tan wirelength.

8 C.J. Alpert, A.B. Kahng/INTEGRATION, the VLSI Journal 19 (1995) 1-81

- a

 hdT

v3

f

(a)

v2 v s v7

(b)

v31 i

J

(c) (d)

• g

a i

b J

v 3

(e) if)

Fig. 1. Representations of a circuit with 7 modules and 10 signal nets: (a) circuit diagram with all inputs on the left side of
the modules and all outputs on the right side; (b) the hypergraph representation; (c) the weighted graph representation
using the standard clique net model with uniform edge weight 1/(le[- 1); (d) the intersection graph; (e) the dual graph;
and (f) the directed graph (assuming a directed-tree hyperedge model). To enhance readability, not all edges have been
labeled.

that the clique net model may enable a "finer-grain optimization" than the hypergraph model,
e.g., Shih [172] reports that solution quality of Fiduccia-Mattheyses bipartitioning [65] can
improve when run on the graph representation of the netlist instead of the original hypergraph.
However, the clique model can destroy the natural sparsity of the netlist since (L~I) nonzeros will
be inserted in A for every net e. For example, a 1000-pin clock net will induce 499 500 nonzero
entries in A. Thus, some existing methods discard large nets to maintain sparsity [37, 79]. An

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 H995) 1-81 9

undirected graph can also be induced from a netlist by constructing random spanning trees,
paths, or cycles over the pins in every signal net. Alternatively, dummy modules may be inserted
[106], e.g., the "star" model adds a dummy node for each net and connects every pin of the net to
this dummy node (cf. the discussion of [99] in Section 5.2).

• Intersection graph: One can view the netlist partitioning problem in terms of partitioning nets
instead of modules. Given such a perspective, a useful netlist representation is the intersection
graph G'(V', E') , whose vertices correspond to the signal nets of the original netlist hypergraph,
i.e., V ' = {el, e2, ... ,e,,}. Two vertices ei, ejE ~' are adjacent if and only if e ine j ~ 0, i.e., the
nets share a module. Early uses of this representation were in both partitioning [112] and
placement [146]. Note that the intersection graph is typically quite sparse due to module fanout
limits [82].

• Dual hypergraph: A slightly different net-oriented representation is the dual hypergraph
H(V', E'), which has the same vertex set V' = {el, e2, ... ,era} as the intersection graph. How-
ever, the connections are slightly different in that modules are mapped to hyperedges: For each
v e V, the hyperedge N(v) is added to E' (note fE'J = n). Observe that the intersection graph can
be derived by applying the clique net model to the dual hypergraph. Yeh et al. [194] used this
representation for their Primal-Dual FM-based algorithm (see Section 3.5), and [49] used
a combination of the intersection and dual representations.

• Directed graph: Signal flow direction can be easily integrated into a graph representation, e.g., by
creating directed edges (S(e), w) for every e ~ E and every w ~ D(e). This specific construction is
called the directed tree representation. A directed graph is particularly useful for flow, uni-
directional cut, timing, and replication formulations. Sometimes this construction yields a di-
rected acyclic graph (DAG), e.g., for combinational logic networks [50, 107]. In such a case, the
set of primary inputs is denoted by PI = {v ~ V r v e ~ N(v), S(e) = v} and the set of primary
outputs is denoted by PO = {v ~ V J ~/e ~ N(v), v ~ D(e)}.

These five models are illustrated in Fig. 1. In the remainder of the discussion, we will assume that
the circuit is represented as a hypergraph. Of course, any method for hypergraph partitioning can
also be applied to the graph representation, as well as to the intersection and dual representations,
if a scheme is provided to transform the resulting net partitioning into a module partitioning.

2.3. Bipartitioning formulations

The min-cut bipartitioning problem seeks to divide V into two clusters such that the number of
hyperedges cut by the clusters is minimized:

Min-Cut Bipartitioning: Minimize F(P 2) = IE(C1)I = IE(C2)f such that C 1 ~z 0, C2 ~ 0.

Min-Cut Bipartitioning can be solved by converting the hypergraph to a flow network, computing
a certain set of n - 1 flows and applying the max-flow min-cut theorem [66] to obtain
a minimum cut. Many algorithms are known which can solve the max-flow problem in polynomial
time; see [76, 2-1 for surveys. Note, however, that finding a minimum cut does not necessarily
require a maximum flow; fast techniques to find minimum cuts [92, 114, 141] are noted in Section
5 below.

10 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

Optimal solutions to ,Min-Cut Bipartitioning will often be quite unbalanced and thus not be
useful within a hierarchical design methodology; however, such solutions may form the basis of
a useful heuristic [190, 191]. A more practical formulation seeks min-cut bipartitionings with
bounds on module cardinality or total module area within each cluster. The Min-Cu t Bisection
problem seeks two equal-weight clusters:

Min-Cut Bisection: Minimize F(P 2) = IE(C~)I such that Iw(C~) - w(C2)l ~< ~.

If all modules have unit weight, then e = 1. When move-based heuristics are applied, it is usually
convenient to allow the cluster weight imbalance e to vary up to the largest module weight
(otherwise the number of possible moves may become too limited). Min-Cut Bisection is NP-
complete [70], as are all of the other size-constrained formulations that we discuss since Min-Cut
Bisection can be reduced to them.

This formulation may be unnecessarily restrictive: and relaxing the size constraints may permit
a much better solution while still maintaining relatively balanced clusters.

Size-Constrained Min-Cnt Bipartitioning: Given prescribed lower and upper cluster size lower and
upper bounds L and U, minimize F(P 2) --- IE(C01 such that L <<. W(Ch) <<, U for h = 1, 2.

This formulation has become popular in the recent literature, both for its greater practical
relevance and as an added basis for algorithm comparisons, e.g., [156, 190] present results using
unit module areas and L = 9n/20, U = lln/20, and [188, 86] present results using actual module
areas and L = ¼ ET= 1 w(vi), U = 3 ZT= 1 w(ui) (see Section 7).

Rather than minimizing cutsize subject to cluster size constraints, the cutsize and balance criteria
can be smoothly integrated into the partitioning objective. The concept of ratio cut partitioning
was introduced in [132] and first applied to circuit partitioning by Wei and Cheng [187].

Minimum Ratio Cut Bipartitioning: Minimize F(P 2) = IE(C1)I/(w(C1)'w(C2)).

The numerator favors a low cutsize while the denominator favors more balanced cluster sizes.
Fig. 2 contrasts the optimal solutions for the Min-Cut Bipartitioning, Min-Cut Bisection and
Minimum Ratio Cut Bipartitioning objectives.

2.4. Mult i-way partit ioning formulat ions

A mult i -way partitioning is a k-way partitioning with k > 2. A standard formulation is:

Min-Cut k-Way Partitioning: Given lower and upper cluster size bounds L and U, minimize
F(Pk) = Y~= 1 E(Ch) such that L <~ w(Ci) <~ U for all h = 1, ... , k.

Exact cluster size balance is achieved by setting L = (l/k)Y~i w(vl) - e and U = (l/k)•i w(vi) + ~,
where e > 0 may again be required for move-based algorithms to maintain feasible solutions.
A similar constrained formulation used by, e.g., [18], requires that W(Ch) = mh for user-prescribed
cluster sizes ml >>- m2 >>, ... >>- mk. Notice that the Min-Cut k-Way Partitioning objective sums the
nets cut by each cluster: a net that is cut by h clusters is counted h times in the sum. As noted by
[159, 179], this objective is preferable to simply counting the number of nets cut (i.e.,
F(P k) = IE(pk)l) since signal nets that span more clusters can consume more I/O and timing

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 11

?,,.
9 9

,o

~~*~ 100 100 100

Fig. 2. Optimal bipartitionings of an edge-weighted graph with six modules. The min-cut bipartitioning
{{Vl}, {/)2, /)3, /)4, /)5, U6}} will have cutsize 18, but is very unbalanced. The min-cut bisection {{vl, /)2, /),}, {/)3, vs, v6}} has
cutsize 300, much worse than the arguably more natural solution {{Vl, v2}, {/)3, v4, v5, v6}} which has cutsize 19 and
corresponds to the optimal ratio cut of 19/8.

resources. Note that the two objectives are identical for undirected graphs (which have J el = 2 for
all e ~ E).

As with bipartitioning, it is possible to integrate cutsize and cluster size balance within a single
objective. To this end, Chan et al. 1-37] and Yeh et al. [193], respectively, proposed the Minimum
Scaled Cost and Minimum Cluster Ratio objectives.

1 k IE(Ch)l
Minimum Sealed Cost: Minimize F(pk) = n(k - 1~) h~'lT"

W(fh)

le(ek)l
Minimum Cluster Ratio: Minimize F(Pk) = y k- 1 •k=i+ 1 W(Ch) w(Ct)"

Both of these objectives are k-way generalizations of the ratio cut objective, and are exactly
equivalent to Minimum Ratio Cut Bipartitioning when k = 2. Scaled Cost seems more useful
because it penalizes nets that are divided among more than two clusters; Cluster Ratio is also more
difficult to evaluate, and the O(k 2) terms in the denominator do not give immediate intuition
regarding the cutsize-balance tradeoff.

Other k-way partitioning objectives have been proposed in the context of circuit clustering, i.e.,
when k is large with respect to I VI (see Section 6). The DS objective [48-1 is:

DS: Maximize
1 k degree(Ch)

F(pk) = n h~= l separation(Ch)'

where de#ree(Ch) is the average number of nets incident to each module of the cluster that have at
least two pins in the cluster, and separation(Ch) is the average length of a shortest path between two
modules in Ch (= ~ if the cluster is disconnected). Since DS requires O (n 3) time to evaluate, it is
more useful for the comparison of rather than optimization of clustering solutions.

12 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

The Absorption objective [179] measures the sum of the fractions of nets "absorbed" by the
clusters:

k lec~Chl- 1
Absorption: Maximize F(P k) = ~ ~"

h=l eeELenCh~O { e l - 1

e.g., net e incident to cluster Ch adds absorption zero if e has only one pin in Ch, and adds
absorption one if all of e's pins are in Ch.

The Density objective [101] maximizes the sum of cluster densities, where the density of a cluster
Ch is the number of hyperedges completely contained in Ch, divided by the weight of Ch:

Density: Maximize
k

F(pk) = ~ l { e ~ E] e~_Ch}l,r,,
h: 1 W~hj

Density differs from Absorption in that only nets completely absorbed in the cluster are counted.
Without this denominator, the objective is equivalent to minimizing the total number of cut nets
(cf. the "Clustering" problem in [133]), since it can be rewritten as I E I - IE(pk)I.

A very important clustering-related formulation captures the problem of timing-driven k-way
partitioning (see Section 5.1 below). A DAG representation is assumed, and the goal is to minimize
the longest delay over all paths from primary inputs to primary outputs of the circuit, subject to
satisfying the size constraint w(C) ~< U. Each module v E V has delay 6(v), and an edge (v~, vj)
between two modules has delay one if v~ and vj are in different clusters, and delay zero if vi and vj are
in the same cluster. In other words, the cost (delay) of a path p from v~ to vj can be written as
cost(p) = ~vep~(V) d- K(p), where K(p) is the number of intercluster edges in p.

Min-Delay Clustering: Given a DAG G(V, E), module delays 6(vi) and cluster size bound U,
minimize F(P k) = maXallpaths p cost(p) such that W(Ch) <<. U for all h = 1, . . . , k.

As noted in [151], this formulation can capture delay between adjacent modules vi and v~ by
inserting a dummy module v,, on edge (v~, vj) with w(v,,) = 0 and edge delay 6(Vm); such a trans-
formation only increases the size of the netlist by a constant factor. Applications of Min-Delay
Clustering abound in the performance-driven design of multi-chip module (MCM) or multiple-
FPGA systems. For example, in the latter application a technology-mapped circuit will have been
decomposed into configurable logic block (CLB) equivalents, and these must be partitioned onto
k FPGA devices subject to hard I/O limits for each device.

Finally, there is the class of layout-driven multi-way partitioning formulations, which are
generally motivated by the link between partitioning and placement in typical physical design
methodologies. Vijayan [186] proposed an abstract formulation that requires the netlist modules
to be mapped onto an underlying k-node tree structure. Each node of the tree has a prescribed
capacity of netlist modules, and the cost of the k-way partitioning is the sum of the costs of routing
each net on the underlying tree structure. Thus, a tree consisting of two nodes, each with capacity
n/2, captures Min-Cut Bisection. Similarly, a star topology with k leaf nodes each having capacity
n/k, along with a dummy central vertex having zero capacity, captures balanced Min-Cut k-Way
Partitioning. Vijayan notes many applications of his formulation, including seeding of functional
blocks, partitioning within nonrectangular regions, and residual logic partitioning.

CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 13

For layout-driven applications, a general graph topology rather than a tree structure can better
incorporate information about the layout geometry [182]. For example, if modules are assigned to
12 identical devices that are arranged in a 3 × 4 grid, the cost of a cut net might correspond to the
routing tree cost over the devices that contain pins of the net. This formulation applies to
partitioning of multiple-FPGA systems, MCM designs, and general floorplanning. As with
Vijayan's formulation, edge-weighting of the underlying topology can be used to model distance,
signal delay, routing congestion or other layout parameters. Roy and Sechen [159] have integrated
both the perimeter of a net's bounding box and penalties for wirelength of critical-paths into an
objective function for MCM partitioning. Similar formulations are given in [158, 171]. The
quadrisection problem [178] is a classic special case of the same formulation for standard-cell
placement: the underlying graph is a 2 × 2 grid, and the objective is to minimize the number of nets
crossing the middle horizontal and vertical gridlines.

2.5. Constraint-driven (satisficiny).formulations

With the increasing complexity of system design, CAD optimizations are becoming constraint-
driven, i.e., satisficing, meaning that the design problem is expressible as a decision question. If the
answer to the decision question is yes, then there exists a feasible solution that satisfies all the
constraints, and all feasible solutions are equally good. For example, a design that can achieve
a given system clock speed, fit into a given gate array, meet given I/O constraints on logic blocks,
etc. will indeed be a good solution. Constraint-driven partitioning formulations are most promi-
nent in the design of multiple-FPGA systems for rapid prototyping or system emulation. Because
FPGA gate density is low, and because logic (CLB) and I/O resources both have hard upper
bounds, FPGA partitioning is virtually a canonical constraint-driven application. Thus, we use the
term "FPGA partitioning" to exemplify the more general case of partitioning with area, I/O and
perhaps timing constraints. In FPGA partitioning, a cluster corresponds to an FPGA device (i.e.,
a chip), so that the circuitry of the modules and the connections in the cluster must be mappable
onto the chip. If all the devices are of the same type, Ku~nar et al. [125] propose finding a feasible
solution that minimizes the number of devices.

Definition: A cluster C is feasible with respect to FPGA device type D if w(C)<~ w(D) and
JE(C)[<~ JE(D)J where w(D) is the capacity and E(D) is the I/O limit of the device type D.

Single-Device FPGA Partitioning: Given an FPGA device type D, find pk = {C1, Cz, . . . , Ck} such
that every Ch ~ pk is feasible with respect to D and F(P k) = k is minimized.

This formulation has also been studied in, e.g., [44, 100]. Notice that this formulation is easily
stated as a decision question - "Given a value k and a device type D, does there exist a feasible
pk with respect to D?" More generally, a library of different device types with varying size
capacities and I/O limits may be available. Each device type D has an associated cost, denoted by
cost(D) . Let A = {D1, D2 , Dr} denote a library of devices and let dev: 2 v ~ A be a partial
mapping of possible clusters to the lowest-cost device types for which they are feasible. The
multiple-device FPGA partitioning problem [125] is:

14 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

N

V 2 N

2 ~

N

2 N

2 N

(a) (b)

Fig. 3. Directed graph corresponding to an N-to-2 N decoder v. Replication of v reduces the cut size from 2 ~ in (a) to N
in (b).

Multiple-Device FPGA Partitioning: Given a library of devices A, find pk = {C1, C2 , Ck} and
a partial mapping dev such that every Ch~ pk is feasible with respect to dev(Ch) and
F(Pk) = Ek= 1 cost(dev(Ch)) is minimized.

For satisficing problems, there are often many solutions that can achieve the same cost. In
practice, other criteria can be used to distinguish superior solutions. For example, if w(C) is very
close to w(dev(C)), then the FPGA device may not be routable; one may seek to balance "slacks"
w(dev(C)) - w(C) among the clusters in order to yield the highest possibility of routing. As another
example, it might be desirable to minimize the number of pins used, Ek= 1 IE(Ci)I, since this quantity
represents total interconnect between FPGAs. This pin-minimization objective was proposed by
Woo and Kim [189-1, who also studied a more rigid capacity constraint: each module has an
associated "cell type" and each FPGA device can only contain a fixed number of modules of each
cell type.

2. 6. Replication formulations

The final class of formulations that we preview removes the assumption that clusters are disjoint,
i.e., a module can belong to multiple clusters [122]. Replicating modules can reduce the cutsize, and
is particularly useful for FPGA partitioning since many device architectures seem more I/O-limited
or interconnect-limited than logic-limited. Replication can also reduce the number of interchip
wires along a given path, increasing system performance. There are three forms of replication in the
literature, involving directed graphs [103], hypergraphs with source and destination information
[122], and functional information [126,1 (i.e., the actual logic functions must be known in addition
to the circuit topology).

Consider the directed graph shown in Fig. 3(a), in which module v represents an N-input decoder
circuit. The cut shown has size 2 N, but if the decoder v is replicated as in (b), each one of these
2 N edges will become uncut (however, N new edges will be cut). The following rules are used to
modify the edge set E when v ~ Ch is replicated into v' ~ C~.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) l 81 15

v jel j,e ~'-]
.

(a)

,,~,m
(b)

Fig. 4. (a) A circuit with two nets crossing the cut, and (b) the same circuit with module v replicated, yielding only one cut
net.

Directed Graph Replication Rules [103]:

• For each (v, w) with w ~ Cl, replace (v, w) with (v', w).
• For each (w, v) 6 E, add (w, v') to E.

Notice that the 2 N edges were removed in Fig. 3(b) according to the first rule, and the addition of
N edges followed from the second rule.

These rules can be extended to hypergraphs, where source and destination information are
known [122]. The following rules are used to modify the edge set E when v 6 Ch is replicated into
V' E Ct.

Hypergraph Replication Rules:

• For every net e with v = S(e) and for every w ~ D(e)~Ct , remove w from e; create a new net e'
with S(e') = v' and D(e') = {w ~ D(e) n Ct}. Delete any resulting 1-pin nets from the hypergraph.

• For every net e with v ~ O(e), add v' to D(e).

Note the difference between this second rule and the corresponding rule for directed graph
replication. Fig. 4 shows an example with inputs (outputs) on the left (right) side of each module. By
the first rule, replicating v adds the new net e~ containing v' and w to the set of hyperedges; by the
second rule, v' is added as another destination module for net e~. Thus, el is still cut only once, but if
a directed tree representation and directed graph rules were applied (as in [103]), both the edges
(S(el), v') and (S(el), w) would cross the cut.

T h e third replication formulation is due to Ku~nar et al. [126] and assumes functional
knowledge of the circuit. The key idea is that if one knows the actual function of a module, then not
all incoming signals may be required by both copies of the replicated module, The first hypergraph
replication rule above is applied to construct new nets and remove any resulting 1-pin nets. Then,
the second hypergraph replication rule is modified (again, when replicating v to v') to:

Logic-Dependent Replication Rule: Let E* = {e IS(e) = v'}. For every net e such that v ~ D(e), if
there exists an e* ~ E* that depends on e, add v' to D(e).

Consider the module v shown in Fig. 5(a), with three inputs e~, e2, e3 and two outputs e4, es.
From the dotted lines within the modules, we see that output e4 depends only on inputs e 1 and e3,

16 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

e 2

. ' !1

%

(a)

e
V

V' m

(b)

lies
Fig. 5. (a) A module v with three nets crossing the cut; (b) replication requires only two nets to cross the cut since the net
corresponding to input el is not needed by v'.

while output e5 depends only on inputs ez and e3. Three nets cross the cutline in (a), but only two
nets are cut after v has been replicated to v' in (b). Applying the first replication rule deletes e~, (since
D(e'4) = 0) while e~ remains. Applying the second rule using E * = {e~} shows that v' needs
connections to e2 and e3 only, since e's does not depend on el. This formulation is germane to
FPGA system synthesis, e.g., CLBs of such popular device families as the Xilinx 4000-series indeed
have multiple outputs with differing dependencies on the input variables.

3. Move-based approaches

A partitioning approach is move-based if it iteratively constructs a new candidate solution based
on two considerations: (i) a neighborhood structure that is defined over the set of feasible solutions,
and (ii) the previous history of the optimization. The first consideration requires the notion of
a local perturbation of the current solution; this is the heart of the move-based paradigm. The type
of perturbation used determines a topology over the solution space, known as the neighborhood
structure. For the objective function to be "smooth" over the neighborhood structure, the perturba-
tion (also known as a neighborhood operator) should be small and "local". Typical neighborhood
operators for partitioning include swapping a pair of modules, or shifting a single module, across
a cluster boundary. For example, two partitioning solutions are neighbors under the pair-swap
neighborhood structure if one solution can be derived from the other by swapping two modules
between clusters. In general, the solution space is explored by repeatedly moving from the current
solution to a neighboring solution. With respect to previous history, some approaches are
"memoryless", e.g., a simple greedy method might rely only on the current solution to generate the
next solution. On the other hand, such methods as Kernighan-Lin or Fiduccia-Mattheyses
implicitly remember the entire history of a "pass"; hybrid genetic-local search or tabu search
approaches, must also remember lists of previously seen solutions.

Move-based approaches dominate both the literature and industry practice for several reasons.
First, they are generally very intuitive - the logical technique for improving a given solution is to
repeatedly make it better via small changes, such as moving individual modules. Second, iterative
algorithms are simple to describe and implement; for this reason, the bipartitioning method of

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81 17

Fiduccia-Mattheyses [65-] and the multi-way partitioning method of Sanchis [164] are standards
against which nearly all other heuristics are measured. Third, the move-based approach en-
compasses more sophisticated strategies for exploring the solution space - e.g., simulated anneal-
ing, tabu search, and genetic algorithms - which yield performance improvements over greedy
iterative methods while retaining the intuitiveness associated with local search. Finally, the
move-based approach is independent of the nature of the objective function that is used to measure
solution quality. While other approaches might require the objective to be of a particular form, or
to be a relatively simple function of solution parameters, the move-based approach can flexibly
incorporate arbitrary constraints (e.g., on critical path delays or I/O utilization). Thus, the
move-based approach has been applied to virtually every known partitioning formulation.

The remainder of this section is organized as follows. We first discuss the "classic" greedy
iterative improvement algorithms, which move from the current solution to the best neighboring
solution. We also discuss implementation issues that can greatly affect the performance of these
methods. We then discuss three stochastic hill-climbin9 methods - simulated annealing, tabu search,
and genetic algorithms - which can move to higher-cost neighboring solutions in order to escape
local minima. Finally, the section concludes by reviewing the numerous works that have each
adapted some basic move-based paradigm in addressing some variant partitioning formulation.

3.1. Iterative improvement

Iterative improvement algorithms are based on the greedy strategy: start with some feasible
solution and iteratively move to the best (improving) neighboring solution. The process terminates
when the algorithm reaches a local minimum, i.e., a solution for which all neighbors have greater
cost. Early greedy improvement methods apply simple pair-swap or single-move neighborhood
operators, and quickly reach local minima corresponding to poor solutions. By contrast, the
strategies discussed in this subsection all rely on extended neighborhood structures which effec-
tively allow hill-climbing out of local minima (even though each strategy is greedy with respect to
its neighborhood operator). Due to these methods, iterative improvement remains a viable
strategy, particularly when clustering techniques are integrated (see Section 6).

3.1.1. The Kernighan-Lin (KL) algorithm
In 1970, Kernighan and Lin 1-117] introduced what is often described as the first "good" graph

bisection heuristic. Their algorithm uses a pair-swap neighborhood structure and proceeds in
a series of passes. During each pass of the algorithm, every module moves exactly once, either from
C1 to C2 or from C2 to C1. At the beginning of a pass, each module is unlocked, meaning that it is
flee to be swapped; after a module is swapped it becomes locked. KL iteratively swaps the pair of
unlocked modules with the highest 9ain, where the gain of swapping vi ~ C1 with vj ~ Cz is given by
F({C1, C2}) - F ({CI + vj - vi}, {Cz + v, - vj}). In other words, the gain is the decrease in solution
cost that results from the pair-swap. For a weighted undirected graph and the min-cut objective,
the gain for these modules is given by

gain(vi, vi) = ~ (aik -- ajk) + ~ (aik -- aik).
VkEC2 Uk~Cl

18 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

The swapping process is iterated until all modules become locked, and the lowest-cost bisection
observed during the pass is returned. Another pass is then executed using this bisection as its
starting solution; the algorithm terminates when a pass fails to find a solution with lower cost than
its starting solution. An advantage of KL is that it can climb out of local minima, since it always
swaps the pair of modules with highest gain even if this gain is negative. However, if we consider all
solutions reachable within a single pass of the algorithm to be "neighbors" of the current solution,
the KL algorithm is still seen to be greedy.

A simple implementation of KL requires O(n 3) time per pass since finding the highest-gain swap
involves evaluating O(n 2) swaps. In practice, this complexity is reduced to O(n21og n) by maintain-
ing a sorted list of gains. The number of passes is clearly bounded by [EI for unweighted graphs
(since the cost must improve with each pass); in practice, significantly fewer passes will be needed to
reach a local minimum. Recently, Dutt 1-61] presented the Quick Cut algorithm which reduces the
complexity of a single KL pass to O(max{lEllogn, IEldegmax}) where degmax is the maximum
module degree. The speedup is based on the observation that it is not necessary to search more than
a certain subset of (degmax) 2 module pairs to find the pair with highest gain. Although the original KL
algorithm and Quick Cut apply only to undirected weighted graphs, Schweikert and Kernighan
[169] extended KL to hypergraphs and a similar extension appears possible for Quick Cut.

3.1.2. The Fiduccia-Mattheyses (FM) algorithm
Fiduccia and Mattheyses [65] presented a KL-inspired algorithm which reduced the time per

pass to linear in the size of the netlist. The main difference between KL and FM is the neighbor-
hood structure: a new bipartitioning is derived by moving a single module either from Ca to C2 or
from Cz to Ca. Since intermediate solutions considered by FM must violate the strict bisection
constraint, the solution is permitted to deviate from an exact bisection by the size of the largest
module. The gain associated with module v e Ci is [E(Ci)I- IE(Ci- v)l. Like KL, the FM
algorithm performs passes wherein each module moves exactly once, returns the best solution
observed during a pass, and terminates when a pass fails to improve the cost function. However,
FM permits a much faster O(IE I) implementation on undirected graphs and an O(p) implementa-
tion on hypergraphs, where p is the number of pins in the netlist. The key to the speedup is the gain
bucket data structure shown in Fig. 6, which allows constant-time selection of the module with
highest gain and fast gain updates after each move.

The efficient management of gain buckets is possible because (i) all module gains are integers,
and (ii) every gain is bounded above by degmax and below by - degmax. Even when variations of the
pure min-cut objective are permitted (e.g., non-integral net weights), there is usually a tight bound
on the range of possible gain values. At the beginning of a pass, the gains for each of the n possible
module moves are computed in O(p) time, and each move is inserted into the data structure
according to its gain. The modules with highest gain are stored in the bucket with gain value
MAXGAIN. During an FM pass, a module is selected from this bucket and deleted from the linked
list; the module is moved from its current cluster and the gains of unlocked modules incident to the
moved module are updated. The updating of a module can be accomplished by removing it from its
gain bucket list and inserting it at the head of the bucket list indexed by its new gain value. If one of
these modules has a new gain that is larger than MAXGAIN, then MAXGAIN is updated to this
new value. If the bucket indexed by MAXGAIN becomes empty, then MAXGAIN is decreased
until it indexes a non-empty bucket.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 19

+de.m,, A

- degrmnt I

1 2 "'" n

Fig. 6. The gain bucket list structure as shown in [65].

3.1.3. Tie-breaking strategies
A frequently cited enhancement to FM is that of Krishnamurthy [123]. He suggested that the

lack of an "intelligent" tie-breaking mechanism from among the many possible modules in the
highest-gain bucket could cause FM to make "bad" choices. Hagen et al. [80] observe that 15-30
modules will typically share the highest-gain value at any time during an FM pass on the Primaryl
MCNC benchmark (833 modules). As a tie-breaking mechanism, Krishnamurthy introduced a gain
vector, which is a sequence of potential gain values corresponding to numbers of possible moves
into the future. Thus, the rth entry in the gain vector looks r moves ahead, and ties are broken
lexicographically by lst-level gains, then 2nd-level gains, etc. Gain vectors can be integrated into
the FM gain bucket structure, increasing the complexity to O(pr), where r is the maximum number
of lookahead moves stored in the gain vector.

Krishnamurthy defines the binding number flc,(e) of a signal net e with respect to cluster Ci as the
number of unlocked modules in C in e, unless Cine contains a locked module, in which case
/?q(e) = ~ . Intuitively, the binding number measures how many modules must be moved from C~ in
order to move all the pins in e out of C~. This is impossible when a module in C~ n e is locked, so the
binding number is infinite. The rth-level gain 7,(v) for v e Ca is given by

7,(v) = I{e e E({v}) s.t. flc,(e) = r, flc2(e) > 0}1

- I { e e E({v}) s.t. f l c , (e) > O, f l q (e) = r - 1}1. (3.1)

The first term counts how many nets with binding number r - 1 are "created" by the move, and the
second term counts how many nets with binding number r - 1 are "destroyed" by the move (i.e.,
have new binding number = ~). Hence, the rth-level gain counts the additional number of nets that
may possibly become uncut following r moves. Note that the lst-level gain is identical to the gain in
the FM algorithm. Although the benefit of higher-level gains is well-documented (e.g., [94]), small
modifications might improve performance. For example, instead of combining the positive and
negative gains into a single term, one could store both terms separately to afford a two-tiered
rth-level comparison.

20 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

Even with Krishnamurthy's gain vector, ties may still occur in the lst- through rth-level gains. In
this case, the implementation of the gain bucket data structure will determine which module is
selected. The original FM algorithm uses a linked list for each bucket; from Fig. 6, reproduced from
[65], we may infer that modules are removed and inserted at the head of the list, i.e., the bucket
organization corresponds to a last-in-first-out (LIFO) stack. The authors of [65] do not mention
why a LIFO organization was chosen, but one can speculate that it was an "obvious" choice.
However, a first-in-first-out (FIFO) organization which supports the same update efficiency could
also be implemented, simply by removing modules from the head of the linked list and inserting
modules at the tail of the linked list. Alternatively, a random organization could be implemented,
although the time complexity would increase slightly since bucket selection could not be accomp-
lished in constant time.

Recently, the authors of [80] observed that Sanchis [164], and most likely Krishnamurthy [123],
used random selection from gain buckets in their implementations. Furthermore, [80] observed that
a LIFO gain bucket organization yields considerably superior solutions than either the FIFO or
random bucket organization, for both the FM and Krishnamurthy algorithms. (This result seems
quite surprising: if anything, "folklore" would have it that introducing randomness can improve
solution quality by increasing the range of the neighborhood search.) One possible explanation for
the success of LIFO is that it enforces "locality" in the choice of modules to move, i.e., modules that
are naturally clustered together will tend to move sequentially. Hagen et al. [80] use this idea of
locality to propose an alternative formula for higher-level gains which also improves performance.
Since slight modifications to the bucket organization or gain formula can so dramatically affect the
solution quality obtained by these iterative approaches, exploring other implementation choices
seems to be a very promising direction for future work. The importance of such research is heightened
by the present widespread use of the FM and Krishnamurthy algorithms.

3.1.4. S a n c h i s ' m u l t i - w a y p a r t i t i o n i n g a l g o r i t h m
Sanchis [164] extended the FM algorithm, together with Krishnamurthy's lookahead scheme, to

multi-way partitioning. The algorithm is generally straightforward, although there are several
knotty implementation issues. Sanchis' detailed explanation of these issues accounts for her
algorithm's wide use in practice, as well as its present status as a benchmark against which
multi-way partitioning heuristics are compared.

Sanchis extends the definition for the binding number of a net e with respect to cluster Ci as
fl~,(e) = ~j~: i [lc j (e) . In other words, fl'c~(e) is the sum of the Krishnamurthy binding numbers for
e with respect to every cluster except Ci, and measures the difficulty of removing the pins in e from
Ci. The analog of Eq. (3.1) for the rth-level gain of moving module v e C~ to Cj is

7~(v) = I{e e E({v}) s.t. fl'cj(e) = r, fl'c,(e) > 0}1

- [{e e E({v}) s.t. fl'c,(e) > O, fl'cj(e) = r - 1} 1. (3.2)

Eq. (3.2) assumes that the objective is F(P k) = [E(U)I. In [165], Sanchis shows how to modify this
gain formula to handle the objective function which assigns costj - 1 to a net that spansj clusters
(this is very similar to F(P k) = y~= 11E(Ch)[). For this objective, the rth-level gain is

7,(v) = [{e e E({v}) s.t. f lc,(e) = r, f lcj(e) > 0}l

- I { e e E ({ v }) s . t . flc~(e) > O , / ~ c , (e) = r - 1 } l .

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 21

3.2. Simulated annealing

Simulated annealing (SA) was popularized by Kirkpatrick et al. [119] as an alternative to greedy
approaches, which become quickly trapped in local minima since they can only make downhill
moves. Given a neighborhood structure and a current solution, SA picks a random neighbor of the
current solution and moves to this new solution if it represents a downhill move. Even if the new
solution represents an uphill move, SA will move to it with probability e-~/r (termed a "Boltzmann
acceptance rule") and otherwise retain the current solution; here, A is the cost of the new solution
minus the cost of the current solution, and T is the current value of a temperature parameter which
guides the optimization. To control the rate of convergence and the strategy for exploring the
solution space, the user typically establishes a temperature schedule by which T varies, e.g., as
a function of the number of moves made. The SA algorithm enjoys certain theoretical attractions
[72, 88] (see also [127]): using Markov chain arguments and properties of Gibbs-Boltzmann
statistics, one can show that SA will converge to a globally optimum solution given an infinite
number of moves and a temperature schedule that cools to zero sufficiently slowly. The use of terms
such as "cooling" and "temperature schedule" are due to SA's analogy to physical annealing of
a material into a ground-state energy configuration.

For the Min-Cut Bisection problem, Johnson et al. [110] conducted an extensive empirical study
of simulated annealing versus iterative improvement approaches, using various random graphs as
a testbed (see Section 7.1). The authors of [110] conclude that SA is a competitive approach,
outperforming KL for uniform and geometric random graphs. However, they suggest that multiple
runs of KL with random starting solutions may be preferable to SA for sparse graphs that have
local structure (a description that applies to circuit netlists). They also make a number of interesting
observations, including:

• Starting SA with a good solution as opposed to a random solution may be advantageous,
particularly if the good solution can identify and exploit special structure of the instance.

• Spending long periods of time at high temperatures is not necessary.
• Geometric cooling schedules (i.e., setting T = ~MT o where M is the number of moves made and

To is the initial temperature) seem at least as effective as nonadaptive alternatives such as
logarithmic or linear cooling. Adaptive cooling schedules which are modified during the
execution of SA (e.g., based on solution quality, distribution of solution costs in the neighbor-
hood, etc.) hold promise.

• Expanding the feasible solution space may be worthwhile (e.g., by loosening the size constraints for
bisection); expanding the neighborhood structure allows good solutions to be found more quickly.

These conclusions are based on studies of random graphs which do not possess natural hierarchical
structure. Although there is no a priori reason to doubt such conclusions will also hold for circuit
netlists, similar studies using VLSI circuits would seem worthwhile. We note that annealing is
generally not yet viewed as "practical" for VLSI partitioning applications: runtimes are simply too
long. For this reason, there is only limited work that addresses the use of SA for VLS1 partitioning.
Parallel implementations, improved temperature schedules, and two-stage approaches which
anneal at low temperature starting from a good heuristic solution have all been investigated for
VLSI placement, where annealing has often outperformed other heuristics. Quite possibly, such
enhancements will make SA more viable for partitioning applications in the future.

22 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

One reason for long SA runtimes is that at low temperatures, many candidate moves (i.e.,
neighbors of the current solution) might be generated and rejected before one is finally accepted.
Greene and Supowit [78] proposed a "rejectionless" variant of SA in which no moves are rejected,
since candidate moves are generated with probability proportional to their likelihood of being
generated and accepted given the current solution. For bipartitioning, a "gain" must be stored for
each module, and only the gains for modules in M(v) need to be updated when v is moved. The
Boltzmann acceptance rule maps the gain of v to a weight w(v), and the probability that v is
generated (and moved to) is w(v)/~,u~ v w(u).

Recently, Roy and Sechen [159] used simulated annealing to implement a timing-driven MCM
partitioning algorithm. Their cost function is the sum of the half-perimeters of each net spanning
multiple chips on the MCM, plus a timing penalty for critical nets whose wirelength exceeds
predefined constraints. Chatterjee and Hartley [41] presented an SA-based heuristic which per-
forms partitioning and placement simultaneously. Their cost function is the sum of five compo-
nents: conflict and capacity costs which combine to measure the feasibility of mapping a cluster
onto the chip, a wasted space cost that penalizes unused resources on the chip, a half-perimeter net
cost, and a pin cost. These works illustrate the ease with which SA can address relatively arbitrary
objective functions (of course, simple objective functions are preferred since evaluation of solution
cost dominates the runtime). Sun and Sechen [179] have also used SA to optimize Absorption in
a clustering preprocessor within the TimberWolf placement tool.

Mean field annealing
Mean Field Annealing (MFA) is a technique similar to SA which also has a physical analogy to

systems of particles in thermal equilibrium. Van den Bout and Miller [54] showed how MFA could
be applied to graph partitioning. They use an indicator n-vector x to denote a bipartitioning
solution, where xi = 0 corresponds to membership of vi in C1 and x~ = 1 corresponds to member-
ship of v~ in C2. However, x~ can also take on any real value between 0 and 1. Initially, each xi is set
to be slightly larger than 0.5. Iteratively, a random v~ is chosen and the two solutions x(0) with
xi = 0 and x(1) with xi = 1 are generated from the current solution x and evaluated (the cost
function is extended to nondiscrete solutions). MFA then finds a "compromise" value for x~,

x~ -- (1 + e(e(x~l))-Ftx(O)))/T) - 1

and x is modified accordingly for the next iteration. The intuition behind this assignment is
that x~ should migrate towards its natural value, e.g., if F(x(1)) = F(x(O)) then x~ = 0,5 and if
F(x(1)) ,~ F(x(O)) then x,,~ 1.

This process of choosing a random vi and computing a new x~ value is repeated until a stable
solution is reached. The temperature T is then lowered and the algorithm repeated; this polarizes
the x~ values further (to 0 or 1). Finally, a graph bipartitioning solution is obtained by rounding
each x~ to its nearest discrete value. Bultan and Aykanat [33] have extended this basic approach to
multi-way partitioning of hypergraphs. An earlier work of Peterson and Anderson [145] studied
the performance of MFA for graph bisection; their formulation used x with x~ = - 1 if v~ ~ C 1 and
xi = 1 if vi ~ C2, with maximization objective

= ~=1 a l j x i x j - ~ xi F(x) 2 i = j = l i

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 23

where ~ is a user-chosen constant. The first term of the objective affords a positive weight
aij if (vi, v j) is not cut, and weight -a~ i if (v~, v~) is cut; the second term penalizes cluster size
imbalance.

While M F A is a well-studied opt imizat ion paradigm, its application to VLSI CAD remains
largely unexplored. Like many promising approaches (for instance, those based on eigenvectors,
one-dimensional orderings, mathematical programming, fuzzy clustering, etc.), the M F A approach
permits nondiscrete part i t ioning solutions (i.e., a relaxation), and thus allows search over a larger
solution space. As highlighted in Section 4, a reasonable strategy is to leave the feasible ("legal")
region of the solution space, find a superior infeasible ("nonlegal") solution, then find the feasible
solution that is closest to the infeasible solution. However, like SA, M F A takes a long time to
converge, a l though parallel implementat ions may reduce this time.

3.3. Tabu search

Tabu search was proposed by Glover [74] as a general combinator ial opt imizat ion technique.
Tabu search is similar to iterative improvement in that moves are sought which transform the
current solution to its best neighboring solution. Tabu search also maintains a tabu list of its r most
recent moves (e.g., pairs of modules that have been swapped recently), with r a prescribed constant;
moves on the tabu list cannot be made. The tabu list exists to prevent cycling near a local m in imum
and also to enable uphill moves; the tabu list can be viewed as an alternative to the locking
mechanism in KL and FM. Occasionally, a tabu move may be made if the aspiration funct ion
permits it (essentially, the aspiration function will override the tabu list if the move "looks good
enough"). A claimed advantage of tabu search over SA is that SA may waste time making poor
r andom moves or cycling through previously visited regions of the solution space. Al though tabu
search can certainly behave similarly, it is designed to quickly find a local min imum, climb out of
the "valley" sur rounding this local min imum, and then move on to the next local min imum. In this
sense, tabu search might explore the solution space more efficiently than SA. 7

Tabu search has been applied to graph bisection by Tao et al. [180] and Lim and Chee [134]. In
[180], a move consists of swapping a pair of modules, and the aspiration function is one less than
the cost of the best solution, i.e., a pair swap on the tabu list is accepted if the resulting solution has
lower cost than every solution seen so far. The authors of [134] also adopt a pair-swapping
ne ighborhood structure, a l though the aspiration function depends on the cost of the current
solution. For each solution with cost F, the aspiration value A(F) is the max imum decrease in cost
that has been previously observed when moving from a solution of cost F. Thus, if a move from
a solution with cost F results in a solution with cost F', then the aspiration function overrides the
tabu list if F - F' > A(F) .

Areibi and Vannelli [9] first applied tabu search to hypergraph bipart i t ioning using the same
aspiration function as [134], but with single module moves as the ne ighborhood operator.
Andreat ta and Ribeiro [7] applied tabu search to a D A G part i t ioning formulat ion designed for

7It is instructive to compare the motivations for tabu search with those of other methods in the optimization literature,
e.g., Baum's iterated descent 1-21] or the "iterated Lin-Kernighan" strategy used by Johnson [109] to address the
traveling salesman problem. Furthermore, one may ask whether certain problem classes possess relationships among
local minima in the neighborhood structure which make tabu search more effective (e.g., see [25]).

24 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLS1Journal 19 (1995) 1-81

testing of combinational circuits. Areibi and Vannelli have also applied tabu search as a post-
processing mechanism to initial partitioning solutions constructed using an eigenvector [10] and
a genetic algorithm [8, 11]. In [-8], the genetic algorithm is used to generate many good starting
solutions, so that the tabu search can concentrate its efforts on the most promising regions of the
solution space.

3.4. Genetic algorithms

Genetic algorithms are motivated by Darwin's theory of natural selection in evolution, where
"superior" members of a species produce more offspring in succeeding generations than "inferior"
members [.98]. A oenetic aloorithm (GA) starts with an initial population of solutions. This
population evolves over generations, with the solutions in the current generation being replaced
with a set of offsprin9 solutions in the next generation. A GA implementation typically has
crossover and mutation operators that determine candidate offspring for the next generation. The
crossover operator is analogous to mating: two solutions are selected from the current population
(based on some probabilistic selection scheme), and their descriptors are partially mixed to generate
an offspring. The mutat ion operator enables small random perturbations to a given single solution.
There exists some heuristic justification (cf. the "schema theorem" of [98]) as to why such operators
enable "good" solution characteristics to become more prevalent (and "bad" characteristics less
prevalent) in the population with succeeding generations. The replacement scheme is the final
component of a GA; it determines which offspring will replace which members of the current
population. Designing each of these elements (crossover and mutat ion operators, selection scheme
and replacement scheme) seems to be critical to the success of a genetic approach.

Inayoshi and Manderick [108] studied weighted graph bisection, representing a solution as an
indicator vector having equal numbers of O's and l's. The Hamming distance between two
solutions x and y is given by dH(x, y) = I~x -y l l 2, i.e., the number of entries in which x and y differ.
The crossover operator applied to x and y constructs an offspring z in which zi = xi if xi = yi;
otherwise, if dn(x, y) = 2M, the 2M coordinates of z in which x and y differ are randomly filled with
M ones and M zeros. Thus, z inherits the entries common to its two parents, and has mean
Hamming distance M to each of its parents. A mutat ion of x flips a random x~ = 1 to 0 and
a random xj = 0 to 1, yielding one of the n2/4 neighbors of x according to the pair-swap
neighborhood structure. The selection scheme is linear-rank based: solutions are ranked by their
cost, and the probability of a solution being chosen for a mutation or crossover operation is
decreases linearly with its rank.

Ackley [1] proposed a GA for Min-Cut Bisection that combines crossover and mutat ion into
a single operation. The crossover of x and y yields an offspring z for which each entry z~ has
probability p of being set to a random value, and probability (1 - p)/2 of being set to x~ or y~,
respectively. The selection scheme is purely random and the replacement scheme eliminates
a random solution in the current population which has below-average quality. This GA may create
unbalanced solutions that are not legal bisections, and therefore also incorporates a penalty term
equal to 2(llxll 2 - n/2) 2 in the cost function. The structure of the cost function reflects the
preference of [,1] for a continuous cost function over the solution space.

Bui and Moon have utilized GAs for graph bisection [32] and for ratio cut bipartitioning of
hypergraphs [31]. Their linear selection scheme is a function of solution cost instead of rank

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 25

(specifically, the best solution is four times as likely to be selected as the worst solution, and
a solution of intermediate quality will be chosen with probability proportional to its cost difference
from the worst solution). The replacement scheme is adaptive; in general, an offspring replaces its
more closely related parent (in terms of Hamming distance) if it has lower cost than the parent. The
mutation operator flips each xi value in x with independent probability 0.015, and crossover is
accomplished via random crossover points. For example, if there are three crossover points
1 ~< cl < c2 < c3 ~< n, then the offspring z derived from crossover of x and y has zi = xl for
1 ~< i < Cl, c2 ~< i < C 3 and zi = Yi for cl ~< i < c2, c3 ~ i ~< n. Since this crossover operator makes
it likelier for v~ and vj to be in the same cluster if li - J l is small, ordering the indicator vector to
capture the netlist structure can improve performance. The implementation of [31] adopts
a weighted depth-first ordering; orderings based on the 1-dimensional representations discussed in
Section 4 may be promising in this context.

Saab and Rao [162] proposed a simulated evolution bisection heuristic which has no crossover
operator, but rather a more complex mutation operator. The authors of [162] define the "good-
ness" of a module vi (e.g., in C~) as EJI~, where E~ = EvjEc2 a~j is the cost of the external edges
incident to vi and I~ = y ~jEcl aij is the cost of the internal edges incident to v~. If the goodness of v~ is
less than a given random number between 0 and 1, then vi is judged to be good; otherwise, it is
judged to be bad. Intuitively, a good vertex should remain in its current cluster since it is likely to
have many internal connections; on the other hand, a bad vertex should be moved to the other
cluster ([162] also provides a secondary criterion for judging a vertex good or bad). The mutation
operator essentially swaps large subsets of bad vertices. Finally, GAs for multi-way partitioning
have been proposed by Chandrasekharam et al. [39] and Hulin [102].

Local search hybrids and multi-start
Because GAs are ill-equipped to search a prescribed region of the solution space for local optima,

a given GA may take fairly long to find a good solution, if it finds one at all [31]. Thus, many re-
searchers have successfully combined GAs with local optimization heuristics to form GA-local search
hybrids, or hybrid GAs. For example, lnayoshi and Manderick [108] applies KL to every member of the
population; [31, 32] do the same with FM; and [8] does the same with tabu search.

Recent works have shed some light on the mechanism by which GAs, and GA hybrids in
particular, can find good solutions. Boese et al. [25] and lnayoshi and Manderick [108] observe
that many of the best local optima are "close" to other local opt ima according to natural measures
of distance in the neighborhood structure. Fig. 7 depicts 2500 runs of a greedy pair-swapping
heuristic on a random graph in the class Gaui(100, 4, 10) (see Section 7.1). In (a), for each local
minimum the average distance to the other local minima (in terms of number of pair-swaps) is
plotted as a function of solution cost. The distribution indicates that the local minima with lowest
cost are on average closer to all the other (2499) local minima, i.e., they are in the center of a "big
valley" structure that governs the set of all local minima. Fig. 7(b) plots for each local minimum the
distance to the best (lowest-cost) local minimum; again we see that the local minima that are
structurally most similar to the best minimum are also the next best solutions. Such correlations
suggest that a crossover between two good solutions might lead to an even better solution, since it
in some sense "averages" the good solutions and the cost surface is "convex". Indeed, hybrid GAs
- in retaining common features of parents and searching only the "regions of disagreement"
- implicitly assume that global optima will be located near good local minima.

26 C.J. Alpert, A.B. Kahng / INTEGRATION, the l/LSI Journal 19 (1995) 1-81

60.~

5 5 . ~

I q I I

50.00

45.00

.4,.a,
r.~ 4o.{Xl @

r~
35.~0

30.00

25.1M1

20.00

15.00

I0.00

° ' : o
~ . . • o

. . •

• ° " = = ~ " l : "

. .° . . . i i . i . •
° . ~ i | l l t o

, " ° l "

o ~ o .o +no o.

. o w m . o . ,

.o

D

I T - - I I r - - ' +

60.1~1 f

5S.00

5d).00

4~.{X} F

3~.111

311.011

25.(10
I

2~).(K) -

15.11@ ~-

O,6O

. ° •

i+!iii i i}ii i
• • °

• : : : : : : : : : : : : : : :

: : : : : : : : : : : : ' ' : '

. o

, o

, , , , .

• . . , ,

• .

• o .

1 I I i ~ I I ..i I
19.i~1 20.00 21.00 22.(10 5,ll(I L(I,(XI 15.1K) 20.iX) 25.1X)

Ave distance from other local minima Distance to best local minimum

(a) (b)

Fig. 7. The distribution of 2500 random locally minimum bisections for a particular random graph in GBui(100, 4, 10).
The data represent 2343 distinct local minima.

Based on the "big valley" (Fig. 7), Boese et al. [25] suggested the following adaptive multi-start
(AMS) approach (originally in the context of the traveling salesman problem)• First, AMS
generates a set of random starting solutions and runs a greedy iterative algorithm from each
solution to find corresponding local minima. Then, AMS generates new starting solutions by
combining features of the t best local minima seen so far, with t being a parameter of the approach•
New local minima are obtained by running the greedy algorithm from these new starting solutions,
and the process iterates until some stopping criterion is met. AMS bears some resemblance to
hybrid GAs, but differs in that many solutions (instead of just two) are used to generate the new
starting solution. AMS also uses only the t very best solutions to construct the new starting
solution, while the standard GA selection scheme will incorporate inferior solutions with nonzero
probability•

3.5. Adaptations of move-based algorithms

In practice, iterative improvement methods (i.e., KL, FM, Krishnamurthy and Sanchis) are
the most commonly applied, due to their excellent runtimes, relatively high solution qualities,
and simple implementations. Their basic paradigms are also flexible enough to adapt to objec-
tives other than rain-cut, as well as to variant netlist representations, solution constraints, etc.
We now review the "litany" of iterative adaptations that have appeared in the literature.
We loosely categorize each approach by either its characteristics or its associated problem formu-
lation•

C.J. Alpert, A.B. Kahng /1NTEGRATION, the VLSI Journal 19 (1995) 1-81 27

3.5.1. Alternative move strategies
A possible weakness of the KL and FM strategies lies in the locking mechanism, e.g., a module

v may be moved from Ca to C2 early in a pass, only to have many of its neighboring modules
moved back to Cz, which causes v to be in the wrong cluster. To rectify this behavior, Hoffman [97]
proposed a dynamic locking mechanism which behaves like FM, except that when v is moved out
of Ci, every module in M(v) n Ci becomes unlocked. This allows the neighbors of v in C~ to also
migrate out of C~. The algorithm permits a maximum of ten moves per module per pass. Dasdan
and Aykanat [52] propose a multi-way FM variant that allows a small constant number (e.g., three
or four) module moves per pass.

Yeh et al. [194] gave an extension of Sanchis' multi-way partitioning algorithm that alternates
"primal" passes of module moves with "dual" passes of net moves. A dual pass allows more than
one module to be moved simultaneously, thereby expanding the neighborhood structure. For each
net e, Yeh et al. define the critical set with respect to C; as e c~ Ci and the complementary critical set
as e - (e n C~). A move in a dual pass consists of either moving the critical set out of Ci or moving
the complementary critical set into C~. The gain is the decrease in cost of the partitioning solution
resulting from the move. Due to the complexity of the gain computation, a dual pass typically
requires around 9-10 times the CPU of a primal pass.

Kring and Newton [122] extended FM to include module replication moves. The gain for
replicating a module v is the change in cutsize resulting from applying the replication rules in
Section 2.6. For hypergraphs with signal information, the gain is the number of cut nets for which
v is a source, minus the number of uncut nets for which v is a destination. The authors of [122]
observe that once a module v is replicated, v tends to remain replicated, so that modules in M(v)
tend to remain in their clusters. This behavior inhibits further moves, hence Kring and Newton
restrict the number of replications by keeping three separate bucket structures for normal,
replicating and unreplicating moves. Separate structures permit the unreplication of a module if its
unreplication gain is higher than a prescribed threshold, even if better moves are available. Kring
and Newton also prescribe a minimum replication gain threshold below which a module replica-
tion is prohibited, even if it is the best move available.

Sechen and Chen [170] propose another modification of the original KL and FM descriptions,
based on the observation that the Min-Cut Bisection objective (and the associated gain computa-
tion) are not ideal when the partitioning solution is to be used as the basis of hierarchical
placement. If a net e has more than one pin in both C1 and C2, then e may cross the cut more than
once after routing. For example, let vl, v3, v5 ~ C1 and v2, v4, v 6 ~: C 2 be the modules of a 6-pin net e,
and assume that the cut between Ca and C2 corresponds to a vertical slice of the placement. If
module v~ ~ e is placed in row i, then if e is routed to minimize vertical wirelength, e will cross the
cut six times. Thus, for each net e, the authors of [170] consider every possible assignment of
modules in e to rows 1, 2, . . . , Jel, compute the number of times e will cross the cut when routing
each configuration, then average the results to derive an expected cutsize for e. This expected
cutsize is used to compute module gains.

3.5.2. Relaxed size constraints
In practice, an exact bisection is not required, yet if cluster size constraints are removed, an

unbalanced bipartitioning will result. This has motivated several alternative strategies. Wei and
Cheng [187] proposed the following iterative approach to optimize the ratio cut objective. First,

28 CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

pick random modules v and w, form the bipartitioning {C1, C2} where C~ = {v} and C2 = V - {v},
and iteratively move modules from C~ to C2 to optimize ratio cut, until C1 = V - {w} and
C2 = {w}. This step is repeated with the roles of w and v reversed, and the best of up to 2n - 2 ratio
cut bipartitionings created is taken as the initial solution. Then, an iterative shifting procedure is
repeatedly applied: a right (left) shift iteratively moves modules from C1(C2) to C2(C1) to optimize
ratio cut until C1(C2) = 0. The solution with smallest ratio cut generated during a shift starts the
next iteration, and left and right shifts are alternated. Finally, Wei and Cheng apply an FM variant
in which (i) there are no size constraints, and (ii) if two modules have the same gain in terms of nets
cut, then the module which causes the larger reduction in ratio cut is selected to be moved. In [188],
the same authors have also applied a hierarchical version of their algorithm to obtain clusterings
for use within two-phase FM (see Section 6).

Park and Park [144] modify Sanchis' algorithm to handle relaxed balance constraints, using the
cost function: IE(pk)I + R" CBal(P k) where

CB~(P k) = ~ Iw(C,) - w(Cj)[
1 <~i<j<~k

and R is a user-defined parameter. The t e rm CBal(P k) is minimized when cluster sizes are perfectly
balanced and increases as clusters become unbalanced. Sanchis's algorithm is applied without
lookahead gain vectors; the algorithm maintains two gain bucket structures, one for cutsize as in
traditional FM and one for Caa~.

3.5.3. FPGA partitioning
FPGA partitioning poses qualitatively different challenges than Min-Cut partitioning due to

hard size and pin constraints implicit in mapping onto prescribed devices. Woo and Kim [189]
consider additional "cell-type" constraints for the devices: each FPGA device has an upper bound
(capacity) on the number of modules of a given cell-type that can be assigned to the device. Woo
and Kim proposed a k-way extension of FM in which the objective is to minimize the maximum
number of I/Os used by the devices while satisfying type constraints and upper bounds on cluster
size and I/O. Like FM, this algorithm seeks to move the highest-gain module, although many
modules may have to be examined before finding a feasible move. Thus, the approach may be
viewed as multi-way FM with a more complex gain function and certain moves being forbidden.
A related satisficing formulation for MCM partitioning was addressed by Chen et al. [42]; their
method solves the linear programming relaxation of an integer program, converts to a feasible
solution, and then applies a KL-based post-processing step.

Ku~nar et al. [125] recursively apply FM bipartitioning to address the Multiple Device FPGA
problem. For a given library of devices and number of modules in the circuit, an integer linear
program (ILP) can be solved to find a set of devices that yields a lower bound on cost. This device
set would form the optimal solution if the circuit had no interconnections; however, it may not be
possible to map the circuit onto these devices while satisfying I/O constraints. The algorithm picks
the largest device D from this device set, and applies FM bipartitioning to yield {C1, V - C~}
where C1 is feasible for D. The ILP is resolved for the remaining subcircuit V - C1 and the largest
device D' is chosen from the set and FM is run on V - C~ to yield {C1, C2, V - C1 - C2} with
C2 feasible for D'. This continues until the ILP yields a single device that is the smallest device onto
which the remaining subcircuit can be feasibly mapped. Note that the objective function is not

C.J. Alpert, A.B, Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 29

exactly min-cut, due to the existence of system I/O pins in the initial circuit description. For
example, a net e that contains a system I/O pin on C1 will require an additional terminal on the
CI device ife has a pin in V - C1. Ku~nar et al. minimize an objective consisting of the number of
nets cut times the number of terminals in the remainder of the subcircuit (the solution cost is infinite
if device constraints are violated). They also give a slight, but perhaps promising, modification to
the FM paradigm. During an FM pass, their implementation records both the best and the
second-best solutions encountered. When a pass starting from the best solution does not yield any
improvement, a second pass starting from the second-best solution is performed. Only if this pass
also fails to yield improvement does the algorithm terminate. In [126], Ku~nar et al. extend this
algorithm to include functional replication (see Section 2.6).

3.5.4. Layout-driven .formulations
To map modules onto an underlying tree structure, Vijayan [186] applies a variant of Sanchis'

algorithm but with no lookahead gains. The overall procedure is the same, but the gain computa-
tion and update are complicated since the objective is the cost of routing nets on the tree structure.
A speedup of Vijayan's heuristic was given in [182].

If the underlying structure is a 2 x 2 grid, a quadrisection formulation results. The motivation is
that applying alternating horizontal and vertical cuts in hierarchical rain-cut placement will cut
fewer nets in the first direction chosen. The quadrisection formulation can trade off between
vertical and horizontal routing resources according to a user-specified parameter. Suaris and
Kedem [178] adapted FM to this problem: there are 12 possible ways to move modules from
cluster C~ (four choices) to Cj (three choices), so 12 different gain bucket structures are used to store
the move types. The authors of [178] construct a placement by using the terminal propagation
technique of [60] and recursively quadrisecting the clusters.

Shih et al. [174] have applied a multi-way KL variant to MCM partitioning with cluster timing,
area, thermal and pin constraints, where the objective is to minimize wirelength over the MCM
configuration. An initial solution that satisfies timing constraints is constructed by merging
modules with timing dependencies into "super-nodes". The super-nodes are then greedily packed
into k clusters such that all the constraints are satisfied. Finally, multi-way KL is run on the clusters
such that all the modules in a super-node must be moved together, and only moves which satisfy
the constraints are permitted.

3.5.5. DAG partitioning
Finally, we note variants which partition combinational Boolean networks. Since the input

G(V, E) is a DAG, a partitioning of V induces a dependency graph with k nodes, each corresponding
to a cluster. The directed edge (Ci, Cj) is an edge in the dependency graph if3u ~ Ci, v ~ Cj such that
(u, v) ~ E. Cong et al. [50] define a partitioning to be acyclic if it induces an acyclic dependency
graph (which is desirable for pipelining or parallel circuit simulation applications). Since a random
initial solution is not guaranteed to be acyclic, initial solutions are constructed using random
topological sorts. Sanchis' algorithm is then applied, with moves restricted so as not to create
a cycle in the dependency graph. The approach also uses MFFC clustering (see Section 6), within
a two-phase methodology. An interesting approach of [22] applies FM and a resynthesis technique
of [105] to partitioning Boolean networks with functional information. The signals directed from
C/to Cj are encoded in C~. Since some of the signals might carry redundant information, this can

30 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

reduce the number of signals from Ci to Cj. Corresponding logic must be added to decode (or
reinterpret) these signals in C~.

3.5.6. Perspectives on "iterative variants"
This subsection has surveyed a "litany of variants" arising from the core FM, KL, and Sanchis

algorithms. Many of the modifications represent rather simple ideas, such as allowing locked
modules to become unlocked, keeping the best and second best solutions, allowing net moves in
addition to module moves, etc. More importantly, it remains unclear which of these modifications
really improves the algorithm and which are "simply different". (For example, the partitioning
study [94] concludes that dual passes are not worth the extra runtime.) As we have previously
discussed, small changes in implementation can greatly affect performance, so further study of
modifications to iterative methods is likely to be worthwhile; on the other hand, very detailed and
systematic investigations are required if meaningful conclusions are to be drawn.

The "litany of variants" also reveals that applying an FM-based algorithm to yet another
problem formulation can require varying degrees of innovation. For example, the balance term in
the cost function of [144] is obvious: increase the penalty proportionally to the deviation from
bisection. On the other hand, certain changes in formulation may appear simple (e.g., partitioning
onto an underlying tree structure, by Vijayan [186], but issues such as efficient gain updating can
make the implementation differences non-trivial. Many new problem formulations seem very
similar to previous ones (modulo some extra constraints or modified cost functions), hence care
must be taken to discern the works which more substantially advance the field through their
combination of relevance, non-obvious solution, and experimental methodology.

4. Geometric representations

A geometric representation of the circuit netlist can provide a useful basis for a partitioning
heuristic, since speedups and special "geometric" heuristics become possible. For example, comput-
ing a minimum spanning tree of a weighted undirected graph requires O (n 2) time, in general, but
only O (n log n) time for points in 2-dimensional geometric space [150]. Single-source shortest path,
all-pairs shortest paths, and matching are other examples of problems that can be solved more
efficiently for geometric instances. This section discusses partitioning approaches based on finding
a geometric representation of a graph or hypergraph and applying "geometric" algorithms to find
a partitioning solution. We focus on three primary types of representations:

• A 1-dimensional representation or a linear ordering is a sequential list of the modules. Generally,
modules that are closely connected should lie close to each other in the ordering, so that the
ordering can reveal the netlist's structure. Indeed, problems in the sparse matrix computation
literature such as finding minimum bandwidth, minimum profile, and minimum fill-in orderings
exactly correspond to this type of ordering problem [147]. A linear ordering may also be viewed
as a 1-dimensional placement, and vice-versa; consequently, some of the partitioning approaches
we discuss below were originally designed for 1-dimensional placement.

• A multi-dimensional representation is a set of n points in d-dimensional space with d > 1, where
each point maps to (represents) a unique module. This representation implicitly defines a

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 31

distance relation between every pair of' modules, e.g., the Euclidean distance between their
corresponding points. Geometric clustering algorithms may be applied to the set of points,
possibly in conjunction with other graph-based algorithms. Such a representation is also
common 2-dimensional cell placement.

• A multi-dimensional vector space representation can arise in two distinct ways. Using one
approach, the vector space consists of indicator n-vectors (corresponding to bipartitioning
solutions), and the problem becomes one of finding the direction of the best indicator vector
[68]. Using the other approach, the n modules are mapped to n vectors in d-space and the
vectors are clustered together to form both a vector partitioning and a module partitioning [12,
6, 37]. A major advantage of the vector space approach is that spectral methods can be used to
construct a vector space that optimally captures the netlist information vis-~-vis partitioning, i.e.,
the optimal indicator vector direction or the optimal vector partitioning solution will map to the
optimal graph partitioning solution.

Spectral methods are of primary importance in constructing geometric representations; their
discussion requires the following notation. Assume the netlist is represented as a weighted
undirected graph G(V, E) with adjacency matrix A = (air). The n × n degree matrix D is given by
dgi = deg(vi) with dij = 0 if i ~-j. The n x n Laplacian matrix of G is defined as Q = D - A. An
n-dimensional vector/~ is an eigenvector of Q with eigenvalue 2 if and only if Q/~ = 2p. We denote
the set of eigenvectors of Q by pl, p2 , p, with corresponding eigenvalues 21 ~< 22 ~< ... ~< 2,.

T We assume that the eigenvectors are normalized, i.e., for 1 ~< j ~< n,/~jpj I[/uijf 2 = 1. Let Aa denote
the d × d diagonal eigenvalue matrix with entries 21, 2 2 , . . . , 2 d , and let Ud = (#~j) denote the n × d
eigenvector matrix with columns/~1,/~2 , Pal. Notice that Q = U,A.UX,. Some works use the
eigenvectors of A instead of Q; however, the Laplacian has becoming more popular because it has
the following following desirable properties (the first two due to Q being positive semi-definite)
[139]:

• The eigenvectors are mutually orthogonal, and hence form a basis in n-dimensional space.
• Each eigenvalue 2~ of Q is real.

• The smallest eigenvalue 21 = 0 and has a corresponding eigenvector ~ul = [1/x/~,
1/x//-n 1/x/~]x. 8

• If G is connected then 22 > 0. (In general, the multiplicity of 0 as an eigenvalue of Q is equal to
the number of connected components of G.)

8This property combined with the orthogonality property implies that the entries of each/~ withj > 1 sum to zero. This
does not necessarily hold for the spectra of A, and further the eigenvalues of A will generally be both positive and
negative. However, in practice, a diagonal matrix B is often added to A to ensure positive semi-definiteness and the
computability of eigenvectors, and also to obtain properties similar to Q (e.g., Donath and Hoffman [59] use B = - D,
thereby obtaining the spectra of -Q). Currently, the relationship between the spectra of A and Q are not well-
understood, although we believe that most theoretical results in the spectral literature can be equivalently derived with
either Q or A. To this end, we discuss as many of the works in this section as possible in terms of Q, even if the original
paper used A. For example, the discussion of Barnes's work [18] below is given in terms of Q, which allows us to establish
the equivalence of lower bounds due to Barnes and to Donath and Hoffman. By "equivalence", we mean that following
the theorem derivation of each work using the spectra of Q leads to the identical result.

32 C.J. Alpert, A,B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

The remainder of this section is organized as follows. First, we discuss the one-dimensional
placement algorithm of Hall [89], and see how the second eigenvector/~2 gives the optimal solution
for minimum-squared wirelength placement. A linear ordering of modules is obtained by sorting
the entries of~u2, and a heuristic bipartitioning can be derived from splitting the ordering. Next, we
describe an extension of Hall's multi-way partitioning approach due to Barnes [18], as well as
some other extensions (e.g., [79, 37]). These approaches use k eigenvectors to derive a k-way
partitioning; Barnes' approach explicitly tries to map each cluster to a single eigenvector. Third, we
discuss an alternative approach that uses multiple eigenvectors to generate a bipartitioning. This
linear probe technique 1-68] first constructs a vector space using the eigenvectors as a basis, then
generates probes which search the vector space to find good bipartitionings. Fourth, we discuss
utilizing this vector space to construct a vector partitioning problem that is equivalent to many
multi-way graph partitioning formulations. Finally, we discuss techniques for deriving partitioning
solutions from a linear ordering, and show how many of the approaches presented in this section
can be used to construct such linear orderings.

4.1. Hall's quadratic placement

As defined in Section 2.1, we let x denote the 0-1 indicator vector for a given bipartitioning p2.
The min-cut bipartitioning objective (F(P 2) = I E(C1)I) can now be written as

2F(p2)=xTQx = ~ ~ aij(xi-xi) 2. (4.1)
i = l j = l

All the (xi - x j) 2 terms in the double summation of Eq. (4.1) are zero, unless vi and v~ are in different
clusters. In this case, (x~ - x~) 2 = 1, and the cost aii of each cut edge appears twice in the sum, so the
double summation evaluates to 2F(p2). Also observe that Eq. (4.1) gives the squared wirelength of
the 1-dimensional placement given by x, even when the coordinates are allowed to be non-discrete,
i.e., the x{s are not restricted to integer values. Under the constraint IIx II 2 = xTx = 1, Hall [89]
showed that x = P2 gives the optimal nontrivial 1-dimensional placement, with squared wirelength
equal to 22 (note t h a t / ~ gives the trivial zero-wirelength solution with all modules placed at

coordinate 1/x/-n).
The significance of Hall's result is that it provides the optimal non-discrete solution for min-cut

bipartitioning. Although a non-discrete solution for x is meaningless, this result suggests heuristi-
cally finding the discrete solution "closest" to /u2. Given cluster size constraints [Cll = m~ and
Ic21 = m2, the closest discrete solution is obtained by sorting the coordinates of /~2 the
m~ modules with the highest coordinates are placed in C1 and the m2 lowest modules with the
lowest coordinates are placed in C2. The reverse assignment is also attempted, and one of these
solutions is guaranteed to be closest to/u2 as measured by the Frobenius norm. One can view this
sorting algorithm as moving the smallest coordinates to Ca (corresponding to xi = 0) and the
largest coordinates to C~ (corresponding to x~ = 1) . 9 This approach of finding the bipartitioning

9 This interpretation is not exactly correct since x =/J2 has y~ 7-1 xi = 0 while the sum for an indicator vector of a bisection
is n/2. Furthermore, the indicator vector for a bisection also has LIx LI 2 = n/2 as opposed to 11/~2 It 2 = 1. These inconsisten-
cies are addressed by using coordinates (- 1/~/-n, 1/x/-n) instead of (0, 1) for the indicator vector. Note that these
coordinates correspond to the ratioed assignment matrix R defined in the next subsection.

C.J. Alpert, A.B. Kahng / INTEGRATION, the l,'LSI Journal 19 (1995) 1-81

B

33

Fig. 8. Pathological instance for spectral bisection. Each circle represents a clique of modules.

which best approximates the second smallest eigenvector was first used by Barnes [18] and is
commonly known as spectral bisection (when ml = m2 = n/2). This algorithm has also been widely
used by the sparse matrix computation community; Pothen et al. [148] have used it as the basis of
a vertex separator algorithm, and Hendrickson and Leland [96] have extended it to partitioning
onto hypercube or mesh architectures. Also, Hagen and Kahng [82] extended spectral bisection to
ratio cut bipartitioning by choosing the best ratio cut that results from each possible split of the
sorted coordinates of ~2.

We observe that spectral bisection may perform arbitrarily worse than optimal, as illustrated by
the following example. Consider the graph in Fig. 8 in which each circle represents a clique, so that
two (n/4)-cliques A and C are each connected by a single edge to the (n/2)-clique B. Since/~2 gives
the optimum 1-dimensional squared wirelength placement, sorting the entries in/~2 yields the
coordinates for modules in A, followed by the coordinates for those in B, and in turn followed by
the coordinates for those in C. Consequently, spectral bisection will split B into equal halves,
cutting (n/4) 2 = n2/16 edges. This solution is an f2(n 2) factor worse than the optimum bisection
cutsize of two edges, obtained by assigning A and C to one cluster and B to the other.

4.2. Mapping k clusters to k eigenvectors

Hall's approach can be extended to multi-way partitioning by associating each duster with an
eigenvector with small eigenvalue. The 1-dimensional placement solution P2 yields the minimum
squared wirelength of 22, but ~3 gives the next best solution (orthogonal to/t2) with cost 23, etc.

- again subject to the IIx 112 = 1 constraint. For each of these high-quality I-dimensional eigenvee-
tor placements, the closest indicator vector can be easily found, and the k indicator vectors can be
used to construct a k-way partitioning.

Assume that the standard multi-way partitioning objective F(P k) = y k=llE(Ch) I applies, and
that prescribed cluster sizes ml I> m2/> ... i> mk >/0 are given. Let M denote the k x k diagonal
matrix with entries m~, m2, . . . , mk. Although X denotes the assignment matrix for pk, sometimes it
will be advantageous to represent pk as the n x k ratioed assianment matrix R = (r~h) where
r~h = 1/Ix//~hl if v~ ~ Ch and rib = 0 otherwise. Notice that Rh, the hth column of R, has magnitude
one, thereby satisfying the constraint in Hall's 1-dimensional placement formulation. Let P = (Pu)
be the n x n partition matrix with pq = 1 if vi and vj are in the same cluster and p~j = 0 otherwise;
observe that P = X X T = R M R r. Finally, define the n x n ratioed partition matrix pR to be a scaled
version of P with ij entry equal to 1/I CI if v~ and v~ are in the same cluster C, and 0 otherwise (so
pR = RRT). Barnes noted that

n k
IIQ + pl[2 = IIQII2 + 2 ~ q,jp,j + liP211 = IIQI[2 + 2F(P k) + ~ m 2. (4.2)

i,j=l i=1

34 c.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

Since IIQ[I and k 2 Ei=~rni are fixed constants, minimizing IIQ + PN 2 and minimizing F(P k) are
equivalent part i t ioning objectives. The Hoffman-Wielandt inequality states that if A and B are real
n × n symmetric matrices with eigenvalues cq >/~2 ~ " ' " ~ 0~n and/~1 t>/~2/> "'" >//~n, respectively,
then

IIA - BII 2 >/ ~ (~ , - j~,)2.
i = 1

It is not hard to show that the eigenvalues of - P are - m l , --mE , --ink, 0, 0, . . . , 0, which
yields

k k

IIQ - (- P)[I 2 >~ E (2i -- (--mi)) 2 q- ~'~ (2i -- 0) 2 = E (2i -b mi) 2 -k- ~ 22. (4.3)
i = 1 i = k + l i = l i = k + l

Combin ing Eq. (4.3) with Eq. (4.2) yields the equivalent of the famous Dona th and Hoffman 1-59]
lower bound: F(P k) >1 s k= 12imi. 1° Actually, the lower bound of [59] is stronger, since it holds for
not only the eigenvalues of Q, but also the eigenvalues of D - A as long as the diagonal matrix
D has trace(D) = ~ = ~deg(v~). It is thus possible to vary D to increase yk= ~2~mi and improve the
lower bound.

Observe that the D o n a t h - H o f f m a n lower bound also implies that an optimal part i t ioning
solution would be obtained if each R~ could be set to/~. However, setting R = Uk generally does not
yield a valid ratioed part i t ion matrix. Barnes [18] justifies his approach to finding a valid R that
best approximates Uk as follows. Since Q = U,A,Ur, and P --- R M R v, Eq. (4.2) implies that the
part i t ioning objective can be written as

T T T 11(2 + p[[2 = II Undn UT -+- RMRVI[z = IIA, + U, R M (U , R) II 2. (4.4)

If R could be chosen such that UX, R = J, where J is the n x k matrix having the k x k identity
matrix, Ik as its first k rows and all other entries zero, we would have equality in Eq. (4.3), and
R would represent the opt imal part i t ioning solution. Since such a choice of R is generally
impossible, Barnes chooses to minimize the error II UV.R - J II 2 ___ II Uk - R II 2 by setting up a trans-
por ta t ion problem which can be solved efficiently (see Section 5.3.3). To minimize this error for
a given vector R~ (representing C~), I~TR~I should be maximized; this occurs when the nonzero
entries of R~ are the m~ largest (or smallest) coordinates of ~ . Of course, it may not be possible to
choose each R~ in this fashion, because a module might be assigned to more than one cluster;
Barnes' t ranspor ta t ion formulat ion optimally resolves this conflict. Notice that for k---2, this
formulat ion reduces to minimizing [I U2 - R ll 2 and the opt imal solution is derived by sorting the
coordinates of ~u2 as discussed above.

Barnes' a lgori thm was applied to VLSI circuits by Hadley et al. [79], who also incorporated
a new clique net model to obtain a graph representat ion and F M post-processing. Vannelli and
Rowan [185] also applied the a lgori thm to two variant construct ions of the adjacency matrix,

1°Combining the two equations yields
k k ~ k

2F(P k) >1 - IIQtl 2 - ~ m 2 + ~ (2, + m,)2 + ;~2= - IIQII= +2 ~2,m,+ 2 2.
h=l i= l i=k+ l i=1 i=1

It is not difficult to show that IlQll 2 = IIA,II 2 which yields the desired result.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 35

which, respectively, use a~j = IN(vi)\N(vj)l 4- IN(vi)\N(vi)[and a~ = ([N(vi)\N(vj)l 4- IN(vj)\
N(v~)l)/(lN(v~)[+ [N(vj)l); observe that these graph representations of the hypergraph do not
preserve sparsity. Rendl and Wolkowicz [154] observe that Barnes' approach "only makes sense" if
Uk is very close to an optimal solution. Consequently, the authors of [154] first relax the integer
constraints of the assignment matrix X to find an X close to Uk, then uses the transportation
formulation to find the closest legal solution to X. They also perturb the diagonal entries of
A before computing the eigenvectors, leading to tighter lower bounds than those given by Donath
and Hoffman [59]. Further, they extend the average case bisection bound of Boppana [27-1 to
k > 2 (see [133] for a more complete discussion of spectrally derived lower bounds).

Chan et al. [37] extend the Donath and Hoffman bound F(P k) >~ y k:12imi to Scaled Cost,
proving for this objective that F(P k) >t y~k= 12i. They argue that since R is an approximation of Uk,
an approximation for pR = RRT should be given by UkU~, i.e., the matrix having as its/jth entry
the dot product of the ith row of Uk with thej th row of Uk. Viewing each module v~ as a vector in
k-dimensional space with coordinates given by the ith row of Uk, the ijth entry of UkU[is the angle
or directional cosine between modules v~ and v~. Chan et al. consider the directional cosine between
two modules as a distance measure: the larger the directional cosine, the more likely the two
modules should be placed in the same cluster. A directional cosine of zero between vg and vj implies
that the/jth entry in PR is zero (since PR should approximate UkUD, meaning that v~ and vj should
be assigned to different clusters. The KP algorithm of Chan et al. [37] finds an orthogonal basis
with k "prototype vectors" and constructs k clusters by assigning each module to its closest
prototype according to the directional cosines measure. Chan et al. [38] have also adapted their
KP approach to FPGA partitioning by assigning each module to its closest prototype while
observing size and I/O constraints on the clusters (FPGA devices).

We believe that the Barnes and KP approaches may have limited performance potential. Both
approaches assume that Uk can be perturbed to give a legal ratioed assignment matrix R: Barnes
chooses R to minimize the error p[U k - R[[2, and Chan et al. explicitly assume that R is an
approximation of Uk. Thus, each R~ representing cluster C~ should be close to pg in the ideal case,
but for real VLSI circuits R~ and p~ will generally be quite different. A given eigenvector will
typically have a few outliers - modules with large coordinates - but a large majority of modules will
have coordinates very close to zero; these coordinates would have to be perturbed considerably to
achieve a valid ratioed assignment matrix. To see this, consider the coordinates for P2 (on the
x-axis) and ~u3 (on the y-axis) for the Primaryl and Test05 benchmarks shown in Fig. 9. Exactly 603
of the 833 modules for Primaryl have zero (to three decimal places) as their y-coordinate, and these
modules are strongly clustered together. The embedding actually admits a very natural 3-way
partitioning with sizes 681, 76, 76 but does not reveal a natural bisection. This phenomenon is even
more apparent for Test05, as 12 outliers with x-coordinate larger than 0.1 force a strong
agglomeration of points around zero, again leading to a difficult clustering task. We believe that
even when minimized, the error 1[Uk -- R]l 2 will usually be large, i.e., each R~ will not be close to its
corresponding ~u~. This potentially large error may be magnified by squaring Uk: Chan et al. assume
that pR = RR T is an approximation of UkU[(but their KP algorithm does not actually square Uk,
since computing all n 2 entries of UkU[would be too expensive).

Hall [89] also proposed a method for multi-way partitioning using the same eigenvector
embedding as the authors of [37]. Since P2 gives the optimal 1-dimensional placement with
squared wirelength, Hall reasoned that the other low-cost eigenvector placements could also be

36 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

Y x 10 -3

100.00

~o.00 -.:i'..
80.00 ~ ~ "-'. ---

-20,00

-50.00

Primaryl Test05

-80.00

i F
-I00.00

-80.00

• ¢~'"
. . -..°-

l

t
% ;

~ T " r -
;

YxlO 3

6 0 , 0 0 - - ~ -

20,00

000

1" -20.00 ~, "
/ .

= 7
I

.80.00 ~

Set 0

Xxl0"3 XxlO-3
-80.00 40.00 -20.00 000 20.00 0.00 I ~ . ~ 200.00 g(~)(~

(b)

Fig. 9. The 2-dimensional embedding of the (a) Primaryl and (b) Test05 M C N C benchmarks, with #2 plotted on the
x-axis and /a 3 plotted on the y-axis.

utilized. He suggested placing the coordinates of d eigenvectors orthogonally to yield a d-
dimensional geometric embedding of the netlist, as in Fig. 9. Hall then proposed to "cluster" the
embedding, but did not specify a heuristic. Alpert and Kahng 1-3] explored Hall's idea by applying
geometric clustering algorithms to these spectral embeddings, using Euclidean distance as the
dissimilarity measure between pairs of modules. In [5], they constructed a 1-dimensional ordering
over the same d-dimensional embedding using a spacefilling curve heuristic to the traveling
salesman problem [20]. The ordering was then split into a partitioning using dynamic program-
ming (see Section 4.5).

We believe that neither directional cosines nor Euclidean distance is the proper similarity (or
dissimiliarity) measure between spectrally embedded modules• The theoretical results described in
the next two subsections indicate that the "proper" spectral embedding should be scaled by the
eigenvalues, and that the module similarity measure should be a "vector sum".

4.3. Probes in multi-dimensional vector space

We have noted that a potential difficulty with the approaches of [18, 37], namely, that each
cluster is associated with a single eigenvector, but the cluster's indicator vector may be far from its
eigenvector. Blanks [24] also shared this intuition and illustrated (for placement, although it also
holds for bipartitioning) that the closest legal solution to the eigenvector solution ~2, i.e., the

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 37

solutionx,,~ o ~

Optimum Closest legal partitioning partitioning
Fig. 10. Abstraction of Hall's eigenvector approach as shown in [24].

indicator vector that maximally projects onto/u2, will generally not be optimum. Fig. 10 gives an
abstract visualization of this concept. The solution space consists of all n-dimensional vectors x, the
plane represents the subspace of all legal indicator vectors, and the optimum non-discrete solution
for min-cut partitioning is given by the point x =/~2. The ellipsoids correspond to constant cost
degradation, i.e., the smallest ellipsoid is the set of solutions with cost 22 + e, the second smallest
ellipsoid contains solutions with cost 22 + 2e, etc. Blanks proved that these cost surfaces are indeed
ellipsoidal. The optimum legal bipartitioning solution B is the intersection of the subspace of legal
solutions with the smallest possible ellipsoid (such that this intersection is nonempty). The
indicator vector x that maximally projects onto/J2, labeled with A in the figure, certainly does not
have to be identical to B.

An alternative approach to finding the closest legal solution might be to combine several
high-quality eigenvector solutions into a new solution that is closer to the subspace of legal
solutions. The same figure shows a combined solution whose closest legal solution, C, is closer to
optimal than A. Note that all linear combinations of the first d eigenvector solutions lie in the
d-dimensional subspace spanned by these eigenvectors. This observation is the genesis behind the
probing approach of Frankle and Karp [67, 68]: they searched this entire subspace for a good
solution rather than associating a solution with a single eigenvector.

Frankle and Karp [68] developed the following probing technique for finding such non-discrete
combined solutions in the multi-dimensional eigenspace. Since the n eigenvectors of Q form an
orthogonal n-dimensional basis, any indicator vector can be expressed as a sum of projections onto
each of the eigenvectors, i.e., x = Ej = 1 (XJ(X)IllJ where ~j(x) = x " x pj. Substituting this value for x in
Eq. (4.1) yields

F(P 2) = ~ o~j(x)22j. (4.5)
j = l

If the cluster sizes I C l l = m l and IC21 = m2 are fixed, then ~ = l gj(x) 2 = m2 is a constant (since x is
the indicator vector for C2). This observation, along with Eq. (4.5), implies that the goal is to find an

38 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

P

Fig. 11. Illustration of the probing approach of [68].

indicator vector x that projects maximally onto the eigenvectors with small eigenvalues: the
eigenvalue 2i is the coefficient for the ~(x) term; hence, when 2i is large cti(x) should be small, and
vice versa. If the large eigenvalues are ignored and only the first d terms in the sum are considered,
the problem becomes one of finding the indicator vector with maximal projection onto the
subspace spanned by the first d eigenvectors. Frankle and Karp express equation (9) as the
following maximization problem:

Maximize: H m 2 - F(P 2) = H ~ (Xj(X) 2 -- ~ O~j(X)2~,j : ~ (~ j (X)2(H- ,~.j) (4.6)
j= l j= l j= l

for some H >~ 2,. Let Vn denote the n x d scaled eigenvector matrix with column j equal to
pjw/-H - ~,j. The right-hand side of Eq. (4.6) can now be expressed as [IxVV, I[. Given any n-vectory,
i.e., a probe direction, Frankle and Karp show that the legal indicator vector x that maximizes
xXV, y can be found efficiently by sorting and splitting the entries of V,y, as in spectral bisection.
Here, the vectory serves as the combined solution point in Fig. 10. Fig. 11 illustrates this approach
for two dimensions. The vector xTVz that projects maximally onto y gives the optimal solution
vector for probe direction y.

Frankle and Karp heuristically search over various d-dimensional vector probes y, and find for
each y the indicator vector x that maximizes xTVdy. Both randomized and iterated probing
techniques are used to construct candidate probe vectors. By restricting y to d dimensions, only
vectors-that lie in the subspace spanned by the first d eigenvectors are considered. We believe that
this is a sound strategy, given the intuition of Eq. (4.5) that a good solution x should strongly
project onto the first few eigenvectors. The problem reduces to finding a probe directiony that is as
close as possible to a legal solution. Note that for d = 2, any probe vector will return the solution
obtained by sorting and splitting the entries of/~2.

4.4. Vector partitioning

The probe approach can also be viewed in another way [6]: for each module vi, observe that the
d-dimensional vector corresponding to the ith row of Va is actually the indicator vector for the
single-module cluster {vi} after projecting onto the subspace spanned by the first d eigenvectors,
and scaling the j th coordinate by x/H -),~, 1 ~<j ~< d. Ifx is the 0-1 indicator vector for {vi}, then

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 39

its projection onto the scaled eigenspace is

y , = - 2 2 - 2 d] •

= 21, 22, . . .

i.e., the ith row of Vd. Observe that if Y = y~'= 1 xi "Yi, then Y = xTVd. Recall that Frankle and Karp
showed bipartitioning equivalent to maximizing [IxVV, I[2; we now have that bipartitioning is also
equivalent to maximizing]l Y][2 when d = n. We therefore seek a subset of vectorsyi (corresponding
to xi = 1) whose sum has the largest possible magnitude. Graph bipartitioning exactly reduces to
this vector subset problem for d = n and H = 2,.

Arun and Rao [12] also noted this vector partitioning formulation, but called it a "geometric
clustering" problem. Their derivation is somewhat different, relying on the factorability of the
adjacency matrix, i.e., ifA can be expressed as A = CC T where C is an n × d matrix, then A only has
rank d. This implies that the columns of C span the same space as the columns (or rows) of A, hence
the columns of C form a basis for this space. The indicator vector for {vl} becomes the ith row of
C when expressed in this basis. Viewing the rows of C as points in d-space centered at the origin, the
bipartitioning problem reduces to finding a subset of points whose center is furthest from the
origin.

To find an appropriate matrix C, the authors of [12] invoke a theorem from principal
components analysis [152], that the best rank-d approximation to A with respect to both the
spectral and Frobenius norms is UdAaU~. (Following [12], we use the eigenvectors of A so the
columns of Ud are ~Ul, ...,/In with eigenvalues 21 /> "'" /> 2d.) This result implies that C = UdA 1/2

best approximates A = CC r, and thus C is "equivalent" to Vd, meaning the reductions of [68] and
[12] are also equivalent. Hence, Arun and Rao choose C = UdA 1/2. Like Barnes [18], they solve
the 1-dimensional geometric clustering problem by sorting the entries of ~1; they solve the
2-dimensional problem by testing all possible hyperplanes which divide the set of points into two
clusters. In [13], they extend their 2-dimensional hyperplane algorithm to d dimensions, finding the
optimal vector partitioning in O(n d~d+3)/2) time. Frankle [67] has shown how to exhaustively
search a d-dimensional vector space with probes, finding the optimal solution in O(n d- 1) time.

The min-cut bipartitioning reductions of [68] and [12] can be extended to many multi-way
formulations, including minimum Scaled Cost, minimum total net cut, or maximum cluster I/O
(IE(Ch)] in FPGA partitioning), via a vector partitionin9 formulation [6]. Let S be the set of
n v e c t o r s {Yl ,Y2, . . . ,Yn} which form the n rows of Vd. Alpert and Yao [6] showed that min-cut
k-way partitioning reduces to the following vector partitionin9 problem: find k mutually disjoint
subsets of vectors {$1, $2, ... ,Sk), with $1 w S 2 w "" WSk = S, so as to maximize

k
2 [I Yh ll2 where Yh = ~ fli.

h= 1 yi~Sh

If d = n and {S~, $2 , Sk} is the optimum vector partitioning solution, then {C1, C2, . . . , Ck} is
the optimum vector partitioning solution where Ch = {vi]y~ E Sh}.

Alpert and Yao propose the greedy MELO algorithm, which does not explicitly construct
a vector partitioning, but instead generates a 1-dimensional ordering that is split into a clustering
using dynamic programming (see Section 4.5). Given a d-dimensional vector partitioning instance,
MELO starts with a set of vectors $1 -- 0 and iteratively adds to $1 the vector y~ e S - $1 that

40 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

maximizes

Yi -t- y~Sl y j "

Ifyi is thejth vector added to S~ then vi is thejth module in the linear ordering. MELO can also be
interpreted strictly in terms of Eq. (4.6). Recall that the indicator vector x should maximally project
onto the d eigenvectors with smallest eigenvalues. Starting with x = 0, MELO iteratively sets
xi = 1, for that i which maximizes y~= lO~j(x)2(H -- ,~j), until x = 1.

4.5. From orderings to partitionings

We have seen that spectral methods can be used to construct various geometric representations
of the netlist, including multi-dimensional embeddings and 1-dimensional orderings. The latter
type of representation has led to several intuitive and efficient heuristics (e.g., we have discussed
constructing a bipartitioning from a 1-dimensional placement by sorting coordinates to obtain
a linear ordering of modules, and then splitting this ordering into two clusters), and has received
increased attention in recent years. We conclude this section by surveying various methods which
construct partitionings from 1-dimensional orderings.

4.5.1. The net-based approach
If a vertex ordering is constructed for the intersection graph or dual graph, then we will actually

obtain an ordering of signal nets, rather than of modules. An approach which then splits the net
ordering will require an additional step to construct a module partitioning from the resulting net
partitioning. In other words, if we are given a bipartition of signal nets, some modules will belong
only to nets on one side of the partition and can be unambiguously assigned to that side, but other
modules will be shared by nets on both sides of the partition (cf. terms such as "boundary graph"
[112, 85] or "module contention" [49]). We must therefore seek a completion of the net partition
which assigns each shared module to a single cluster, such that the partition cost is minimized. This
general net-based partitioning approach (i.e., first obtain a net partition, then complete the net
partition into a module partition) was established in [85] and extended in, e.g., [48] and [49] (see
Section 5.2).

If the nets are partitioned into two sets N1 and N2, a module bipartitioning p2 = {C1, C2} can be
derived by having the nets "vote" to determine each module assignment. The IG-Vote algorithm of
Hagen and Kahng [85] begins with all nets in Na and all modules in Ca. Iteratively, a net is moved
from N~ to N2 according to the net ordering. After each net is moved, if any incident module in
Ca has stronger connections to nets in N2 than to nets in N1, then this module is moved to C2. This
process generates at most n - 1 module bipartitionings; the one with smallest ratio cut is chosen.
The variant approach of [48] also considers each split of the net ordering, and for each completes
the module bipartitioning by using a matching-based approach (see Section 5.2).

4.5.2. Dynamic programming for restricted partitioning
To split a linear ordering into more than two clusters, Alpert and Kahng [5] proposed the

DP-RP ("dynamic programming for restricted partitioning") algorithm, which optimally solves the
restricted formulation which requires each cluster of pk to be contiguous in the linear ordering.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 41

Notice that there are at most n z contiguous subsets of the ordering, and these represent every
possible cluster that can belong to pk. DP-RP begins by computing the costs for each of these
possible clusters. These correspond to the optimal 1-way partitioning solutions for all contiguous
subsets of the ordering. Dynamic programming is then applied to find all the optimal 2-way
solutions, then all the optimal 3-way solutions, etc. DP-RP is optimal for any partitioning objective
that is a monotone function of some intercluster cost metric. Such objectives include standard
k-Way Min-Cut, Scaled Cost, Absorption, and the DS metric. Although the complexity of DP-RP
depends on the objective function, O(nU + kn(U - L)) implementations exist for all of these
objectives except DS, with L and U denoting lower and upper bounds on cluster size.

The DP-RP result highlights the problem of finding 1-dimensional netlist representations which
will lead to good multi-way partitioning solutions. Alpert and Yao [6] have applied DP-RP to
their (MELO) orderings (see also the discussions of [4, 100, 10l] in Section 6). Note that Frankle
and Karp's [68] probe technique can be used to yield linear orderings as well, simply by sorting the
entries of Vdy for a given probe direction y; we believe that applying DP-RP to these orderings is
a promising direction for future research.

4.5.3. Placement-based approaches
Another method which constructs a bipartition from a linear ordering is due to Riess et al. [156].

The premise of their PARABOLI approach is that the squared wirelength objective is not as useful
as a linear wirelength objective for 1-dimensional placement; this insight derives from experiments
with the GORDIAN placement package [120]. The authors of [156] begin with the 1-dimensional
placement induced by P2; the ten modules with largest coordinates are fixed at location 1.0, and the
ten modules with smallest coordinates are fixed at location 0.0. The remaining "free" modules are
constrained to have center of gravity (i.e., mean coordinate) at 0.5; quadratic programming
techniques are used to reposition these modules to minimize linear wirelength (see Section 5.3.4).
The 5% of modules with largest coordinates are assigned center of gravity 0.95, and the 5%
with smallest coordinates are assigned center of gravity 0.05. The free modules are again replaced,
and the next 5% at the extreme right (left) are assigned center of gravity 0.90 (0.10). Note
that throughout this process, only the original 20 extreme modules are fixed, with all others
free to move but restricted by their centers of gravity. This process is repeated ten times (e.g., the
next iteration uses centers of gravity 0.85 and 0.15), inducing ten distinct linear orderings. Riess et
al. choose the best ratio cut bipartitioning among all possible splits of all ten orderings. The
intuition behind PARABOLI is that after the first iteration, the leftmost and rightmost modules
clearly belong at opposite ends of the linear ordering, but the proper locations for the middle
modules remain unclear. Iteratively constraining only small fractions of the modules to the
extremes of the linear ordering makes placing of the inner modules easier, while retaining flexibility.
Riess and Schoene [158] have extended this approach to a layout-driven formulation in MCM
partitioning, optimizing a given multi-chip layout alternately in vertical and horizontal directions.

We believe the success of the PARABOLI approach may have just as much to do with its module
assignment technique as its linear wirelength objective. Thus, an interesting experiment would be
to evaluate the quality of linear orderings derived using the same methodology, but with a quad-
ratic objective. The successive over-relaxation placement approach of Tsay and Kuh [183] can also
be used for this type of quadratic optimization with fixed module locations (however, centers of
gravity cannot be used); see Section 5.3.4.

42 C.J. ,41pert, A.B. Kahng / INTEGRATION, the VLS1Journal 19 (1995) 1-81

5. Combinatorial formulations

The engineering workstations in a typical modern design environment have processing capabili-
ties exceeding those of mainframes from only a few years ago, thereby permitting previously
infeasible approaches to be applied to CAD optimizations. For example, spectral computations
proposed in the early 1970s have become viable for netlist partitioning, and the quadratic
programming iteration behind GORDIAN-type cell placement programs [120] now drives many
of the latest industry placement packages. Many of these "rediscovered" combinatorial optimiza-
tions are well-studied and have either polynomial-time optimal solutions (e.g., network flow) or
highly developed heuristic tools (e.g., Espresso II for set covering). In addition, combinatorial
approaches can capture complex formulations that incorporate timing constraints, preassignment
of modules to clusters, or multiple cost functions (e.g., the authors of [174] force all paths to satisfy
delay constraints within a quadratic boolean program). Quite possibly, the next frontier of
optimization strategies for CAD applications will involve large-scale mathematical programming
instances, including mixed integer-linear programs that require branch-and-bound search.ll This
trend toward combinatorial algorithmic approaches is typified by the works that we now discuss.

The approaches in this section share the common theme of the transformation of a partitioning
problem into a different combinatorial formulation. Each formulation is of independent interest
and typically has a long history and a large literature outside the scope of VLSI partitioning. Our
discussion begins with graph labeling techniques for solving the Min-Delay Clustering problem.
We then show how many formulations can be addressed in the context of network flows. Next, we
discuss mathematical programming formulations such as quadratic and linear programming.
These approaches have also been applied to one-dimensional placement; we discuss such works
along with their potential applications to partitioning. Finally, we review fuzzy partitioning
techniques and a set-covering approach to FPGA partitioning.

5.1. Min-Delay Clustering by graph labeling

Lawler et al. [130] first considered the Min-Delay Clustering problem (see Section 2.4) for
combinational boolean networks (DAGs) with no module delay, i.e., 6(vi) = 0 Vvi ~ V. We call this
the unit-delay clustering problem. This formulation assumes that module and intracluster delays
(i.e., delays between modules in the same cluster) will be negligible compared to intercluster delay
that results from placing clusters onto different chips. Lawler et al. propose the following labeling
scheme to derive a clustering in which all clusters C must satisfy w(C) <<, U.

Each module vi is associated with a label n(i), i.e., n: [1.. n] ~ [0.. n]. Module vi is a predecessor
of vj if there is a directed path from v~ to vj, and vi is an r-predecessor of vj if in addition n(i) = r.
The set of all r-predecessors of vj is denoted by pj(r); the total weight of modules in this set is

• For all primary inputs vi (no incoming edges), set ~z(i) = 0.

11A primal-dual approach with column generation has already been used to solve the linear programming relaxation of
large integer programs in the context of global routing [36]; however, only small integer programs have been essayed
in CAD, typically for high-level synthesis (see, e.g., [71]).

C.J. ,4lpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81 43

• Find any unlabeled v~, all of whose predecessors are labeled, and let r be the largest label of all
predecessors of vi. If w(vi) + w(p~(r)) <~ U, then set 7t(i) -- r, otherwise set 7t(i) -- r + 1.

The second step is repeated until all modules are labeled; two modules vi and vj with the same label
re(i) are placed into the same cluster if every module on the path from vi to vj also has label n(i). If
the netlist is a tree with a single primary output (a minor modification handles a single primary
input), then this labeling scheme optimally solves the unit-delay clustering problem. If the netlist is
a tree with multiple primary inputs and outputs, then the tree can be separated into a set of rooted
subtrees, i.e., each subtree has a single primary input or primary output. The labeling scheme and
clustering algorithm can be applied to each subtree, and merging the resulting clusterings gives an
optimal unit-delay clustering solution.

If the netlist is not a tree, this labeling scheme can still derive the optimal solution if module
replication is permitted. For this case, Lawler et al. construct a cluster C = {v~} wpi(rc(i)) for each
vi such that all of v~'s successors (modules vj such that there is vg-vj path) have higher labels than v~.
This solution may assign some modules to more than one cluster, i.e., replicating these modules. In
Fig. 12, we reproduce (a) an example from [130], and (b) their min-delay clustering solution (with
replication) assuming unit module weights and U = 5. The labeling scheme assigns label 0 to the
modules in the 6 leftmost clusters, label 1 to the modules in the 4 middle clusters, and label 2 to
module 26 in the rightmost cluster. The modules with successors that all have higher labels are
5, 6, 10, 11, 12, 14, 17, 21, 24, 25 and 26. As an example of replication, note that the labeling scheme
assigns module 8 to two clusters, since it is a 1-predecessor of modules 14 and 24; hence, the edges
from 5 to 8 and from 6 to 8 are also replicated.

Murgai et al. [140] were the first to address the variable-delay clustering problem (with module
delays 6(vi) -¢ 0). Their generalization of the above labeling scheme retained optimality only under
certain conditions. Rajaraman and Wong [151] later solved this problem optimally using a differ-
ent labeling scheme. Consider, for a given vi, the subgraph N(i) induced by vi and all of its
predecessors. The delay from any vj ~ PI to v~ in a given clustering solution is at least the delay from
vj to Vg in the optimal clustering of N(i). This observation allows [151] to iteratively build optimal
clusterings over N(i) for each vi ~ V. Each vi~ PI is initially assigned the label n(i) = 6(i), and each
v~¢PI will have a label no greater than the maximum delay of any path from a primary input to vg.
As in [130], any module whose predecessors are all labeled may be labeled next. When labeling vi,
a set cluster(i) ~_ N(i) is constructed which essentially consists of the predecessors of v~ that have the
highest "label plus delay factor" values. Rajaraman and Wong show that there exists an optimal
partitioning of N(i) with cluster(i) as a cluster. The label for v~ is the maximum delay over all paths
from vj ~ PI to vi assuming that cluster(i) exists, i.e., a delay of 1 is added to any path containing an
edge from a module in N(i) - cluster(i) to a module in cluster(i). The partitioning solution pk will
be a subset of {cluster(i) p vi ~ V}. Initially, pk =_ • and cluster(i) is added to pk for every vi~ PO.
Next, the following rule is iteratively applied: for every vi not contained in any cluster of pk, such
that there exists some v~ with (v~, v j) ~ E and vj ~ Ch for some Ch ~ pk, add cluster(i) to pk. Like
[130], this construction will also replicate modules.

A variant of the min-delay clustering problem was studied by Cong and Ding [45] for
technology mapping in lookup table-based FPGA designs. They remove the area constraints
W(Ch) <~ U, 1 <<. h <~ k and replace them with the pin constraints Iln(C,)f <~ K and IOut(Ch)l = 1,

where In(Ch) = {Vj ~ Chl3VidgCh, (Vi, Vj) ~ E} and Out(Ch) = {vi~ Chl3Vj¢Ch, (Vi, Vj) ~ E}. These

44 CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-8l

21

4 ~ "we b ~ . , ~ 1 3 / .

" ~ - " ~ - 24
5 6

26

(a)
(1)

(b)

Fig. 12. (a) An example DAG from [130] and (b) the clustering solution from the Lawler et al. [130] labeling algorithm
assuming unit module weight and cluster size bound U = 5.

constraints allow each cluster to be mapped to a configurable logic block, i.e., a K-input lookup
table that can implement any boolean function of K variables. To address this formulation, Cong
and Ding proposed a labeling and flow-based heuristic. Subsequently, Yang and Wong [191]
proved that the same approach is not only optimal for these pin constraints, but also optimal for
the more general pin constraints IIn(Ch)uOut(Ch)l ~< K + 1 under the unit-delay model. The

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81 45

authors of [191] combine the approaches of [45] and [-151] into a heuristic for min-delay clustering
under size and pin constraints W(Ch) <<. U, IE(Ch)I ~< K + 1. The algorithm achieves optimal delay
under either the pin constraint alone (as does [45]) or the size constraint alone (as does [,151]).

5.2. Network f lows

New formulations such as replication and the increased usage of a directed netlist representation
have recently made flow-based approaches more popular. We now explore a variety of partitioning
formulations, and describe how network flows can be used to solve them (see [43] for many other
examples).

5.2.1. Preliminaries
We first review several concepts from the theory of network flows [66]. A f low network

G = (V, E) is a directed graph in which each edge (v, w) ~ E has a positive capacity c(v, w) > 0; edges
that are not present in the network implicitly have capacity zero. There are two distinguished nodes
in G, a source s ~ V and a sink t e V. A f low in G is a real-valued function f: E ~ 9~ + that satisfies the
following properties:

1. Capacity constraints: For all (v, w) s E, f (v , w)<~ c(v, w); e is said to be saturated if
f (v , w) : c(v, w).

2. Skew symmetry: For all v, w ~ V, f (v, w) = - f (w, v).
3. Flow conservation: For all v e V - {s, t}, Z,~v f(U, v) = Zw~v f (V, w).

The value ofa flowfis given by If l = Y,~,~vf(s, v). For a given network, the network flow problem
is to find a flow of maximum value. An s-t cut is a bipartitioning {C1, C2} of G with s s C~, t e C2,
and cutsize is given by F({CI, C2}) = Z,~cl,v~c~ c(u, v). A well-known result from linear program-
ming duality is the max- fow min-cut theorem [66]:

Max-Flow Min-Cut Theorem. Given a f low network G, the value o f the maximum s-t f low is equal to
minimum cost of any s-t cut. Moreover, all edges (v, w) with v ~ C1, w ~ Cz are saturated jbr some
minimum s-t {C~, C2}.

The min-cost f low problem associates a cost (denoted cost(v, w)) with each (v, w)e E, and the
problem becomes that of finding a f lowfwith a prescribed value [fl = z such that the total flow
cost y~.w)~e f (v, w) • cost(v, w) is minimized.

Another formulation is the uniform multicommodityflow (UMCF) problem, which has been used
to bipartition undirected edge-weighted graphs [138, 133]. For every v, w ~ V, a special commodity
f,,w is assigned, and we require exactly z units of this commodity to flow from v to w. The objec-
tive is to find a feasible flow with maximum z (s and t are unspecified). The total flow of
all commodities along any given edge cannot exceed the capacity of the edge. Given a solution to
the UMCF problem and a bipartitioning {C1, C2}, the flow from Cj to C2 is given by
2~c,,w~c2 z = z. ICaI" JC2[. The free capacity of {C~, Cz} (i.e., the total unused capacities on edges
from C1 to C2) is the cutsize minus the flow from C1 to Cz. Using the fact that the free capacity is

46 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

nonnegative, Matula and Shahrokhi [138] establish the lower bound

z ~< min F({CI, C2})
I C l l ' [c 2 1 '

i.e., the minimum ratio cut of G is an upper bound for z. Leighton and Rao [132] showed this
bound is relatively tight by constructing a bipartitioning with ratio cut cost of O(z log n), where z is
the optimal flow for this UMCF formulation. An approximation algorithm for multi-way par-
titioning [131] applies Leighton and Rao's algorithm recursively. A review of recent advances in
multicommodity flows is given in [14].

5.2.2. The Min-Cut Replication Problem
Assume that we are given a directed graph G(V,E) and a k-way partitioning

p k = {CI, C2 Ck} without replication, and let F be the multi-way rain-cut objective. The
Min-Cut Replication Problem of Hwang and El Gamal [103] seeks a collection of subsets of
modules {C* I C*c_Ci, 1 <~ i ,j <<, k} that minimizes F(P k*) , where pk. is the partitioning that
results when each subset C* is replicated from Ci to C s. (Hwang and El Gamal implicitly assume
each Ci contains a subset Ii of primary inputs that cannot be replicated.) We now show how to
solve this formulation optimally for k = 2 [103]; the problem can be solved optimally for k > 2 by
solving k independent 2-way replication instances [104].

Given a bipartitioning p2 { C 1 , C2} , we seek a subset C* * c = = C 1 2 - - C 1 - I1 such that the
number of edges from modules in C1 - 1 1 - C* to modules in C * w C 2 is minimized. The new
bipartitioning p 2 , contains clusters C~ and C2 w C*, so that edges from C* to C2 will not be cut (see
Section 2.6 for replication rules). Edges from C2 to C~ and from 11 to C2 will still be cut in the new
solution, and can be ignored; hence, only edges from C 1 - 1 1 - C* to C * ~ C 2 need to be
considered. Hwang and E1 Gamal construct the following flow network G'(V',E') with
V' = {s, t}w V and E' = (E - Ezx)wE's~E't where

• E's = { (s , v) [v~I1} .
• E ; = {(v,t) [v ~ C 2 and 3 w ~ C l , (v , w) ~E}.
• E21 = {(v, w) I v C2}.

The edge capacities are c(e) = oo Ve ~ E'sw E~, and c(e) = 1 Ve ~ E - E21; this ensures that only
edges in E - E21 will be part of the min-cut. Applying the Max-Flow Min-Cut Theorem to G'
yields the optimum min-cut bipartitioning p,2 ___ {C'1, C~} with {s} w 11 ~ C] and t e C~. Since no
edges in E~ are cut, C2 --- C~, and C* = C~ - C2 is the optimum set of modules to replicate from C1.
Optimality follows directly from the Max-Flow Min-Cut Theorem.

In [104], Hwang and El Gamal showed how to modify their flow network to solve min-cut
replication for hypergraphs with signal information. While their formulation requires an input
partitioning solution, it could be applied during the construction of a multi-way partitioning, and
seems useful for pin-constrained (FPGA) formulations. For example, one might apply the algo-
rithm to the bipartitioning { V - C, C} when a cluster C is close to satisfying the pin constraint
IE(C)I ~< 10. As a heuristic, Hwang and E1 Gamal [104] integrated their min-cut replication
solution with a modified form of FM. Yang and Wong [192] slightly enhanced Hwang and E1
Gamal's approach to solve the min-cut replication problem while minimizing IC*I as a secondary

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 4 7

®

(a) (b) (c)

Fig. 13. (a) The star representation for a 3-pin net, (b) the application of Lawler's transformation to (a), and (c) a more
efficient representation of (b).

objective, breaking ties so that a min-cut with "minimum size" is found. Recently, Liu et al. [135]
appear to have eliminated the need for a pre-existing bipartitioning by solving the general
replication problem: find clusters Ca, C2, and a replication set C* _ C1 such that the number of
cuts of p2 = {CaL)C, ' C 2 w C * } is minimized.

5.2.3. Max-Flow Min-Cut approaches
The approaches in this section are linked by their use of the Max-Flow Min-Cut Theorem in

finding one or more minimum s-t cuts to construct a partitioning solution.
To find the global min-cut bipartitioning, n - 1 max-flow computations suffice via the

Gomor y -Hu cut tree construction [-77]. Such a tree is formed by finding an s-t cut {C1, Ca}, and
constructing the edge (Ca, C2) between vertices Ca and Cz in the cut tree, with cost IE(C1) [. The tree
is expanded recursively by picking any two modules s and t in a cluster C and computing the
minimum s-t cut {C', C"} in which all modules in V - C are condensed into a single node. If this
node is in C' then the vertex C in the tree is replaced with C' and the edge (C', C") is added with cost
E(C'). This process continues until every node in the tree corresponds to a singleton cluster, and
the global min-cut is determined by the edge in the tree with lowest cost.

Hao and Orlin [92] also showed how to find a min-cut bipartitioning using O(n) flow
computations, but with total time equivalent to that of just one flow computation. They compute
a sequence of S-t' cuts where S is a set condensed into a single node and S = {s} initially. After an
S-t' cut is computed, t' is added to S, a new t' is chosen and the process repeated until S = V. The
lowest-cost cut observed in this sequence gives the optimal min-cut bipartitioning.

Hu and Moerder [99] showed how the Max-Flow Min-Cut duality can also be used to find
a Min-Cut Bipartitioning in a hypergraph. For each net e, an extra dummy module is added to the
graph, and a star is formed connecting the dummy module to each of the modules in e (see
Fig. 13(a)). The dummy module has unit capacity, and the other modules have infinite capacity.
Hence, any minimum vertex separator (cutset of modules) of this network will be a subset of the
dummy modules which will correspond to a subset of E. The minimum vertex separator can be
found by maximum-flow after transforming this node-capacitated flow network into an edge-
capacitated network G'(V', E') using a technique due to Lawler [129]:

• For every v ~ V, add va and/2 2 to V' and add (v~, v2) to E'. Assign c(va,/)2) to be the node capacity
of/).

48 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

• For every (v, w) ~ E, add the edge (/)2, W1) to E'.

If Hu and Moerder's star representation in Fig. 13(a) is transformed into a directed graph by
replacing each undirected edge (v, w) with directed edges (v, w) and (w, v) and applying the above
construction, the graph in Fig. 13(b) is the result. However, applying the first rule of Lawler's
transformation to modules with infinite capacity is unnecessary. Hence, vl and v2, ul and u2, and
wl and w2 can be collapsed into u, v, and w, respectively, yielding the flow network in Fig. 13(c). Hu
and Moerder also show how to construct a modified Gomory-Hu cut tree to solve min-cut
hypergraph bipartitioning with n - 1 flow computations. Vannelli and Hadley [184] also discuss
hypergraph bipartitioning based on Gomory-Hu cut trees.

Saran and Vazarani [166] use Gomory-Hu cut trees as the basis for a k-way partitioning
heuristic for weighted undirected graphs with no cluster size constraints. They sort the cuts
gl, 92, . . . ,gn-1 on the Gomory-Hu cut tree by increasing weight, and find the minimum i such
that g~ Ugzu "" ugi divides the graph into k components. This solution is guaranteed to yield
a cutset within a factor of 2 - 2/k of optimal and uses n - 1 flow computations. The authors of
[166] also proposed an alternative method which hierarchically splits the cluster which has the
smallest rain-cut; hence, a Gomory-Hu cut must be computed for each cluster. This approach also
achieves a performance ratio of 2 - 2/k but requires O(kn) flow computations. Neither heuristic
uniformly dominates the other.

While a max-flow computation is guaranteed to return a min-cut, the resulting cluster sizes may
be very unbalanced. Consequently, many works propose contracting large subsets of modules to
enforce balance constraints, e.g., Bui et al. [29] propose bisecting d-regular graphs by contracting
modules in the neighborhoods of s and t before computing an s-t cut. The neighborhood
of a module v in a d-regular graph with n modules is defined to be the set of all modules within
graph distance 1og~d- 1)(~/n -- 2) of v. Bui et al. compute a minimum s-t cut in the contracted graph
for every possible choice of s and t, then combine the cuts to form a bisection. In bipartitioning
a DAG subject to cluster size constraints, Iman et al. [107] similarly use flow computations to find
a minimum s-t cut and then, if size constraints are violated, contract the smaller cluster C into
a single module with weight w(C). To force a different rain-cut in the next iteration, the capacity of
each edge in the min-cut is increased by a factor of 1 + e in the flow network. Yang and Wong
[190] apply a similar scheme, along with the flow construction in Fig. 13(c), for hypergraph
bipartitioning with size constraints. However, instead of increasing capacities of edges in the cut,
they pick an additional module v from the larger cluster and contract it with the smaller cluster C.
This approach may be more likely to find the true min-cut (since it does not modify edge weights),
and it also bounds the number of flow computations. Furthermore, the approach takes only O(nm)
time, i.e., the time of a single max-flow computation since the max-flow can be computed in the
new contracted network using the residue network (the network of remaining flow capacities) from
the previous flow computation.

Alternative optimal Min-Cut methods
Nagamochi and Ibaraki [141] recently gave a very efficient algorithm which finds the optimal

min-cut bipartitioning without using any flow computation. They assume an undirected, un-
weighted graph G(V, E) as input, although multiple edges may exist between modules. The
modules and edges are labeled using a maximum-adjacency scheme, i.e., the module with the most

CJ. Alpert, A,B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 49

2 . 1 ~ ' / / I ~ t \ \ \ ~ 7,30
/3 i{/ I ~ 3.241 \ ~ .^~
/ .j' " / i,I 2,17 I ~b'~ 6.29"~''

/ / a,xa I ~ L,2s ". _ ~ . ' - ~ ' N

I ,

I

'2,11

(a) G°(V, 0 E°), contract (v~,v s)

/ . ' 5 / z 1Z l i l t \ \

7!L!!\

(c) Gi(V, 2 E l) , c o n t r a c t (v s ,v 6)

(b) GX(V, I EX), contract (~ ,v 7) (d) G3(V, 3 E~), c o n t r a c t (~ , ~)

Fig. 14. Example of the execution of the min-cut algorithm of [141].

edges incident to the set of labeled vertices is ordered next. Initially, labels re(v) = 0 are assigned to
each v e V. The algorithm iteratively chooses the module v with the largest label (ties are broken
arbitrarily), and then visits each unvisited edge (v, w), incrementing rr(w) by one and then setting the
label of (v, w) to re(w). The scheme requires O(IEI) time to label all modules and edges.

Let E(i) be the set of all edges with label i. Interestingly, the edges in E(i) form a forest that spans
G (V , E - E (1) - E(2) E (i - 1)). The algorithm begins with GO= G and computes
G' ÷ 1 from G' as follows: first label the modules and edges of G" using the above scheme, then pick
a module v with deg(v) = degmin such that v is incident to an edge (v, w) with label degmin, and finally
contract v with this w. The resulting graph with self-loops removed is G" ÷ 1, and the edges incident
to v in G" form the cutset. The smallest cutset observed during the contractions from G O down to
G"- 1 is a global min-cut for G. The authors of [141] also extended this approach to graphs with
real-valued edge weights.

As an example, consider the multi-graph in Fig. 14(a). The modules are numbered according to
a possible labeling order, and each edge e is marked with (i,j) where i is the label ofe and j indicates
the order in which the edges were visited. Many modules v have deg(v) = degmin = 7, although only
v7 and Vs are incident to an edge with label 7. Hence, v7 and v8 are contracted to yield the
multi-graph in (b). The labeling is computed for this new graph (the order in which edges are
labeled is not shown), and the contraction is repeated, yielding the graphs in (c) and (d). The graphs
G4-G 6 are not shown. The smallest cutset observed during this process is of size 6 in (d); this
corresponds to the optimal min-cut bipartitioning {{vl, v2, /)3, /)4}, {V5, /')6, /)7, US}}"

e i

e3

c ~
.I I

50 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

(a) (b)

Fig. 15. (a) An example of a hypergraph and (b) its density flow network assuming unit module weights.

A randomized min-cut approach was proposed by Karger [114] : iteratively contract a r andom
pair of incident modules into a cluster until only two clusters remain. Karger showed that O(n 2)
executions of this a lgori thm will not only find an opt imal bipart i t ioning with high probability, but
will also find all opt imal min-cut biparti t ionings with high probability.

5.2.4. Bipartite f low
A bipartite graph G'(V', E') has the proper ty that V' can be part i t ioned into V1 and V2 such that

every edge (u, v) ~ E' has u E V1 and v ~ V2. A bipartite f low network is a bipartite graph with
addit ional source s and sink t added to V', and all edges in E' directed from nodes in Va to nodes in
V2. In addition, directed edges (s, v) 'qv 6 V1 and (w, t) Vw e V2 are added to the flow network. We
now discuss various part i t ioning formulat ions that can be solved with bipartite graphs and/or flow
networks.

Huang and Kahng [101] use bipartite flow (specifically, the "provisioning" formulat ion from
Lawler [129]) to find the maximum-densi ty cluster (i.e., subhypergraph) C of a hypergraph
H(V, E), where den(C) =]{e ~ E le ~_ C}I/w(C) (see Section 2.4). The decision question "Does there
exist a cluster with density larger than d?" can be answered using the bipartite graph G'(V', E') with
Va = E and V2 = V and E' = {(e, v) [v ~ e, v ~ V, e ~ E}. a2 A bipartite flow network is constructed
by setting capacities c(e, v) = ~ V(e, v) ~ E', c(s, e) = 1 Ve ~ E, and c(v, t) = d " w(v) Vv ~ V. The
max imum s-t flow in G'(V', E') yields a min-cut bipart i t ioning p2 = {Ca, C2} with s ~ Ca, t ~ C2.
The cluster C = Ca n V is guaranteed to have density at least d if such a cluster exists. If no cluster
has density >~ d, then the computa t ion will return C = 0 (actually Ca = {s}).

Consider the hypergraph in Fig. 15(a) with 6 modules and 4 nets; its density flow network
assuming unit module weights is shown in (b). When d = ¼, the min-cut bipart i t ioning for this
network is p 2 - {{s, el, e2, e3, vbv2 , v4, Vs},{e4, v3, v6, t}} with corresponding max-flow value

t2This bipartite graph representation of a hypergraph is very natural, but has seen surprisingly little use in the CAD
literature.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 51

N1
el

e2 / ~ e4 ****

% . N2

N~ N2
el - e5

e2 e 6

e3 ez

e4 • e8

(a) (b)

Fig. 16. (a) An example of a net bipartitioning of the intersection graph and (b) the bipartite conflict graph it induces.

If[= 4d + 1 = 4. Hence, C = {vl, v2, v4, vs}, and the density of C is guaranteed to be at least
¼. Since the density decision question can be answered efficiently, binary search on values of d can
yield the max-density cluster using O(log n) flow computations. As a heuristic for finding a k-way
partitioning which maximizes the sum of cluster densities, Huang and Kahng propose iteratively
finding the max-density cluster and removing it from the hypergraph. A post-processing step
constructs a linear ordering from the sequence of max-density clusters; DP-RP (see Section 4.5) is
then applied.

Another problem that can be solved using bipartite flow is the completion (see Section 4.5) of
a net bipartitioning {N1, N2} into a module bipartitioning {C1, C2} such that if all the nets incident
to a given module belong to the same cluster N~, then the module must be assigned to C~. The
problem may be viewed as assigning modules corresponding to edges in the bipartite "conflict
subgraph", i.e., modules with incident nets in both NI and N2, to C~ and C2 to minimize the
number of cut nets. This bipartite graph G'(V', E') has V1 = N1, V2 = N2 and (e, e')E E' if
e ~ N1, e '6 N2 and e n e ' :/= 0. Each edge in E' corresponds to the set of modules erie' . Every net
e ~ Ni will either have all of its modules in C~ (i.e., it will be uncut) or have some modules in both
clusters (i.e., it will be cut). A maximum independent set (MIS) S _ V' for G'(V', E') has the property
that if e E S and e' ~ S then (e, e')¢E' and [SI is maximal with respect to this property. Cong et al.
[48] construct an M I S S using the algorithm of [93] and assign each contested module v to C~ if
there exists an e ~ S n N(v) with e ~ N~. As an example, consider the bipartitioning of the intersec-
tion graph in Fig. 16(a) with N1 = {el, e2, e3, e4} and N2 = {es, e6, eT, es} and (b) its corresponding
bipartite graph. The unique MIS for this graph is {ex, e2, e3, e4, e7, e8} so the modules incident to
these nets can all be assigned to the same cluster, and at most nets e5 and e6 will be cut. (Note that
this approach is not optimal: vertices of the intersection graph not in the MIS may yet end up being
uncut, i.e., maximizing the size of the independent set of uncut hyperedges does not correspond to
minimizing the number of cut hyperedges.)

Kamidoi et al. [113] earlier proposed a similar technique for hypergraph bisection. They first
transform the netlist into a graph G(V, E) using the star net model of [99]. They then divide the
nodes of this graph into module nodes VM and net nodes VN. Breadth-first search is used to find an
articulation set (i.e., a vertex separator) S~ VM that separates V into two clusters C1 and C2.

52 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

S forms the set of contested modules and induces the bipartite graph with vertices
VI --- C1 n VN, V2 = C2c~ VN and edges (e, e') e E if ec~e'~S ~ O. Kamidoi et al. then resolve
module contentions by finding an independent set of net nodes in this graph, using a greedy
approach that integrates cluster sizes.

Finally, the multi-way contention problem seeks to convert a k-way net partitioning
{N1, N2, . . . , Nk} into a k-way module partitioning {C ~, C2, . . . , Ck}. A module is in contention if it
is incident to nets that are not all in the same Ni; uncontested modules with all nets in Ni become
assigned to Ci. Cong et al. [49] construct a complete bipartite graph with V1 being the set of
contested modules and V2 = {Nb N2 ,Nk} with an edge (v, Ni) from every v~ V~ to every
cluster of nets. Edges (s, v) with cost zero and capacity one are introduced Vv e V ~, and edges (N~, t)
with cost zero and capacity equal to the remaining size capacity of C~ are introduced VN~. Finally,
each edge (v, N~) has capacity one and cost equal to M A X - pref(v, N~), where M A X is a constant
larger than any preference value, and the preference of v for N~ is given by

pref(v, Ni) = ~ (lel - Con(e)) 2
leeN,Ivee} lel'Con(e) (5.1)

Here Con(e) is the number of modules of e that are in contention, i.e.,

Con(e) = I{v e e s.t. 3e', v e e', with e e Ni, e' e Nj, for some indices i vs j}l.

A min-cost flow of value I gal will saturate n edge-disjoint paths from s to vertices Ni, which implies
that there is exactly one saturated edge of the form (v, Ni) for each v e V1. For each such edge, v is
assigned to cluster Ci. This algorithm guarantees the optimal module assignment in terms of
maximum sum of preferences.

5.2.5. Shortest path clustering (SPC) and probabilistic methods
Yeh et al. [193] proposed an algorithm based on the relationship between uniform multi-

commodi ty flow and min-cut partitioning. Yeh et al. construct a "flow network" by assigning
c(e) = cost(e) -- 1 and f(e) = 0 for every net e. Two random modules in the network are chosen
and the shortest path (i.e., path with lowest cost) p between them is computed where cost(p) =
Y~e~p cost(e). A constant A < 1 is added tof (e) for e~ich net e e p, and the cost for every e e p is reset
to cost(e) = e ~yte~ for some constant ~. (Yeh et al. choose d = 0.1 and ~ = 10.) Adjusting the cost
penalizes paths through congested areas and forces alternative shortest paths. This random
shortest path computat ion is repeated until all paths between the chosen pair of modules pass
through at least one "saturated" net (i.e., with f(e) = 1).

The set of saturated nets induces a multi-way partitioning in which v and w belong to the same
cluster if there is a path of unsaturated nets between v and w. For each of these clusters C, theflux
IE(C)I/w(C) is computed and the clusters are sorted based on their flux value. Yeh et al. begin
initially with P1 = { V} and consider in turn each cluster from the sorted list to "peel" from V. For
example, if C 1 is the first cluster in the list, the bipartitioning p2 _-.= {C1, V - C1} results. Assume
that the current solution is pk = {C1, C2 , Ck- b V - Ca - Cz Ck- 1}, and the unseen
duster with highest flux is C*. If pk + l = { C 1 , C 2 , . . . , C k - 1 , C#:, V -- C 1 - C 2 C k - 1 -- C* }

has a smaller Cluster Ratio (see Section 2.4) than pk, then pk + 1 replaces pk as the current solution,
otherwise the next unseen cluster on the list is considered. This process repeats until all of the
clusters in the sorted list have been seen. This SPC approach is attractive because the saturated nets

C.J. Alpert, A.B. Kahng /1NTEGRATION, the VLSI Journal 19 (1995) 1-81 53

are good candidates to be cut in a partitioning solution. However, SPC may tend to construct
poorly balanced solutions since the clusters in the sorted list might all be very small. The basic
principles behind this approach were adopted by Hauck and Borriello [95] for FPGA partitioning
onto an underlying topology (cf. the discussion of layout-driven formulations in Section 2.4).

An alternative taxonomy might classify the SPC approach with the random-walk clustering
algorithm of Hagen and Kahng [84] and the compaction algorithm of Karger [114]. All of these
approaches rely on randomization to uncover the circuit structure. For example, the nets between
dense clusters are likely to be in many shortest paths, hence with high probability these nets will
become saturated during the execution of the SPC algorithm. Similarly, a random walk that visits
a dense cluster will likely not leave the cluster until many of the cluster's modules have been visited.
Finally, contracting random nets is more likely to contract a dense cluster than a sparse cluster; this
allows denser clusters to remain uncut.

5. 3. Mathematical programming

Mathematical programming optimizes an objective function subject to inequality constraints on
the variables. (An equality constraint can be captured by two inequality constraints). A linear
program (LP) requires every equation to be linear in terms of each variable. An LP can be solved in
average-case polynomial time using the simplex method; interior methods such as that of Karmar-
kar have polynomial worst-case complexity; see e.g., [115] for a review. An integer linear program
(ILP) is an LP with the additional constraint that the variables must take on integer values; solving
general ILP instances is NP-Hard. A quadratic prooram (QP) is an LP with an objective that is
quadratic in the variables, and a quadratic boolean program (QBP) additionally restricts the
variables to 0-1 values. Some QP and QBP formulations have polynomial solutions while others
are NP-hard (see [73]).

F(P k) =

subject to

5.3.1. Quadratic formulations
The multi-way graph partitioning formulation with objective F(P k) = zk=llE(Ci)l and fixed

cluster sizes ml >>. m2 >>- ... >>- mk (where IGI = m3 can be expressed as a QBP. Let B = (bij) be the
k × k matrix with b, = 0 and bi~ = 1 if i 4: j, and let X = (xii) be the n x k assignment matrix. The
QBP minimizes

k

~, ai~(xihbh, xj,) (5.2)
i,j= l h,l= l

• Xih -~- mh, 1 <~ h <~ k,
i=1

k

~ Xih = l , l <~ i <<. n,
h = l

(prescribed cluster sizes),

(each module belongs to exactly one cluster),

xii ~ {0, 1}, 1 ~< i , j ~ n (legal assignment matrix).

To see why Eq. (5.2) holds, consider whether the edge (vi, v j) is cut. If it is, there will be a unique
h and I such that vi ~ Cn and vj~ Ct, and only for these values will both Xih = 1 and xji = 1, hence

54 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

ao ~,~= 1 (XihbhlXjl) = ao; the cost of (vi, v~) appears once in the sum. If the edge (v~, v j) is not cut,
then vl and vj are in the same cluster, so h = I and when both xih = 1 and xji = 1, we have bh~ = 0
which implies that aij Y~,I= 1 (x~hbhtXjl) = O.

Shih and Kuh [173] extended this formulation to handle timing and area constraints. In this
case, the matrix B captures the cost of wiring between clusters; previously, we had assumed that this
cost is uniformly one, but it may be generalized (e.g., for MCM partitioning). The area constraints
W(Ch) <<, Uh, 1 <<. h <<. k can be incorporated by replacing the constraints Y~'=I X~h = mh by
~ n = 1 W(Vi)Xih ~ mh. TO capture timing constraints, the authors of [173] use the n × n matrix
D c = (D c) to store the maximum allowable signal routing delay between every pair of modules, and
the k x k matrix D = (Do) to store the cost of routing between every pair of clusters. Hence, the
timing constraints are Dnl <~ Di c, 1 <<, h, l <~ k and 1 ~< i, j ~< n whenever Xih = Xjl = 1. Finally, the
n x k matrix P = (Pih) stores the cost of assigning a module vi to Ch. The proposed objective of Shih
and Kuh is

k k

~ ~, pijxij + ~ ~ ~ a,j(Xihbh, xj,), (5.3)
i = 1 h = l i , j=l h , l = l

where the first term gives the cost of assigning modules to clusters, and the second term gives the
wiring costs. The coefficients 0c and fl can be used to trade off between the terms, but in practice
both are set to one. When the entries in B are permitted to take on any values, the formulation in
Eq. (5.2) becomes the quadratic assignment problem (QAP). Shih and Kuh show how to adapt
a QAP heuristic due to Burkard and Bonniger [34-] to their formulation. The same heuristic was
also applied by [62] to an opto-electronic formulation with size, connection, power, and intercon-
nect constraints.

Shih et al. [175] also applied the formulation of Eq. (5.3) to an MCM partitioning formulation,
setting 0~ --- 1 and /~ = 0 to obtain an ILP. The method assumes a good initial partitioning,
although timing and area constraints may be violated. The matrix P is used to capture the cost of
perturbing the current solution into a new solution. If Xih = 1 in the current solution, then
Pil = n" w(vi)'dist(Ch, Cz)/w(V) for 1 ~< 1 ~< k, where dist(Ch, Ct) is the Manhat tan distance between
Ch and C~ in the MCM; this is the cost of moving vi from Ch to Ct. The objective is then to satisfy
timing and area constraints while minimizing the perturbation of the current solution. Shih et al.
apply a constraints decoupling technique, separating the problem into one with only area con-
straints and one with only timing constraints. The algorithm iteratively solves the two problems
separately and uses the two solutions to reformulate for the next iteration, until the solutions
converge.

We note one final quadratic (boolean) formulation due to Khan and Madisetti [118] which
integrates area, pin, and yield constraints for MCM partitioning. They apply a linearization
technique which approximates the QBP by an ILP, adding a new constraint for each variable in the
objective. This ILP is heuristically solved using branch and bound and linear programming
relaxation.

5.3.2. Retiming
Liu et al. [137] propose a timing formulation similar to the Min-Delay Clustering problem of

Section 2.4, except that the cost of a path p is extended to loops in the circuit. Assume that

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81 55

F ,q (,"_

(a)

(b)
Fig. 17. (a) A bipartitioning with clock cycle T = 3 before retiming, and T = 2 after retiming (with latency 18), and (b)
a bipartitioning with T = 2 and 16 units latency after retiming.

V consists of a set of registers R(V) and a set of combinational logic blocks C(V), and assume that
6(r) = O Vr~ R(V). Liu et al. define the iteration bound as L = maxtoopsl rcost(1)/r(l)] where r(l) is
the number of registers in loop 1. The clock cycle T is the maximum delay between consecutive
registers on any path. L gives a lower bound on T: in the loop 1 with maximum L, cost(l) is the
delay of a loop and r(l) is the number of registers, hence the longest delay between consecutive
registers must be at least cost(l)/r(l). The latency on a path p from vi ~ PI to vj ~ PO is defined as
the minimum number of clock cycles that pass between a signal arrival at vl and its first effect
on the signal output at vj. The latency is determined by the critical path p between v~ and vj
with the fewest registers; hence the latency bound for the circuit is defined as maxpaths p cost(p) over
all Pl-to-PO paths. The retimin9 problem seeks a rearrangement of registers along their paths,
such that the clock cycle and circuit latency are, respectively, as close as possible to the iteration
and latency bounds.

As an example, consider the circuit in Fig. 17(a) in which registers are represented by rectangles
and combinational blocks by circles. Assume that the intercluster delay is 2 instead of 1 (following
[137]) and that 6(v) = 1, Vv~ C(V) . The shortest loop in the circuit that crosses the cut contains

56 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

9 combinational blocks~and crosses the cut twice for a delay of 13 units. Since this loop contains
7 registers, the iteration bound is [-13/7-] = 2, which is also the iteration bound for the entire circuit.
Before retiming, we have T = 3 since the path from E to F crosses the cut once (2 units) and then
passes through the combinational block h (1 unit). The paths from A to B and from G to H also
force a 3-unit clock cycle; however, after retiming (moving B, F, and H as designated), T is reduced
to 2 units, which is optimal. The latency after retiming is 18 since there are 9 registers on the longest
path from I to O; however, in (b) a different cut plus retiming allows the removal of register P,
reducing the latency to 16 units.

Liu et al. [136] add clock and latency constraints into the above QBP formulation. They only
consider bipartitioning; thus, the objective in Eq. (5.2) reduces to

aij(XilXj2 "-~ Xi2Xjl)
i,j=l

since bij = 0 if i = j. Liu et al. also adapt the same area constraints Y~7= ~ w(vi) Xih <<- Uh, 1 <<, h <<, k
and cluster membership constraints x~l + xi2 = 1, 1 ~< i ~< n. If an iteration bound of L is required,
the constraints

l (v~ie t~(1)i) l (i,j)el2 (Xil xzj + Xi2XJ')) <~ L, V I°°pS I

are added. The term in large parentheses gives the total delay for a signal to traverse loop l, so the
entire left term gives the iteration bound. To enforce a latency bound H, the QBP adds constraints

2 (~(1)i) "q- ~ (XilX2j "q- Xi2Xj 1) ~ H, VIO-critical paths p.
viep (i,j)~p

Liu et al. then decompose the problem into primal and dual subproblems; the primal problem is
solved using the heuristic of [34], and the dual problem is solved using a subgradient method.

5.3.3. A transportation problem
Barnes et al. [19] use the QBP discussed at the beginning of this subsection, except that they

maximize the number of uncut edges, rather than equivalently minimizing the number of cut edges.
This objective can be expressed using Eq. (5.2) with B as the identity matrix. The objective becomes:

k k k k

i,j=l h,l=l i,j=l h = l h = l i , j = l h = l

where Xh is the indicator vector for cluster Ch. Notice the similarity between this equation and
Hall's quadratic formulation in Eq. (4.1). Since optimizing Eq. (5.4) is NP-complete, Barnes et al. try
to approximate it as a transportat ion problem, a specific type of ILP that can be solved efficiently.
Let A = QQT denote a Cholesky factorization of A into the product of lower- and upper-triangular
matrices, and let ql be the ith row of Q. If we let r h = ~ = 1 q i X i h / m h then the following equality can
be established:

(llqi -- rhll 2 -- IIq,ll2)mhXih = -- ~'~XT AXh • (5.5)
h = l i = 1 h = l

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81 57

This equation appears to be a linearization of Eq. (5.4) except that rh depends on X,. Barnes et al.
propose to fix the rh vectors and optimize the transportation problem that is linear in the
Xih variables. Thus, the algorithm begins with an initial assignment matrix X corresponding to
pk and computes the rh vectors from X. These vectors are then fixed for solving the transportation
problem in Eq. (5.5), and the rh vectors are then recomputed for the new X. Barnes et al. prove that
each partitioning solution corresponding to X will have cost no higher than the previous one, and
that their algorithm will eventually converge.

Recall from Section 4.2 that Barnes [,18] also proposed another transportation problem that
approximates the multi-way partitioning objective. He tried to minimize the error IIUk- Rll 2
which is equivalent to minimizing

k (~tih)
i z

i = l h = l

subject to the same constraints as in Eq. (5.2).

5.3.4. Programming and placement
We now discuss applying mathematical programming techniques for the 1-dimensional place-

ment problem. Recall that a bipartitioning can be represented by a 0-1 indicator vector x, but that
x can also represent a 1-dimensional placement if its entries take on real values. A linear placement
also induces a linear ordering, and as seen in Section 4.5, linear orderings and placements can serve
as the basis for a partitioning algorithm.

The placement formulation of Tsay and Kuh [183] assumes that the coordinates of n legal slots
S 1 ~ S 2 ~ "'" ~ S n are given, and a solution consists of an assignment of module locations {xg} to
slots {s j}. The objective is to minimize the squared wirelength (xXQx in Eq. (4.1)) of the placement
(i.e., the slot assignment). For example, if the placement corresponds to a bipartitioning into
clusters of sizes ml and m2, then sl = s2 s,,, = 0 and s,,,+l, s,,,+2 ,s, = 1. Tsay and
Kuh enforce the slot constraints via a set of nonlinear equations:

• X i = ~ S i = C 1 first-order constraint,
i = 1 i = l

~ x 2 = ~ s 2 = c2 second-order constraint,
i = 1 i = I

xi = si = c, nth-order constraint.
i = 1 i = 1

We have already seen that the second eigenvector j[l 2 of Q gives the optimal solution if only the first-
and second-order constraints are considered. The difficulty lies in the 3rd- through nth-order
constraints. Like Blanks [-24], Tsay and Kuh observe that the closest legal solution to ~2 can be
obtained by sorting the entries of/~2, although this solution will generally be suboptimal. They
propose the SCAN postprocessing algorithm which improves on the ~J2 solution by gradually
including higher-order constraints and resolving. In their implementation, subsequent solutions

58 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

are functions of/.2,/*3 and /.4, but in general, the higher-order constraints cannot be directly
mapped to an eigenvector-based solution.

Another formulation of Tsay and Kuh [183] ignores slot constraints and assumes that ~ mod-
ules have already been assigned to fixed locations, while the other fl = n - ~ modules are free to
move. Let x e = [x ~ , x z xo] a be the coordinates of the movable modules and let
x, = [xa+ ~, xa + 2, -. . , x,] x be the coordinates of the fixed modules. The optimal locations of the
movable modules can be determined by solving Qooxa + Qp~x= = 0 where

Q=/"

Tsay and Kuh recommend solving this sparse system of linear equations using a successive
over-relaxation (SOR) technique. Since Qpa is real, symmetric, positive definite and diagonally
dominant, convergence is guaranteed; in practice, SOR converges in time nearly linear in the
number of modules.

Kleinhans et al. 1-120] applied quadratic programming to a hypergraph representation in their
GORDIAN cell placement program. Each net e has an associated location Xe = Ev,~e xdlel which
is the "center of gravity" of all of its pins. Assuming a star topology, the squared wirelength
objective becomes ~q(x)= E e ~ E y . v , ~ e (X , - Xe) 2, and setting Xe to be the center of gravity is
optimum for this objective. Sigl et al. [177] improved GORDIAN by incorporating a linear
wirelength objective, which can be written as

(X i -- Xe) 2 (X, -- Xe) 2
(~)l(X) = E E I X ' - Xel = E E i x , : ~ - E E where Oie = I X' -- Xel.

eeE viEe eeE vice e~E viEe gie

This objective can be approximated by minimizing

~[~l(X)'~ E --1 E (X, -- Xe) 2 where ge = ~ 9,e = ~ IX,- Xel- (5.6)
e~E ~e vi~e vi~e vi~ie

This approximation reduces the influence of nets with many pins. In addition, it reduces the
influence of a module v, that is close to an incident net's location Xe (i.e., induces a large 1/gie term);
the substituted 1/9e term is generally proportional to the span of e in a linear placement. This
approach has led to both MCM [158] and FPGA [157] partitioning methods.

The quadratic programming formulation can be efficiently solved using a conjugate gradient
method when each ge is constant. Let 9~ denote the value for 9e during the rth iteration of the
solution. In the first iteration, ge ~ = 1 and the quadratic program of Eq. (5.6) is solved. Given the
placement x from the (r - 1)st iteration, g~ = max{w0, Y~ ~,~e IX, -- XeL} in the rth iteration, where
Wo > 0 is a small constant that is used to avoid numerical error. This process of solving the
quadratic program and adjusting the g~ terms is repeated until ~eeE Ig r-1 - -or l < g, for some
choice of e. Notice the similarity between this approach and that of [19] in which the rh vectors are
adjusted after each iteration until convergence.

Hagen and Kahng [83] approximated the linear objective function by squaring it and ignoring
the numerous mixed terms, yielding E1 ~ i. j _<, aZ(x, - x j) 2, i.e., the traditional quadratic placement
objective with squared coefficients. The more general question of finding a value c such that
a~s(x, - x j) 2 best approximates linear wirelength was also raised. All of these placement techniques

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 59

([183, 177, 83]) can be used to iteratively generate a bipartitioning by solving the formulation,
peeling off and fixing the extreme coordinates, and integrating these fixed coordinates into the next
iteration. The PARABOLI scheme of Riess et al. [156] (see Section 4.5) uses the GORDIAN linear
wirelength placement in exactly this manner, but no analogous work has used orderings based on
SOR or squared coefficients. In addition, none of these orderings have been used with the dynamic
programming algorithm of [5] to yield multi-way partitionings. We believe that constructing
partitionings from placements derived via mathematical programming is a promising research
direction.

5.4. Fuzzy partitioning

The Fuzzy k-Means (FKM) algorithm is a well-known optimization technique for clustering
problems that arise in such fields as geological shape analysis, medical diagnosis, image analysis,
irrigation design, and automatic target recognition [35, 196]. The problem formulation generally
involves clustering data points in multi-dimensional space, although the paradigm can be applied
more generally.

A fuzzy partitioning can partially assign a module to several clusters, e.g., ½ to C1 and ¼ to C2 and
to C3. The assignment matrix X is still used to represent a partitioning, with entries in X now
real-valued; however, for any row i of X, we still have y~h k = 1 Xih = 1, i.e., vi is assigned to a total of
one cluster. There are k variable cluster centers, denoted by wl, w2, . . . , Wk. Assume that a distance
function dist(vi, Wh) is defined between modules and cluster centers (e.g., the distance function is
obvious if the modules and cluster centers have physical locations). FKM begins with an initial
fuzzy partitioning X, then iteratively modifies X to optimize the objective:

k

~. E (Xih)C" dist(vi, wh) 2,
i = 1 h = l

where c > 1 is a user-chosen scalar. If we let (vii, vi2 , rid) and (Whb Wh2 , Whd) be the respective
coordinates (assuming locations in d-space) for vi and wh, then the coordinates for wh are computed
to be the weighted averages of the coordinates for modules with partial membership in Ch. This
expression is given by

~7=1 (Xih)CI)i j h = 1, 2, ... ,k, j = 1, 2, ... ,d.
= E T : , (x i h) c '

For all i = 1, 2 , n and h = 1, 2, . . . , k, if the coordinates for vi and Wh are the same, then Xih is set
to 1 and xij is set to 0 for all other j ~ h. Otherwise, the new fuzzy partitioning has entry

(~ (d i s t (v i , Wh)~2/(c-l') -1
xih = ,=, \ ~ w-~l).] , i = 1,2 ,n, h = 1,e ,k.

The computation of cluster center coordinates and a new fuzzy partitioning is alternated until X no
longer changes by a significant amount. Then, rounding to its closest discrete assignment is used to
derive a non-fuzzy partitioning solution.

Ball et al. [16] have shown how to use FKM in conjunction with GORDIAN to derive
2-dimensional placements, and Razaz [153] earlier did the same by first modifying FKM to handle

60 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

graph partitioning without specified coordinates. Razaz uses the ith row ai of the adjacency matrix
A to represent the coordinates for vi, so the cluster centers are given by the n-vectors Wl, w2, . . . , WR.
The distance between module v~ and cluster center Wh is simply dist(vi, Wh) = IL a~ -- Wh II. Given
a fuzzy partitioning X, the new cluster centers are given by

Wh -- ~n= 1 (Xih) 2ai , h = 1, 2, ... , k.
ET= 1 Xih

The use of 2 for the exponent in the numerator and 1 for the exponent in the denominator seem to
be an arbitrary choice of [153].

5.5. Boolean set covering

A new approach to multi-way partitioning was recently proposed by Chou et al. [44] to address
the the Single-Device F P G A Partit ioning problem. Chou et al. initially construct a multi-way
partitioning with each cluster satisfying the device's size and pin constraints, except that module
overlapping is permitted, i.e., a module can be a member of more than one cluster.13 This feasible
solution (i.e., one that satisfies all constraints) with overlapping is then transformed into a feasible
solution without overlapping. That such a transformation can always be achieved is due to the
FPGA Complementary Theorem, which states that: if C1, C2, . . . , Ck are k feasible F P G A clusters,
then there exits a permutat ion rt: [1.. k] ~ [1.. k] such that

Crt(1) , C T r (2) \ C n (1) , Cr r (3) \ (Cr~(1)k - -)Cr t (2)) , . . . , Crr(k)\(C~z(1)k-)Cn(2)k-) " " k . .) C n (k _ l))

are mutually disjoint, feasible clusters. (This result was extended to Multiple-Device F P G A
Partitioning in [100].) Thus, one may find a minimum set covering of the modules, i.e., a minimum
set of feasible clusters that covers (contains) all the modules, and this partitioning can always be
transformed into a non-overlapping partitioning with the same number of clusters. Although the
set covering problem is NP-Complete, the Espresso II tool [28] provides a well-developed set-
covering heuristic used for minimizing Boolean expressions. Chou et al. adapt the main ideas
behind Espresso II into their set covering algorithm. This approach is attractive because a highly
developed tool for a very different problem was utilized for module partitioning.

6. Clustering approaches

Clustering (i.e., k-way part i t ioning for large k = O(n)) is rarely a goal in and of itself. Rather,
a clustering solution is typically used to induce a smaller and more tractable problem instance.
Many clustering algori thms utilize a bottom-up approach: each module initially belongs to its own
cluster, and clusters are gradually merged or grown into larger clusters until the desired decompo-
sition is found. We classify bo t tom-up approaches as agglomerative if new clusters are formed one

13In the Single-Device FPGA formulation, the constraints for each cluster can be evaluated independently of the other
clusters, hence, overlapping allows modules to be assigned to multiple clusters, although this may have no physical
meaning. Note the difference between overlapping and replication, in which the netlist is modified according to specified
rules.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81 61

.=o

o
"S

d3
E

300.0

200.0

100.0

I T T I i I [I r

0.0

~, 0 0.0 200.0 300,0 400.0 500.0 600.0

Solution cost

Fig. 18. Distribution of 21,203 FM bisection solutions (i.e., local minima) for SIGDA Layout Synthesis benchmark
Primary2 (3014 modules). Each solution was generated from a new random starting point.

at a time and hierarchical if several new clusters may be formed simultaneously. Other intuitive
approaches involve random walks, iterative peeling of clusters, vertex orderings, and simulated
annealing. Another set of approaches is specific to (acyclic) combinational boolean networks. This
section begins with motivations for clustering, and then discusses the various clustering ap-
proaches. We conclude by surveying methods which integrate clustering into a move-based
partitioning strategy.

6.1. Motivations for clustering,

As noted above, move-based approaches, and iterative improvement in particular, are the most
common partitioning algorithms in current CAD tools. A common weakness of these approaches
is that the solution quality is not "stable", i.e., predictable. Fig. 18 shows the FM solution cost
distribution for the Primary2 benchmark; we see that the distribution is roughly normal and that
the average FM solution is significantly worse than the best FM solution. This result reflects the
"central limit catastrophe" [116] of move-based methods, i.e., that most local optima tend to be of
only average quality. In hopes of hitting the "good tail of the distribution", many practical
implementations of FM use a random multi-start approach, i.e., the algorithm is run many times

62 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

from random starting solutions, and returns the best solution found. However, as discussed in
Section 3.4 and as shown in Fig. 18, hundreds of runs may be necessary to achieve stable
performance.

Given a clustering solution pk = {C1, C2, . . . , Ck}, we can reduce the instance size from n to k by
constructing the contracted hypergraph H'(V', E') with V' = {C~, C2, . . . , Ck}. For every e e E,
there is a hyperedge e' e E' with e' = {Cl~v ~ e~C} (unless le'l = 1), i.e., each cluster in e' contains
some module that has a pin of e. The contraction process will also decrease the sparsity of the
netlist, i.e., the average degree degavg = Y.e~Ele[/lVI will be higher for the contracted hypergraph.
Goldberg and Burstein [75] claim that degavg is between 1.8 and 2.5 for real circuits, and that an
FM-based algorithm performs "relatively poorly" in this range, but "nearly optimally" when
degavg > 5. Lengauer [133] also conjectures that for graphs with high density and large minimum
degree, there will be few local optima that are not global optima. Finally, the analysis of Saab and
Rao [163] also suggests that KL performance improves with increasing graph density. A biparti-
tioning is said to be m-optimal if swapping any m modules from C 1 with m modules from C2 cannot
decrease the cost, e.g., KL is a 1-optimal algorithm. Saab and Rao give a performance bound which
holds for any 1-optimal heuristic, and becomes tighter as the number of edges in the graph
increases. Specifically, if (~)((1 + e)/(1 + 20) edges are present, then the heuristic bisection width is
suboptimal by a factor of at most e (e.g., if z3(~) edges are present, a 1-optimal bisection can have
cost at most twice optimal). All of these works imply that a move-based heuristic should be more
effective on a contracted netlist not only because of the smaller solution space, but also because of
the increased density.

These considerations have motivated the "two-phase" application of move-based algorithms
[75]: first execute the given algorithm on a contracted netlist, then re-expand the resulting solution
into the starting point of a second algorithm run on the flat (original) netlist. The two-phase
approach has been applied with many clustering algorithms, e.g., [3, 4, 29, 30, 51, 84, 94, 143, 176];
see Section 6.6 for a discussion of methods which integrate clustering into move-based approaches.

6.2. Agglomerative clustering

An agglomerative clustering algorithm begins with the n-way clustering P " = {{vl},
{v2} , {v,}} and iteratively constructs pk from pk+l as follows:

• Choose two clusters Ch and C~ from pk+l
• Construct pk from pk + 1 by removing Ch and C~, and adding the merged cluster C = Ch U C~.

Agglomerative clustering was first proposed by Johnson [111] for weighted complete graphs. The
criterion for choosing clusters Ch and C~ is what distinguishes among agglomerative variants, e.g.,
Johnson [111] merges the two clusters that minimize the diameter of the new cluster C. This
minimum-diameter criterion was used for circuit bipartitioning in [3] : modules were first mapped
to points (i.e., singleton clusters) in multi-dimensional space (see Section 4), the diameter criterion
was used to merge clusters, and the resulting clustering was used within two-phase FM.

For undirected graphs, Karger [114] proposed a heuristic which begins with all vertices as
isolated clusters. Iteratively, a random edge is chosen and its incident clusters are contracted into
a single cluster (see Section 5.2). The approach can be extended to hypergraphs by picking
a random net (perhaps with size-dependent probability) and contracting two random incident

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLS1Journal 19 (1995) l 81 63

i

clusters (or all incident clusters). An alternative greedy approach would be to simply merge the two
clusters with highest connectivity, i.e., choose Ch and CI such that Nht = [E(Ch)nE(CI)[is max-
imum. Schuler and Ulrich [168] observe that such a criterion ignores the number of nets cut
resulting from the merged cluster. Such a criterion generally will also fail to construct balanced
clusterings. Thus, the authors of [168] maximize a merging objective of form:

Nht Nhl
f(W(Ch)) + f(w(Ct)) (6.1)

IE(Ch)[- Nhl IE(Cl)[- Nht

where f is a function of the cluster weights. The resulting cluster hierarchy is used to form
a 1-dimensional placement. More recently, Shin and Kim [176] proposed a slightly different
approach: given pk + 1, they merge Ch and Ct to maximize

Nhl ~k(w(Ch) + w(Ct))
min {E(Ch), E(C,) } w(V)

The first term captures the connectivity between clusters, with the denominator favoring the
selection of "outlier" clusters (e.g., a cluster with connections to only one other cluster) for merging.
The second term implies a penalty for making a cluster too large; if the merged cluster has average
weight in the resulting pk, the term reduces to ~. The authors of [176] proposed this clustering
approach for use with two-phase FM; their particular scheme makes many runs on the contracted
netlist before the netlist is flattened for the second FM phase.

Ng et al. [143] propose an agglomerative algorithm based on Rent's rule; Rent's rule describes
an average-case phenomenon in "good" circuit placements, i.e., that there is a power-law relation-
ship IE(C)[= d(C). [CI" between the number of edges incident to a cluster and the size of the cluster
(see [128] and [85] for reviews). Here, d(C) = Zv~c deg(v)/I CI is the average degree of modules in
the cluster. Because the layout has finite size, the power-law relationship eventually breaks down
when the number of clusters is small. Feuer [64], Donath [57] and others have established that
a lower Rent parameter r corresponds to lower total wirelength in the layout. However, the
connection between such results for placement (where the netlist topology is embedded in the
plane) and the clustering domain (where the netlist topology is "free") remains unclear (cf. [85]).
The merging step chooses the pair of clusters Ch and C~ that minimize the Rent parameter
0 ~< r ~< 1 of the merged cluster C, where

r = l +
ln[E(C)l - ln(d(C))

lnlCl

The merging process continues until the prescribed number k of clusters is reached, or until
r exceeds a prescribed constant.

6. 3. Hierarchical strategies

Generally, agglomerative methods will not be very efficient: finding the best pair of clusters to
merge may require O(k 2) time, unless a list of cluster merging costs is stored and updated (which
will likely require O(n 2) space). An alternative strategy is to find many good clusters to merge, then
perform all merges simultaneously; we call this a hierarchical strategy. The difference between
agglomerative and hierarchical strategies is illustrated in an 8-module example in Fig. 19. In (a), the

64 CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-8l

I
I I

. i i i i

(a) (b)

Fig. 19. An 8-module example of (a) an agglomerative and (b) a hierarchical construction.

dendogram reveals the order in which clusters are merged; each dotted horizontal line is a level
in the hierarchy, and an agglomerative algorithm will have n - 1 levels. Fig. 19(b) depicts a
hierarchical algorithm that simultaneously merges as many cluster pairs as possible, yielding
a hierarchy with Flog n-] levels.

In [29, 30], Bui et al. propose matching-based compaction as a clustering strategy. A matching in
the netlist is a set of disjoint pairs of modules, such that each pair shares a common net. Bui et al.
find a random maximal matching and merge each pair of modules into a cluster: this will ideally
result in a set of n/2 clusters; matchings can be iteratively computed on the contracted netlist,
yielding a hierarchy of clusterings with size n/4, n/8, etc. A similar approach was proposed earlier by
Goldberg and Burstein [75]. With the random matching approach, all clusters will have roughly
the same size, although it is not known whether this is preferable, e.g., for two-phase bipartitioning.

Feo and Khellaf 1-63] proposed contracting edges according to a maximum-weight matching.
Tight performance bounds were shown for this approach on graphs with edge weights that satisfy
the triangle inequality, but the matching construction generally requires O (n 3) time. Roy and
Sechen [159] also proposed a deterministic contraction approach; they first construct a weighted
undirected graph using the standard clique model, then contract all edges with weight higher than
a given threshold. This approach differs from the matching-based approaches in that module pairs
are contracted more selectively.

Instead of merging pairs of modules, entire nets may be contracted. In the placement heuristic of
[181], nets are first sorted in nondecreasing order by size, and a net is picked from the list and
contracted into a cluster as long as none of its modules belong to a contracted cluster. In other
words, this approach greedily selects a maximal subset of mutually disjoint nets, then contracts all
the nets in this subset. This procedure is iteratively repeated on the contracted netlist until certain
"fractal" criteria are met.

Another scheme, proposed by Hauck and Borriello [94], uses randomization and the merging
criterion of [168]. Initially, each module belongs to its own singleton cluster; the clusters are then
visited in a random order and each cluster is associated with the neighboring cluster with which it
has highest connectivity, i.e., that maximizes Eq. (6.1) withf(Ch) = 1/W(Ch). If the current cluster in
the order has already been associated with another cluster, it is ignored. After all clusters have been
visited, clusters are transitively merged with their associated neighbors.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 65

6.4. Intuitive cluster properties

We now turn to a group of clustering approaches whose main c o m m o n bond is that each tries to
identify certain intuitive cluster properties, such as having dense cliques or cycles. Some of these
intuit ions are explicitly captured in a clustering objective that can be optimized, e.g., Absorpt ion or
ratio cut. We identify each approach by its underlying clustering intuition.

(K, L)..connectivity: Modules u and v are (K, L)-connected if there exist K edge-disjoint paths of
length ~< L between u and v. Garbers et al. [69] proposed using the transitive closure of the
(K, L)-connectedness relation for clustering into dense subgraphs (i.e., having large]EI/I VI 2 ratio).
However, the method may not be that intuitive, e.g., in a 4-cycle (v~, v2, v3, v4), vx and v3, along with
v2 and v4, are (2, 2)-connected, yet the clustering {{v~, v3}, {v2, v4}} will cut all four edges.
Fur thermore , determining (K, L)-connectivity is NP-complete for L ~> 5, with NP-completeness
for L = 4 still an open question. In practice, [-69] ensures clusters are connected by placing two
modules in the same cluster if K edge-disjoint paths between them can be found with at least one
path having length one.

Cycles in random walks: A random walk in a netlist is a r andom sequence of modules
{wl, w2, ... ,wK} such that N(wi)c~N(wi+l)~ 0, Vi = 1 , K - 1. In other words, every con-
secutive pair of modules shares a c o m m o n net. Cong et al. [473 defined a cycle {wp, Wp+l, . . . , w~}
as a cont iguous subsequence of the r andom walk with wp = wq and all wi distinct,
i = p, p + 1, . . . , q - 1. The maximum cycle for vi is the longest cycle that begins and ends at vi; all
maximal cycles are found in O(N) time and then used to identify clusters. (Intuitively, a maximal
cycle should identify a good cluster: if it contains any natural subcluster, a module in this subcluster
would have likely appeared more than once within the maximal cycle.) Hagen and Kahng [84]
assign v~ and vj to the same cluster if their sameness is larger than zero, where sameness is computed
as follows. Let CC(i,j) be the number of times that vj occurs in a cycle beginning at vi. If
C C (i , j) - - 0 or C C (j , i) = 0, then the sameness of vi and vj is 0; otherwise, it is set to
2(CC(i,j) + CC(j, i)) and an adjustment of 4CC(i, l) - CC(j, l) (4CC(j, l) - CC(i, I)) is added for
each vl such that CC(j, 1) > CC(i, l) (CC(i, l) >~ CC(j, l)). The intuit ion behind the adjustment term
is that if vz appears roughly the same number of times in cycles beginning with v~ and v j, then v~ and
vj are similar; however, if v~ appears many more times in one module 's cycle (i.e., by more than
a factor of 4) then vi and vj are dissimilar. These random-walk approaches have been utilized within
two-phase F M bipartitioning.

Cliques: A clique is a densest-possible subgraph, hence it forms a very intuitive cluster. Cong and
Smith [51] propose to find and collapse cliques in the undirected graph constructed from the netlist
by applying the clique net model with edge weight 2~]el to all nets with lel ~< 5. The algori thm
searches for cliques of size ro and ro + 1 where ro is likely to be the size of the largest clique in the
graph. A clique is contracted into a cluster as long as it satisfies the size and cardinality constraints
4w(C) ~< w(V), 31CI ~< n as well as the density constraint that total edge weight is at least
2~lEI/(n(n - 1)) for some parameter ~. The density constraint prevents single nets from forming
clusters. While the approach is amenable to parallel processing, finding dense cliques by enumer-
ation is computa t ional ly expensive. Also, by discarding medium-size and large nets to maintain
sparsity, the a lgori thm may lose impor tan t clustering information.

66 C.~L Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

Ratio cut: Chou et al. [44] and Wei and Cheng [188] have constructed clusterings based on the
ratio cut objective. The algorithm of [44] applies the ratio cut algorithm of [187] to construct
a bipartitioning {C1, C2} such that I C, I ~< u for some small U, e.g., U = 50. Cluster Ca is then
removed from the circuit and the algorithm is repeated until the circuit has less than U modules.
The strategy of finding a good cluster and "peeling" it from the circuit has been used in [101] for
the Density objective (see Section 5.2). Chou et al. apply their clusterings to the FPGA Set Covering
formulation discussed in Section 5.5. The ratio cut clustering approach of Wei and Cheng [188]
iteratively applies the bipartitioning algorithm of [187] to the largest remaining cluster; this
top-down divisive process ends when the largest cluster contains less than 2% of the modules, and
seems to be the only "top-down clustering" approach in the literature. The clustering solutions
were originally integrated within two-phase FM, and later used in a simulated-annealing based
placement algorithm [90].

Absorption: Sun and Sechen [179] believe that clusterings which maximize the Absorption objec-
tive are best suited for use in the TimberWolf simulated annealing-based placement program. They
used L = 3Y and U = 30Y for the cluster size constraints L <<, w(Ch) <<. U, 1 <~ h <<, k where 10Y is
a designated mean cluster size, but they did not specify how Y is determined. TimberWolfs
placement neighborhood structure is based on swapping clusters, hence the need for size con-
straints: too much variance in cluster sizes may make the placement solution infeasible. The
clustering algorithm itself also uses simulated annealing, with a neighborhood structure based on
moving a single module from one cluster to another. The authors claim that 100n moves are
sufficient to optimize Absorption.

Ordering contiguity: Alpert and Kahng [4] proposed constructing a linear ordering of the modules,
then constructing a clustering by splitting the ordering. The intuition is that if the ordering can
appropriately traverse the circuit, then the clustering will be of high quality. Their WINDOW
ordering scheme begins with an empty cluster C and iteratively adds the module with highest
attraction to the cluster, where the attraction function is defined to reflect a given objective. The
authors of [4] have given attraction functions for a variety of objectives, including Scaled Cost and
Absorption. In addition, they showed how attraction can capture breadth-first and depth-first
orderings, along with "max-adjacency" and "min-perimeter" criteria (cf. the Nagamochi and
lbaraki discussion [141] in Section 5.2). Since C eventually becomes much larger than is desired for
any single cluster, only a window of the most recently ordered modules is used to compute the
attraction; the size of the window reflects cluster size constraints. The ordering is split into
a clustering using the DP-RP algorithm discussed in Section 4.5.

6. 5. Clustering o f boolean networks

The final three approaches all exploit the directed structure of combination boolean networks.

Corollas: Dey et al. [55, 56] construct a directed "star" representation for a combinational boolean
network by introducing a dummy stem module v(e) for each net e. For every e E E, the DAG
contains edges (S(e), v(e)) and (v~e), w) for every w ~ D(e). Observe that stems are the only modules
with multiple fan-outs, i.e., a stem v(e) may have edges (v(e), u), (v(e), w), u ~ w. If there exist two
disjoint paths from a stem to another module, the stem is called a reconvergentfanout stem, and the

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 67

module is a reconvergent module. A petal is defined as the set of all modules located on all paths
from a reconvergent fanout stem to all of its reconvergent modules; the petal is the basic primitive
of the clustering algorithm. Dey et al. construct a clustering by first finding all petals,
then merging overlapping petals into corollas, with corollas being maximal with respect to the
overlapping property. Each individual corolla may be resynthesized using algebraic/boolean
factoring (e.g., Espresso [28]) and if the new factorization will likely reduce the layout area, the
resynthesized corolla is "glued" back in place of the original one. Other works by the same authors
show the implications of corolla-based clustering for logic synthesis, delay reduction, testability,
etc.

MFFCs: Cong and Ding [46] use the standard DAG representation of a combinational network to
find clusters for FPGA technology mapping. For every v e V, the authors of [46] inductively define
a fanout free cone of v, F F C ~ V, as follows: (i) v ~ FFC~, and (ii) if u ~ FFC~, u ~ v, and (u, w) ~ E
for some w, then w ~ FFC~. In other words, an FFC is a single-output subnetwork. A maximum
fanout-free cone for v (MFFC,) is an FFC~ such that if w¢PI and w E MFFC~ then for every
(u, w) ~ E, u ~ MFFCv. The intuition is that MFFCs are naturally suited for technology mapping
onto lookup table-based logic blocks which have a single primary output and a fixed number of
primary inputs. In [50], MFFC clusters are used for acyclic multi-way partitioning (see Section
3.5); here, the cluster sizes are heuristically thresholded since an MFFC can be quite large.

Cones: Given v ~ PO for a given DAG, Saucier et al. [167] define the cone of v to be the set of all
w E V such that there is a path from w to v. The authors of [167] use cones as a building block for
a multi-way FPGA partitioning algorithm. For each v ~ PO, the cone A~ is constructed, and
clusters C are formed by overlapping cones and extracting the "coarsest common cluster", i.e., C is
a cluster if for every cone A,, C n A~ = C or C n A~ = 0. A new clustering is then agglomeratively
constructed by iteratively finding Ch with maximum IE(fh)l/W(Ch) and merging it with Ct that
maximizes [E (f h u f l) l / w (f h u f l) . The merging continues as long as all the clusters satisfy
prescribed size and pin constraints. Saucier et al. applied this method to the Single-Device FPGA
Partitioning problem, and gave a modification which handles critical path delays. Each critical
path lies entirely within a single cone, so that by not splitting the cone the path will be contained in
a single cluster.

6.6. Integration o f clustering into a bipartitioning heuristic

Many of the above methods were originally proposed for use within an FM-based bipartitioning
approach. The simplest way to incorporate a clustering solution is via the two-phase approach, i.e.,
run FM on the contracted netlist, and use the result as the starting solution of a second run on the
flattened netlist. However, more sophisticated techniques may be preferable.

For example, Shin and Kim [176] run a variant of FM on the clustered netlist ten times on each
of five different clustering solutions (with k = n/12, n/11, n/lO, n/9, n/8), The FM variant is then run
only once on the flattened netlist, using the best of the 50 clustered bipartitionings as a starting
solution. Note that the FM variant actually consists of multiple passes where the cluster size
constraints become tighter within each pass; Shin and Kim state that this procedure allows closely
coupled cells to settle first, with freer cells moving closer to an optimum bipartitioning in later

68 CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

passes. Hence, this scheme makes hundreds of FM passes on clustered netlists before making
a single pass on a flattened netlist. It is difficult to evaluate whether this method is the most effective
use of FM passes: certainly, since FM passes come "cheaply" (in linear time), they can be integrated
within a clustering scheme in many creative ways.

Hauck and Borriello [94] discuss two unclustering methods which integrate a cluster hierarchy
into the application of FM. The iterative unclustering method [51] runs FM on the netlist
contracted from the top clustering in the hierarchy (with smallest k), then runs FM on the next
highest level in the hierarchy, etc. and finishes with a final run on the original flattened netlist. This
scheme allows FM to first make big moves, then gradually reduce the size of moves at each level of
the hierarchy. The edge unclustering method only unclusters the modules incident to cut edges,
allowing fine-grained optimization of these modules and coarse-grained optimization of the other
modules to occur simultaneously. However, in practice, the authors of [94] prefer the iterative
unclustering method.

Saab [160] draws an analogy with simulated annealing and observes that clustering (and
unclustering) should not proceed too quickly since the optimization process might become frozen
in a suboptimal solution. He proposes the opposite of iterative unclustering, namely running FM
first on the lowest level of the hierarchy, followed by clustering and then running FM on the next
level. An interesting aspect of his approach is that the clusterings themselves are formed based on
the order of moves in an FM run. The idea is that when one module is moved from Ca to C2, it tries
to pull its incident modules into C2 as well. Hence, a sequence of consecutive moves from Cx to
C2 may determine a natural cluster. This observation was also made by Hagen et al. [80], who
showed that a LIFO FM gain bucket organization encouraged the movement of entire clusters of
modules (see Section 3.3.1).

Finally, we note an intriguing approach of Barnard and Simon [17] that applies clustering to
spectral bisection. The second eigenvector of the contracted graph is computed, then the eigenvec-
tor is interpolated to approximate the eigenvector for the original graph, and finally this vector is
refined and split into a bipartitioning.

In summary, we have noted many distinct clustering constructions, and many ways in which
clusterings can be used within a general partitioning approach. However, we do not seem close to
understanding which approaches are better, or why. One reason is that it is generally difficult to
compare clustering strategies - many works present a single scheme for use in their own specialized
heuristic (e.g., FPGA partitioning [44], or TimberWolf placement [179]) without presenting any
results for alternative clustering schemes. Another reason is that while it may be easy to devise
clustering heuristics that optimize ratio cut, Absorption, etc., we do not know if these are the appro-
priate objectives for the specific application. For example, experiments conducted in [4] found that
WINDOW clusterings could improve such traditional objectives, but led to only average-quality
two-phase FM results. Indeed, it seems that almost any clustering heuristic will improve FM
performance via the two-phase strategy, but no heuristic particularly distinguishes itself from the
pack.

Since clustering is still a very poorly understood realm of bipartitioning, we believe that seeking
answers to the following questions will be important in future work:

• What is the correlation between clustering objectives and the effect of clusterings within two-
phase FM? Is there a natural clustering objective for the two-phase FM application?

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 69

• What is the best number of clusters? In a hierarchical approach, how many clusters should be at
each level and how many levels are needed?

• What is the best way to integrate a clustering or a series of clusterings into an FM-based
algorithm (e.g., given a CPU resource in terms of the number of FM passes made, how should
this resource be allocated)?

• What cluster size constraints should be imposed? Is it better to have balanced clusters (as
advocated by [30]), or to have large clusters mixed with small ones (as in edge unclustering)?

We believe that once the answers to these questions are understood, the best clustering strategies
will become evident.

7. Conclusions

The past several years have seen the field of netlist partitioning make numerous advances - in
terms of new formulations and objectives for various specific applications, and in terms of new
algorithmic approaches. This paper has surveyed these developments, with an emphasis on more
recent ideas. Throughout our discussion, we have attempted to note the research directions that
merit further investigation, but have also tried to avoid value judgements based on experimental
results. In this concluding section, we offer a summary of the benchmarking techniques for graphs
and circuits that have appeared in the literature; we end with a brief assessment of the more
promising approaches seen in recent works, and possible future directions for the field.

7.1. Benchmarking

Many studies of partitioning are not specific to VLSI applications, or otherwise did not have any
set of "real circuits" available for benchmarking. Thus, experiments have been conducted on
various classes of random graphs, including:

• Uniform: A graph G(n, p) has n vertices, with the edge between each pair of vertices independent-
ly present with probability p. Random graphs (and hypergraphs) have been used by e.g., [110,
187, 164]. See [26] for a review of graph-theoretic results established for this model.

• Geometric: The graph U(n, d) [110] is generated by picking n random (x, y) coordinate pairs
(corresponding to the n vertices) in the unit square, and introducing an edge between two vertices
if the Euclidean distance between their corresponding (x, y) locations is no greater than d.

• "Difficult" d-regular: A graph is in the class GBui(n, b, d) if it has n vertices, is d-regular, and has
expected optimum bisection width no greater than b. A construction was first given by Bui et al.
[29], and a simpler variant construction was given in [85].

• Bisection specific: A graph in the class of random graphs G2set(2n, Pl, P2, his) 1-30] has a given
edge internal to n-vertex clusters C1 and C2 with probabilities Pl and P2, respectively. Exactly bis
edges connect C1 with Cz, with bis very likely to be the cost of the optimum bisection.

• k-way specific: The class GGar(k, n/k, pi, Pe) [69] represents the multi-way extension of the
Bisection Specific construction. A graph in this class has k clusters, each of size n/k; the
C(k, 2). (n/k) 2 intracluster edges are each independently present with probability Pi, and the

70 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

k ' C (n / k , 2) intercluster edges are each independently present with probability Pe. See also such
works as [1].

Other, more complex random constructions have also been proposed, e.g., [124, 161].
In recent years, works on netlist partitioning have begun using benchmark suites collected by

ACM SIGDA for experimental comparisons. 14 Recently, the CAD Benchmarking Laboratory
(CBL) at North Carolina State University has succeeded the Microelectronics Center of North
Carolina as the host for maintaining and renewing suites of benchmarks (WWW:http://
www.cbl.ncsu.edu/www/CBL_Home.html/or ftp to ftp.cbl.ncsu.edu or email to benchmarks@
cbl.ncsu.edu). The benchmarks that most commonly appear in experiments in the literature belong
to the LayoutSynthesis90 and 92, ISCAS85 and 89 [121], and PDWorkshop93 suites; for FPGA
partitioning, the Partitioning93 suite is typically used. All of these benchmarks were originally
designed for either placement or synthesis, hence each experimenter must translate the benchmark
to some usable partitioning format. The differences in interpretations of the benchmarks can lead
to discrepancies in the resulting inputs, and researchers may end up comparing the cuts of graphs
and hypergraphs that are not identical. For example, the number of modules reported for the
Test02-06 benchmarks is higher in [195] than in [84], which is likely due to the interpretation of
I/O pads. In other cases, problems may arise from netlist connectivity. For example, when
converting the industry3.vpnr benchmark into PROUD format, the authors of GORDIAN
observed that the netlist was disconnected, and the smaller 27-module component was discarded
since it had no external connections and since GORDIAN requires connections to I/O pads in
order to place the circuit [155]. Other authors might not remove this smaller component, leading
to different bisection and ratio cut results for the same algorithm and the "same" test case.

We believe that the VLSI partitioning field would greatly benefit from a standard set of
benchmarks exclusively designed for partitioning. As a first step, TU Munich has made many
benchmarks available in PROUD format [183] (WWW: http: //www.regent.e-technik.tu-muen-
chen.de/) and we are currently making benchmarks available in a standard hypergraph format
(WWW: http://nexus2.cs.ucla.edu). Our group is currently working with TU Munich to ensure
consistency between our formats, making either format suitable for comparisons. Clearly, such
entities as the CBL are best equipped to take such efforts a step further, e.g., by constructing and
propagating self-consistent translators among the many existing partitioning input formats. Such
institutionalized uniformity will help to make future benchmarking results in the literature much
more meaningful. At the same time, care must also be taken not to constrain research paths by
removing useful information. As examples, (i) logic function information must be retained in order
to explore logic-based replication or combined resynthesis and partitioning (cf. [22]), and (ii)
directional information must be present in inputs to address acyclic, delay-minimization, etc.,
formulations.

By way of facilitating future comparisons, Table 1 lists various partitioning formulations, along
with works that have provided experimental results for some of the standard benchmarks. These
are of historical note since formulations can become popular simply due to the existence of

laGraphs from the Harwell-Boeing sparse matrix collection (anonymous ftp to orion.cerfacs.fr) have also appeared
occasionally in the literature (e.g., 1-160]) and provide an excellent set of test cases for graph partitioning algorithms.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

Table 1
Various partitioning formulations and some works that provide corresponding experimental results.

71

Objective Papers

Ratio cut (unit area)
Ratio cut (module area)
45/55 Bipartitioning
Bisection (unit area)
Bisection (module area)
FPGA devices
Scaled Cost
Cluster Ratio
Multi-way + slack (module area)
Multi-way + slack (unit area)
Multi-way balanced
Min-delay clustering
Absorption
DS
Density
Replication
MCM/Quadrisection

[187,82, 188,48, 51,156]
[51,31]
[156,190,94,6]
[94]
[188,84,51,176,195]
[125, 126,44, 100, 38, 157]
[37,3,4,5,6]
[3,193]
[49, 194]
[79, 8]
[11]
[140,45, 151,191]
[179,4]
[84,4]
[101]
[122,104]
[178,159,158]

comparison data. For example, Riess et al. [156] were the first to present 19 benchmark results for
the 45/55-constrained bipartitioning objective (i.e., L = 0.45n and U = 0.55n). The objective is of
interest since ratio cut solutions tend to be highly unbalanced and hence impractical, yet exact
bisections are too restrictive. This work has very quickly become a standard object of comparisons
(cf. [6, 94, 190]).

Many of the formulations listed in the table are quite similar, e.g., the first five formulations are
all bipartitioning variants. While it is unclear which formulation is "correct", all of the associated
bipartitioning algorithms are certainly comparable in some sense. It remains for the field to
establish a reasoned basis by which heuristic variants, and associated experimental results, can be
evaluated. For instance, Hauck and Borriello [94] recently completed an excellent study of
FM-based bipartitioning algorithms, yet their results do not use unit area (rather, they set
w(v) = deg(v) - 2 for each v ~ V). Although this unorthodox weighting scheme by no means
invalidates their conclusions, it does complicate future extensions of their study vis-~-vis other
works. We believe that whether to use area information, which balance constraints apply, etc., are
issues that can be addressed by identifying benchmarks (or benchmark variants) that are parti-
cularly suited for specific formulations.

Another weakness in the present "comparison-based literature" stems from having non-standard
implementations of traditional algorithms, e.g., many researchers (including ourselves) have imple-
mented their own FM-based 2-way or multi-way partitioners. On the other hand, Section
3 observed that subtle differences in implementation can have very large effects on solution quality.
Widespread availability of canonical, well-tested implementations of standard algorithms (e.g.,
through CBL) could alleviate this problem. Also, researchers could perhaps use a shared site to
make their source codes and/or executables available, to facilitate future comparisons as more

72 c.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

benchmarks become available.15 Authors of future work might also provide detailed descriptions
of their experimental protocols and benchmark instances, since so many discrepancies are possible.

Finally, there are many deeper questions associated with the use of benchmarks in the VLSI
part i t ioning literature (cf. panel discussions at many leading conferences in recent years). The
beginnings of a list might include:

• Is it correct, as has been the case in recent years, to equate "progress" with "beating" previous
results in terms of both solution quality and run-time? Arguably, this heavily biases against such
novel approaches as evolut ionary computing, parallel search, parallel annealing, constraint
satisfaction, etc. Experimental setup, data collection and report ing methodology, etc. will also
affect the perception of superiority. Fur thermore, the present t rend may well be responsible for
the recent proliferation of "new formulat ions" for which there are no previous results that must
be "beaten".

• Is it wise for the field to focus, as it has in recent years, on results for "real-world", as opposed to
"artificial", instances? Note that (i) the provenance and functionality of benchmarks are often
"sanitized" away so that it is unclear whether the benchmarks are representative; (ii) opt imal
solutions are never known for real-world instances (see [81] for a partial workaround); and (iii)
any benchmark suite (as opposed to a generator for a class of (random) instances) is limited in
size, which can in turn limit the significance of comparisons.

• Should industry users of CAD algori thms be more for thcoming with real-world test cases? Note
that the literature for, e.g., the Mult i -Way F P G A Device formulat ion [44, 100] includes test
cases that presently can be obtained only under a signed nondisclosure agreement.

7.2. Perspectives

We conclude our work by listing what we consider to be promising directions for future research.
First, we believe that move-based approaches such as iterative improvement , stochastic hill-

climbing, or evolut ionary opt imizat ion are increasingly attractive. Certainly, F M and its deriva-
tives have comprised the par t i t ioning state-of-the-art t h r o u g h o u t all areas of VLSI C A D dur ing
the past decade. However, small differences in implementa t ions can lead to large differences in
solut ion quality. 16 It seems worthwhi le to cont inue to explore various implementa t ions and
t ie-breaking strategies, especially given the large payoffs that can result f rom only minor code
changes.

Second, we have noted that in practice, move-based approaches are often run many times with
different random starting solutions. However, adapt ing the starting point based on knowledge from

15There are instructive precedents in the fields of combinatorial optimization and operations research. For example,
WWW http://netlib.att.com provides a repository for mathematical software and related items, including eigenvector
computations, mathematical programming and network flow packages, etc. Similarly, the OR-Library at the Imperial
College Management School (WWW http://mscmga.ms.ic.ac.uk/info.html)gives a collection of test data sets for a variety
of combinatorial formulations including LP, IP, QAP and matching (but not yet partitioning). Another type of impetus
comes from regular "challenges" within the field (cf. the ACM Physical Design Workshop placement challenges from
1987 1991, the recent DIMACS Challenges in combinatorial optimization, etc.).
16Such studies can call into question the conclusions drawn in oft-cited works, in this case those of [123, 164, 189]
regarding "lookahead" in iterative improvement strategies.

C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 73

prior iterations can more quickly lead to stable solution quality; such an "adaptive multi-start"
approach shares characteristics with hybrid genetic-local search techniques in evolutionary optim-
ization. The paradigm of evolutionary optimization, with its unique style of search in the solution
space, has claimed successes in the arenas of operations research and combinatorial optimization,
which bodes well for future application to VLSI partitioning.

Third, spectral approaches that utilize multiple eigenvectors appear promising. Previous spectral
approaches that associate a single eigenvector with a cluster [18] or use only one eigenvector [82]
may have inherent limitations. Works such as [6, 68] achieve solutions by associating a partition-
ing instance with the vector space comprised by multiple eigenvectors, yet heuristics for this
representation are largely undeveloped. In addition, older spectral ideas may be worth revisiting,
e.g., Donath and Hoffman [59] suggested varying the degree matrix to obtain better eigen-
vectors.

Fourth, finding good 1-dimensional circuit representations (i.e., linear orderings of the modules)
also seems promising. Dynamic programming can optimally split such an ordering into multiple
clusters with respect to many standard objectives. Also, analytic techniques such as conjugate
gradient and successive over-relaxation are naturally 1-dimensional. Finally, different methods for
producing a partitioning from a linear ordering (such as the PARABOLI approach of gradually
pulling apart an ordering while reoptimizing it) merit further investigation.

Fifth, we note that three trends - (i) the need to address highly constrained and complex
formulations (e.g., timing, I/O, clock period, etc. constraints), (ii) the increased transfer of algorithm
techniques from other well-established disciplines, and (iii) the availability of more computing
power for CAD optimizations combine to make combinatorial techniques increasingly viable.
Analogous to the rediscovery of spectral and flow computations in recent years, we believe that
approaches based on mathematical programming - including implicit enumeration methods such
as branch-and-bound solution of ILP formulations - will be a "growth area" in VLSI partitioning.

Sixth, clustering now seems a required extension to many existing algorithms in light of
increasing problem complexity. New criteria for clustering, as well as definitive studies correlating
performance of the two-phase FM mechanism and the underlying clustering strategy, are still
needed. Alternatives to the two-phase methodology are also well worth exploring. Works such as
[94] provide important first steps in this direction.

Finally, we have noted that the recent literature contains many heuristic forays and new problem
variations, which is not unexpected when many new works are essentially evaluated by the
numbers they achieve for a limited suite of (outdated) test cases. In the previous subsection, we
sketched a wish list for the future which includes: (i) canonical algorithm implementations (e.g., of
the KL and FM heuristics) for comparison, and more widespread conformity with standard
benchmark interchange formats, (ii) larger, public benchmarks with more functional and library
information, (iii) public availability of partitioning codes, test instances, and actual partitioning
solutions used in reported results, (iv) elimination of biases against nascent "future algorithm
technologies" which may not yet be competitive in terms of both solution quality and efficiency, (v)
more creative criteria for algorithms (cf. the "self-scaling" concept in [81]), and (vi) more complete
descriptions of experimental protocols, along with more statistically meaningful data. These may
be the most important future directions for researchers in VLSI partitioning, as we strive to achieve
increased relevance to current design practice, and a more reasoned, long-term, and scientific
approach to this intractable problem.

74 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

Acknowledgements

We thank Dennis Jen-Hsin Huang, Lars W. Hagen, Kenneth D. Boese and Bernhard M. Riess
for their contributions to this review, and Albert Chung-Wen Tsao and Sudhakar Muddu for
drawing figures. We also thank Martin D.F. Wong, Chung-Kuan Cheng, Pak K. Chan, Anthony
Vannelli, Youssef Saab, and many others who made early versions of their works available to us.
Finally, we thank James Hwang, Jon Frankle, Patrick Ciarlet and the anonymous reviewers for
their helpful comments.

References

[1] D.H. Ackley, A Connectionist Machine for Genetic Hillclimbing (Kluwer, Dordrecht, 1987).
[2] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice-Hall,

Englewood Cliffs, N J, 1993).
[3] C.J. Alpert and A.B. Kahng, Geometric embeddings for faster and better multi-way netlist partitioning, Proc.

ACM/IEEE Design Automation Conf. (1993) pp. 743 748.
1-4] C.J. Alpert and A.B. Kahng, A general framework for vertex orderings, with applications to netlist clustering, Proc.

IEEE Internat. Conf. Computer-Aided Design (1994) pp. 63-67.
1,5] C.J. Alpert and A.B. Kahng, Multi-way partitioning via spacefilling curves and dynamic programming, Proc.

ACM/IEEE Design Automation Conf. (1994) pp. 652-657.
I-6] C.J. Alpert and S.Z. Yao, Spectral partitioning: the more eigenvectors, the better, Proc. ACM/IEEE Design

Automation Conf. (1995) pp. 195-200.
1-7] A.A. Andreatta and C.C. Ribeiro, A graph partitioning heuristic for the parallel pseudo-exhaustive logical test of

VLSI combinational circuits, Ann. Oper. Res. 50 (1994) 1-36.
[8] S. Areibi and A. Vannelli, Advanced search techniques for circuit partitioning, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science (1993) pp. 77-98.
[9] S. Areibi and A. Vannelli, Circuit partitioning using a tabu search approach, Proc. IEEE Internat. Syrup. Circuits

and Systems (1993) pp. 1643-1646.
[10] S. Areibi and A. Vannelli, A combined eigenvector tabu search approach for circuit partition, in: Custom

Integrated Circuits Conf. (1993) pp. 9.7.1-9.7.4.
[11] S. Areibi and A. Vannelli, An efficient solution to circuit partitioning using tabu search and genetic algorithms,

Proc. 6th Internat. Conf. of Micro Electronics, Istanbul (1994) pp. 70-74.
[12] K.S. Arun and V.B. Rao, Two-way graph partitioning by principal components, Proc. IEEE lnternat. Symp.

Circuits and Systems (1990) pp. 2877-2880.
[13] K.S. Arun and V.B. Rao, New heuristics and lower bounds for graph partitioning, Proc. IEEE Internat. Symp.

Circuits and Systems (1991) pp. 1172-1175.
[14] B. Awerbuch and T. Leighton, Multicommodity flows: a survey of recent research, Proc. 4th Internat. Symp.

Algorithms and Computation (1993) pp. 297-302.
1-15] H.B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI (Addison-Wesley, Reading, MA,

1990).
[16] C.F. Ball, P.V. Kraus and D.A. Mlynski, Fuzzy partitioning applied to VLSl-floorplanning and placement, Proc.

IEEE lnternat. Symp. Circuits and Systems (1994) pp. 177-180.
1-17] S.T. Barnard and H.D. Simon, A fast multilevel implementation of recursive spectral bisection for partitioning

unstructured problems, Tech. Report RNR-92-033, NASA, Ames, November 1992.
1,18] E.R. Barnes, An algorithm for partitioning the nodes of a graph, SIAM J. Algebraic Discrete Methods 3(4) (1982)

541 550.
[19] E.R. Barnes, A. Vannelli and J.Q. Walker, A new heuristic for partitioning the nodes of a graph, SIAM J. Discrete

Math. 1(3) (1988) 299-305.

CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 75

[20] J.J. Bartholdi and L.K. Platzman, Heuristics based on spacefilling curves for combinatorial problems in euclidean
space, Manaqement Sci. 3,1(3) (1988) 291 305.

[21] E.B. Baum, Iterated descent: a better algorithm for local search in combinatorial optimization problems, in:
D. Touretzky (Ed.), Proc. Neural Information Processing Systems (1988).

[22] M. Beardslee and A. Sangiovanni-Vincentelli, An algorithm for improving partitions of pin-limited multi-chip
systems, Proc. IEEE lnternat. Conf. Computer-Aided Design (1993) pp. 378-385.

[23] C. Berge, Graphs and Hypergraphs (American Elsevier, New York, 1976).
[24] J. Blanks, Near-optimal placement using a quadratic objective function, Proc. ACM/IEEE Design Automation

Conf. (1985) pp. 609-615.
[25] K.D. Boese, A.B. Kahng and S. Muddu, A new adaptive multi-start technique for combinatorial global optimiza-

tions, Oper. Res. Lett. 16 (1994) 101-113.
[26] B. Bollobas, Random Graphs (Academic Press, New York, 1985).
[27] R.B. Boppana, Eigenvalues and graph bisection: an average case analysis, Proc. IEEE Syrup. Foundations of

Computer Science (1987) pp. 280-285.
[28] R. Brayton, G. Hachtel, C. McMullen and A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI

Synthesis (Kluwer, Dordrecht, 1985).
[29] T. Bui, S. Chaudhuri, T. Leighton and M. Sipser, Graph bisection algorithms with good average case behavior,

Combinatorica 7(2) (1987) 171-191.
[30] T. Bui, C, Heigham, C. Jones and T. Leighton, Improving the performance of the Kernighan-Lin and simulated

annealing graph bisection algorithms, Proc. ACM/IEEE Design Automation Conf. (1989) pp. 775 778.
[31] T.N. Bui and B.R. Moon, A fast and stable hybrid genetic algorithm for the ratio-cut partitioning problem on

hypergraphs, Proc. ACM/IEEE Design Automation Conf. (1994) pp. 664-669.
1-32] T.N. Bui and B.R. Moon, A genetic algorithm for a special class of the quadratic assignment problem, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, Vol. 16 (1994) pp. 99-116.
[33] T. Bultan and C. Aykanat, circuit partitioning using parallel mean field annealing algorithms, IEEE Symp. Parallel

and Distributed Processing (1991) pp. 534-541.
[34] R.E. Burkard and T. Bonniger, A. Heuristic for quadratic boolean programs with applications to quadratic

assignment, European J. Oper. Res. 13 (1983) 372-386.
[35] R.L. Cannon, J.V. Dave and J.C. Bezdek, Efficient implementation of the fuzzy c-means clustering algorithms,

IEEE Trans. Pattern Anal. Machine Intelligence 8(2) (1986) 248-255.
[36] R.C. Carden and C.-K. Cheng, A global router using an efficient approximate multicommodity multiterminal flow

algorithm, Proc. ACM/IEEE Design Automation Conf. (1991) pp. 316-321.
[37] P.K. Chan, M.D.F. Schlag and J.Y. Zien, Spectral k-way ratio-cut partitioning and clustering, IEEE Trans.

Comput.-Aided Des. 13(9) (1994) 1088-1096.
[38] P.K. Chan, M.D.F. Schlag and J.Y. Zien, Spectral based multi-way FPGA partitioning, Proc. ACM/SIGDA

Internat. Workshop on Field-Programmable Gate Arrays (1995) pp. 133-139.
[39] R. Chandrasekharam, S. Subhramanian and S. Chaudhury, Genetic algorithm for node partitioning problem and

applications in VLSI design, lEE Proc. E (Comput. Digital Techniques) 140(5) (1993) 255-260.
[40] H.R. Charney and D.L. Plato, Efficient partitioning of components, Proc. Design Automation Workshop (1968) pp.

16-0-16-21.
[41] A.C. Chatterjee and R. Hartley, A new simultaneous circuit partitioning and chip placement approach based on

simulated annealing, Proc. ACM/IEEE Design Automation Conf. (1990) pp. 36-39.
[42] Y.-P. Chen, T.-C. Wang and D.F. Wong, A graph partitioning problem for multiple-chip design, Proc. IEEE

lnternat. Syrup. Circuits and Systems (1993) pp. 1778-1781.
[43] C.K. Cheng, The optimal partitioning of networks, Networks 22 (1992) 297-315.
[44] N.-C. Chou, L.-T. Liu, C.-K. Cheng, W.-J. Dai and R. Lindelof, Circuit partitioning for huge logic emulation

systems, Proc. ACM/IEEE Design Automation Conf. (1994) pp. 244-249.
[45] J. Cong and Y. Ding, An optimal technology mapping algorithm for delay optimization in lookup-table based

FPGA designs, Proc. IEEE Internat. Conf. Computer-Aided Design (1992) pp. 48-53.
[46] J. Cong and Y. Ding, On area/depth trade-off in LUT-based FPGA technology mapping, Proc. ACM/IEEE

Design Automation Conf. (1993) pp. 213-218.

76 C.J. Alpert, A.B. Kahng J lNTEGRATION, the VLSI Journal I9 (1995) 1 81

[47] J. Cong, L. Hagen and A.B. Kahng, Random walks for circuit clustering, Proc, IEEE lnternat. ASIC Conf. (1991)
pp. 14.2.1-14.2.4.

[48] J. Cong, L. Hagen and A.B. Kahng, Net partitions yield better module partitions, Proc. ACM/IEEE Design
Automation Conf. (1992) pp. 47 52.

[49] J. Cong, W. Labio and N. Shivakumar, Multi-way VLSI circuit partitioning based on dual net representation,
Proc. IEEE Internat. Conf. Computer-Aided Design (1994) pp. 56-62.

[50] J. Cong, Z. Li and R. Bagrodia, Acyclic multi-way partitioning of boolean networks, Proc. ACM/IEEE Design
Automation Conf. (1994) pp. 670-675.

[51] J. Cong and M'L. Smith, A parallel bottom-up clustering algorithm with applications to circuit partitioning in
VLSI design, Proe. ACM/1EEE Design Automation Conf. (1993) pp. 755-760.

[52] A. Dasdan and C. Aykanat, Improved multiple-way circuit partitioning algorithms, Proc. ACM/SIGDA Internat.
Workshop on Field-Programmable Gate Arrays (1994).

[53] H.L. Davidson and E. Kelly, Personal communication, July 1993.
[54] D.E. Van den Bout and T.K. Miller III, Graph partitioning usng annealed neural networks, IEEE Trans. Neural

Networks 1(2) (1990) 192 203.
[55] S. Dey, F. Brglez and G. Kedem, Corolla based circuit partitioning and resynthesis, Proc. ACM/1EEE Design

Automation Conf. (1990) pp. 607-612.
[56] S. Dey, F. Brglez and G. Kedem, Partitioning sequential circuits for logic optimization, Proc. IEEE lnternat. Conf.

Computer Design (1990) pp. 70-76.
[57] W.E. Donath, Placement and average interconnection lengths of computer logic, IEEE Trans. Circuits Systems

CAS-26(4) (1979) 272-277.
[58] W.E. Donath, Logic partitioning, in: B. Preas and M. Lorenzetti (Eds.), Physical Design Automation of VLSI

Systems (Benjamin/Cummings, Menlo Park, CA, 1988) pp. 65-86.
[59] W.E. Donath and A.J. Hoffman, Lower bounds for the partitioning of graphs, 1BM J. Res. Develop. 17(5) (1973)

420-425.
[60] A.E. Dunlop and B.W. Kernighan, A procedure for layout of standard-cell VLSI circuits, IEEE Trans. Comput.-

Aided Des. 4(1) (1985) 92-98.
[61] S. Dutt, New faster Kernighan-Lin type graph-partitioning algorithms, Proc. IEEE lnternat. Conf. Computer-

Aided Design (1993) pp. 370-377.
[62] J. Fan, B. Catanzaro, C.K. Cheng and S.H. Lee, Partitioning of opto-electronic multichip modules, Proc. IEEE

Multi-Chip Module Conf. (1994) pp. 138 143.
[63] T.A. Feo and M. Khellaf, A class of bounded approximation algorithms for graph partitioning, Networks 20 (1990)

181-195.
[64] M. Feuer, Connectivity of random logic, IEEE Trans. Comput. C-31(1) (1982) 29 33.
[65] C.M. Fiduccia and R.M. Mattheyses, A linear time heuristic for improving network partitions, Proc. ACM/1EEE

Design Automation Conf. (1982) pp. 175-181.
[66] L.R. Ford Jr. and D.R. Fulkerson, Flows in Networks (Princeton Univ. Press, Princeton, 1962).
[67] J. Frankle, Circuit placement methods using multiple eigenveetors and linear probe techniques, Ph.D. Thesis, UC

Berkeley, 1987.
[68] J. Frankle and R.M. Karp, Circuit placement and cost bounds by eigenvector decomposition, Proc. IEEE

lnternat. Conf. Computer-Aided Design (1986) pp. 414-417.
[69] J. Garbers, H.J. Promel and A, Steger, Finding clusters in VLSI circuits, Proc. IEEE Internat. Conj. Computer-

Aided Design (1990) pp. 520-523.
[70] M. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP Completeness (Freeman,

San Francisco, 1979).
[71] C.H. Gebotys and M.I. Elmasry, Optimal VLSI Architectural Synthesis: Area, Performance, and Testability

(Kluwer, Dordrecht, 1992).
[72] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,

IEEE Trans. Pattern Anal. Machine Intelligence 6 (1984) 721-741.
[73] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, New York, 1981).
[74] F. Glover, Tabu Search-Part I, ORSA J. Comput. 1 (1989) 190-206.

CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81 77

[75]

[76]

[77]
[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]
[89]
[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]
[99]

[lOO]

[lOl]

M.K. Goldberg and M. Burstein, Heuristic improvement technique for bisection of VLSI networks, Proc. IEEE
Internat. Conf. Computer Design (1983) pp. 122-125.
A.V. Goldberg, I~. Tardos and R.E. Tarjan, Network flow algorithms, Tech. Report STAN-CS-89-1252, Stanford
University CS Dept., 1989.
R. Gomory and T.C. Hu, Multi-terminal network flows, J. SlAM 9 (1961) 551-570.
J.W. Greene and K.J. Supowit, Simulated annealing without rejected moves, Proc. IEEE Internat. Conf. Computer
Design (1984) pp. 658-663.
S.W. Hadley, B.L. Mark and A. Vannelli, An efficient eigenvector approach for finding netlist partitions, IEEE
Trans. Comput.-Aided Des. 11(7) (1992) 885 892,
L.W. Hagen, D.J.-Huang and A.B. Kahng, On implementation choices for iterative improvement partitioning
algorithms, IEEE Trans. Comput.-Aided Des. (1995) submitted.
L. Hagen, D.J.-H. Huang and A.B. Kahng, Quantified suboptimality of VLSI layout heuristics, ACM/1EEE
Desi9 n Automation Conf. (1995) pp. 216 221.
L. Hagen and A.B. Kahng, Fast spectral methods for ratio cut partitioning and clustering, Proc. IEEE lnternat.
Conf. Computer-Aided Design (1991) pp. 10 13.
L. Hagen and A.B. Kahng, Improving the quadratic objective function in module placement, Proc. IEEE Internat.
ASIC Conf. (1992) pp. 42-45.
L. Hagen and A.B. Kahng, A new approach to effective circuit clustering, Proc. IEEE lnternat. Conf. Computer-
Aided Design (1992) pp. 422 427.
L. Hagen and A.B. Kahng, New spectral methods for ratio cut partitioning and clustering, IEEE Trans. Comput.-
Aided Des. 11(9) (1992) 1074 1085.
L. Hagen and A.B. Kahng, Combining problem reduction and adaptive multi-start: a new technique for superior
iterative partitioning, IEEE Trans. Comput.-Aided Des., to appear.
L. Hagen, A.B. Kahng, F.J. Kurdahi and C. Ramachandran, On the intrinsic rent parameter and spectra-based
partitioning methodologies, IEEE Trans. Comput.-Aided Des. 13(1) (1994) 27-37.
B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res. 13(2) (1988) 311-329.
K.M. Hall, An r-dimensional quadratic placement algorithm, Management Sci. 17 (1970) 219-229.
T. Hamada, C.-K. Cheng and P.M. Chau, A wire length estimation technique utilizing neighborhood density
equations, Proc. ACM/IEEE Design Automation Conf. (1992) pp. 57-61.
M. Hanan, P.K. Wolff and B.J. Agule, A study of placement techniques, J. Des. Automation Fault-Tolerant
Comput. 2 (1978) 28 61.
J. Hag and J.B. Orlin, A faster algorithm for finding the minimum cut in a graph, Proc. ACM/SIAM Syrup.
Discrete Algorithms, Orlando (1992) pp. 165 174.
N. Hasan and C.L. Liu, Minimum fault coverage in reconfigurable arrays, Proc. IEEE Internat. Symp. on
Fault-Tolerant Computing Systems (1988) pp. 248 253.
H. Hauck and G. Borriello, An evaluation of bipartitioning techniques, Proc. Chapel Hill Con.[. on Adv. Research in
VLSI (1995) to appear.
S. Hauck and G. Borriello, Logic partition orderings for multi-FPGA systems, Proc. ACM/SIGDA Internat.
Workshop on Field-Programmable Gate Arrays (1995) pp. 32-38.
B. Hendrickson and R. Leland, An improved spectral graph partitioning algorithm for mapping parallel
computations, Tech. Report, Sandia National Laboratories, September 1992.
A.G. Hoffman, The dynamic locking heuristic a new graph partitioning algorithm, Proc. IEEE Internat. Symp.
Circuits and Systems (1994) pp. 173-176.
J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, MI, 1975).
T.C. Hu and K. Moerder, Multiterminal flows in a hypergraph, in: T.C. Hu and E. Kuh (Eds.), VLSI Circuit
Layout: Theory and Design (IEEE Press, New York, 1985) pp. 87-93.
D.J.-H. Huang and A.B. Kahng, Multi-way system partitioning into single or multiple type FPGAs, Proc.
ACM/SIGDA lnternat. Workshop on Field-Programmable Gate Arrays (1995) pp. 140-145.
D.J.-H. Huang and A.B. Kahng, When clusters meet partitions: new density-based methods for circuit decomposi-
tion, Proc. European Design and Test Con,[. (1995) pp. 60-64.

78 C..Z Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]
[113]

[114]

[115]
[116]

[1173

[118]

[119]
[120]

[121]

[122]

[123]

[124]
[125]

[126]

[127]
[128]

[129]
[130]

M. Hulin, Circuit partitioning with genetic algorithms using a coding scheme to preserve the structure of the
circuit, Parallel Problem Solving from Nature (Springer, Berlin, 1990) pp. 75-79.
J. Hwang and A. El Gamal, Optimal replication for min-cut partitioning, Proc. IEEE lnternat. Conf. Computer-
Aided Design (1992) pp. 432-435.
J. Hwang and A. E1 Gamal, Optimal replication for min-cut partitioning, IEEE Trans. Comput.-Aided Des. 14 (1)
(1995) 96-106.
T.-T. Hwang, R.M. Owens and M.J. Irwin, Exploiting communication complexity for multilevel logic synthesis,
IEEE Trans. Comput.-Aided Des. 9(10) (1990) 1017-1027.
E. Ihler, D. Wagner and F. Wagner, Modeling hypergraphs by graphs with the same mincut properties, Inform.
Process. Lett. 4fi (4) (1993) 171-175.
S. Iman, M. Pedram, C. Fabian and J. Cong, Finding uni-directional cuts based on physical partitioning and logic
restructuring, Proc. ACM/SIGDA Physical Design Workshop, Los Angeles (1993) pp. 187-198.
H. Inayoshi and B. Manderick The weighted graph-bi-partitioning problem: a look at GA performance, Parallel
Problem Solving from Nature (Springer, Berlin, 1992) pp. 617 625.
D.S. Johnson, Local optimization and the traveling salesman problem, Proc. 17th Internat. Colloq. on Automata,
Languages and Programming (1990) pp. 446-460.
D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Schevon, Optimization by simulated annealing: an experi-
mental evaluation, Part I, graph partitioning, Oper. Res. 37 (1989) 865-892.
S.C. Johnson, Hierarchical clustering schemes, Psychometrika 32(3) (1967) 241-254.
A.B. Kahng, Fast hypergraph partition, Proc. ACM/IEEE Design Automation Conf. (1989) pp. 762-766.
Y. Kamidoi, S. Wakabayashi, J. Miyao and N. Yoshida, A fast heuristic for hypergraph bisection, Proc. IEEE
lnternat. Syrup. Circuits and Systems, Vol. 2 (1991) pp. 1160 1163.
D. Karger, Global min cuts in RNC, and other ramifications of a simple min-cut algorithm, Proc. ACM/SIAM
Syrup. Discrete Algorithms (1993) pp. 21-30.
H. Karloff, Linear Programming (Birkhauser, Basel, 1991).
S. Kauffman and S. Levin, Toward a general theory of adaptive walks on rugged landscapes, J. Theoret. Biol. 128
(1987) 11 45.
B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System Tech. J. 49(2)
(1970) 291-307.
S. Khan and V. Madisetti, Yield-based system partitioning strategies for MCM and SEM design, Proc. IEEE
lnternat. Syrup. Circuits and Systems (1994) pp. 144 149.
S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671-680.
J.M. Kleinhans, G. Sigl, F.M. Johannes and K.J. Antreich, GORDIAN: VLSI placement by quadratic program-
ming and slicing optimization, IEEE Trans. Comput.-Aided Des. 10(3) (1991) 356-365.
K. Kozmifiski, Benchmarks of layout synthesis-evolution and current status, Proc. ACM/IEEE Design Automa-
tion Conf. (1991) pp. 265 270.
C. Kring and A.R. Newton, A cell-replicating approach to mincut-based circuit partitioning, Proc. IEEE Internat.
Conf. Computer-Aided Design (1991) pp. 2 5.
B. Krishnamurthy, An improved min-cut algorithm for partitioning VLSI networks, lEE[Trans. Comput. 33 (5)
(1984) 438 446.
B. Krishnamurthy, Constructing test cases for partitioning heuristics, lEE[Trans. Comput. C-36(9) (1987) 1112-1114.
R. Ku2nar, F. Brglez and K. Kozmifiski, Cost minimization of partitions into multiple devices, Proc. ACM/IEEE
Design Automation Conf. (1993) pp. 315-320.
R. Ku~nar, F. Brglez and B. Zajc, Multi-way netlist partitioning into heterogeneous FPGAs and minimization of
total device cost and interconnect, Proc. ACM/1EEE Design Automation Conf. (1994) pp. 238-243.
P.J.M. Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications (Reidel, Boston, 1987).
B. Landman and R. Russo, On a pin versus block relationship for partition of logic graphs, 1EEE Trans. Comput.
C-20 (1971) 1469.
E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart, and Winston, New York, 1976).
E.L. Lawler, K.N. Levitt and J. Turner, Module clustering to minimize delay in digital networks, IEEE Trans.
Comput. 18 (1969) 47-57.

CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1-81 79

[131]

[132]

[133]
[134]

[135]

[136]

1-137]

[138]

[139]

[140]

[141]

1-142]
[143]

[144]

[145]

[146]

1-147]
[148]

[149]

1-15o]
[151]

[152]

[153]

[154]

[155]
[156]

[157]

T. Leighton, F. Makedon and S. Tragoudas, Approximation algorithms for VLSI partition problems, Proc. IEEE
lnternat. Symp. Circuits and Systems (1990) pp. 2865-2868.
T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multicommodity flow problems
with applications to approximation algorithms, Proc. IEEE Symp. Foundations of Computer Science (1988) pp.
422-431.
T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout (Wiley-Teubner, New York, 1990).
A. Lim and Y.-M. Chee, Graph partitioning using tabu search, Proc. IEEE Internat. Syrup. Circuits and Systems
(1991) pp. 1164-1167.
L.T. Liu, M.T. Kuo, C.K. Cheng and T.C. Hu, A replication cut for two-way partitioning, IEEE Trans.
Comput.-Aided Des. 14(5) (1995) 623-630.
L.T. Liu, M. Shih and C.-K. Cheng, Data flow partitioning for clock period and latency minimization, Proc.
ACM/IEEE Design Automation Conf. (1994) pp. 658-663.
L.T. Liu, M. Shih, N.-C. Chou, C.-K. Cheng and W. Ku, Performance driven partitioning using retiming and
replication, Proc. IEEE lnternat. Conf. Computer-Aided Design (1993) pp. 296-299.
D.W. Matula and F. Shahrokhi, The maximum concurrent flow problem and sparsest cuts, Tech. Report,
Southern Methodist Univ., March 1986.
B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi et al. (Eds.), Graph Theory, Combinatorics, and
Applications (Wiley, New York, 1991) pp. 871-898.
R. Murgai, R.K. Brayton and A. Sangiovanni-Vincentelli, On clustering for minimum delay/area, Proc. IEEE
lnternat. Conf. Computer-Aided Design (1991) pp. 6-9.
H. Nagamochi and T. Ibaraki, Computing edge-connectivity in multigraphs and capacitated graphs, SIAM J.
Discrete Math. 5(1) (1992) 54-66.
A.R. Newton, personal communication, April 1991.
T.-K. Ng, J. Oldfield and V. Pitchumani, Improvements of a mincut partition algorithm, Proc. IEEE Internat.
Conf. Computer-Aided Design (1987) pp. 470-473.
C.-I. Park and Y.-B. Part, An efficient algorithm for VLSI network partitioning problem using a cost function with
balancing factor, IEEE Trans. Comput.-Aided Des. 12(11)(1993) 1686-1694.
C. Peterson and J.R. Anderson, Neural networks and NP-complete optimization problems; a performance study
on the graph bisection problem, Complex Systems 2(1) (1988) 59-89.
L.T. Pillage and R.A. Rohrer, A quadratic metric with a simple solution scheme for initial placement, Proc.
ACM/IEEE Design Automation Conf. (1988) pp. 324-329.
S. Pissanetsky, Sparse Matrix Technology (Academic Press, New York, 1984).
A. Pothen, H.D. Simon and K.P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SlAM J. Matrix
Anal. Appl. 11 (1990) 430~452.
B.T. Preas and M.J. Lorenzetti (Eds.), Physical Design Automation of VLSI Systems (Benjamin/Cummings, Menlo
Park, CA, 1988).
F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction (Springer, New York, 1985).
R. Rajaraman and D.F. Wong, Optimal clustering for delay minimization, Proc. ACM/IEEE Design Automation
Conf. (1993) 309 314.
C.R. Rao, The use and interpretation of principal component analysis in applied research, Sankhya Ser. A 26
(1964) 329-358.
M. Razaz, A fuzzy C-means clustering placement algorithm, Proc. IEEE lnternat. Symp. Circuits and Systems
(1993) 2051-2054.
F. Rendl and H. Wolkowicz, A projection technique for partitioning the nodes of a graph, Tech. Report,
University of Waterloo, May 1994.
B.M. Riess, Personal communication, February 1995.
B.M. Riess, K. Doll and F.M. Johannes, Partitioning very large circuits using analytical placement techniques,
Proc. ACM/IEEE Design Automation Conf. (1994) pp. 646-651.
B.M. Riess, H.A. Giselbrecht and B. Wurth, A new k-way partitioning approach for multiple types of FPGAs,
Tech. Report TUM-LRE-95-2, Technical University of Munich, 1995.

80 C.J. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81

[158]

[159]

[160]
[161]
[162]

[163]
[164]
[165]

[166]

[167]

[168]

[169]

[170]

[171]
[172]
[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[1843

[185]

B.M. Riess and A.A. Schoene, Architecture driven k-way partitioning for multichip modules, Proc. European
Design and Test Conf. (1995) pp. 71-76.
K. Roy and C. Sechen, A timing-driven N-way chip and multi-chip partitioner, Proc. IEEE lnternat. Conf.
Computer-Aided Design (1993) pp. 240-247.
Y. Saab, A fast and robust network bisection algorithm, IEEE Trans. Comput. to appear.
Y. Saab, New methods for construction of test cases for partitioning heuristics, Progress VLSI Des., to appear.
Y. Saab and V. Rag, Fast effective heuristics for the graph bisectioning problem, IEEE Trans. Comput.-Aided Des.
9(1) (1990) 91-98.
Y. Saab and V. Rag, On the graph bisection problem, IEEE Trans. Circuits Systems 39(9) (1992) 760-762.
L.A. Sanchis, Multiple-way network partitioning, IEEE Trans. Comput. 38(1) (1989) 62-81.

L.A. Sanchis, Multiple-way network partitioning with different cost functions, IEEE Trans. Comput. 42(22) (1993)
1500-1504.
H. Saran and V.V. Vazirani, Finding k-cuts within twice the optimal, Proc. IEEE Syrup. Foundations of Computer
Science (1991) pp. 743-751.
G. Saucier, D. Brasen and J.P. Hiol, Partitioning with cone structures, Proc. IEEE lnternat. Conf. Comput.-Aided
Des. (1993) pp. 236-239.
D.M. Schuler and E.G. Ulrich, Clustering and linear placement, Proc. ACM/IEEE Design Automation Conf. (1972)
pp. 50-56.
D.G. Schweikert and B.W. Kernighan, A proper model for the partitioning of electrical circuits, Proc. ACM/IEEE
Design Automation Conf. (1972) pp. 57-62.
C. Sechen and D. Chen, An improved objective function for mincut circuit partitioning, Proc. IEEE lnternat. Conf.
Computer-Aided Design (1988) pp. 502-505.
N.A. Sherwani, Algorithms for VLS1 Physical Design Automation (Kluwer, Boston, 1993).
M. Shih, Personal communication, 1993.
M. Shih and E. Kuh, Quadratic boolean programming for performance-driven system partitioning, Proc.
ACM/IEEE Design Automation Conf. (1993) pp. 761-765.
M. Shih, E. Kuh and R.-S. Tsay, Performance-driven system partitioning on multi-chip modules, Proc. ACM
IEEE Design Automation Conf. (1992) pp. 53-56.
M. Shih, E. Kuh and R.-S. Tsay, Timing-driven system partitioning by constraints decoupling method, Proc.
IEEE Multi-Chip Module Conf. (1993) pp. 164-169.
H. Shin and C. Kim, A simple yet effective technique for partitioning, IEEE Trans. VLSI Systems 1(3) (1993)
380-386.
G. Sigl, K. Doll and F.M. Johannes, Analytical placement: a linear or a quadratic objective function? Proc.
ACM/IEEE Design Automation Conf. (1991) pp. 427-432.
P.R. Suaris and G. Kedem, An algorithm for quadrisection and its application to standard cell placement, IEEE
Trans. Circuits Systems 35(3) (1988) 294-303.
W. Sun and C. Sechen, Efficient and effective palcements for very large circuits, Proc. IEEE lnternat. Conf.
Computer-Aided Design (1993) pp. 170-177.
L. Tag, Y.C. Zhao, K. Thulasiraman and M.N.S. Swamy, An efficient tabu search algorithm for graph bisection-
ing, Proc. Great Lakes Symp. VLSI (1991) pp. 92-95.
M. Toyonaga, S.-T. Yang, T. Akino and I. Shirakawa, A new approach of fractal-dimension based module
clustering for VLSI layout, Proc. IEEE lnternat. Syrup. Circuits and Systems (1994) pp. 185-188.
S. Tragoudas, An improved algorithm for the generalized rain-cut partitioning problem, Proc. Great Lakes Syrup.
VLSI (1994) pp. 242-247.
R.-S. Tsay and E.S. Kuh, A unified approach to partitioning and placement, IEEE Trans Circuits Systems 38(5)
(1991) 521-533.
A. Vannelli and S.W. Hadley, A Gomory-Hu cut tree representation of a netlist partitioning problem, IEEE
Trans. Circuits Systems 37(9) (1990) 1133-1139.
A. Vannelli and G.S. Rowan, A constrained clustering approach for partitioning netlists, Proc. 28th Midwest Symp.
on Circuits and Systems (1985) pp. 211-215.

CJ. Alpert, A.B. Kahng / INTEGRATION, the VLSI Journal 19 (1995) 1 81 81

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

G. Vijayan, Generalization of min-cut partitioning to tree structures and its applications, IEEE Trans. Comput.
40(3) (1991) 307-314.
Y.-C. Wei and C.-K. Cheng, Towards efficient hierarchical designs by ratio cut partitioning, Proc. IEEE Internat.
Conf. Computer-Aided Design (1989) pp. 298-301.
Y.-C. Wei and C.-K. Cheng, An improved two-way partitioning algorithm with stable performance, IEEE Trans.
Comput.-Aided Des. 10(12) (1991) 1502-1511.
N.-S. Woo and J. Kim, An efficient method of partitioning circuits for multiple-FPGA implementation, Proc.
ACM/IEEE Design Automation Conf. (1993) pp. 202 207.
H. Yang and D.F. Wong, Efficient network flow based min-cut balanced partitioning, Proc. IEEE lnternat. Conf.
Computer-Aided Design (1994) pp. 50-55.
H. Yang and D.F. Wong, Circuit clustering for delay minimization under area and pin constraints, Proc. European
Design and Test Conf. (1995) pp. 65 70.
H. Yang and D.F. Wong, Optimal wiring minimization for partitioned circuits with least replication, manuscript,
1995.
C.-W. Yeh, C.-K. Cheng and T.-T.Y. Lin, A probabilistic multi-commodity flow solution to circuit clustering
problems, Proc. IEEE lnternat. Conf. Computer-Aided Design (1992) pp. 428-431.
C.-W. Yeh, C.-K. Cheng and T.-T. Y. Lin, A general purpose, multiple-way partitioning algorithm, IEEE Trans.
Comput.-Aided Des. 13(12) (1994) 1480-1487.
C.-W. Yeh, C.-K. Cheng and T.-T.Y. Lin, Optimization by iterative improvement: an experimental evaluation on
two-way partitioning, IEEE Trans. Comput.-Aided Des. 14(2) (1995) 145-153.
H.J. Zimmerman, Fuzzy Set Theory and its Applications (Kluwer Nlijhoff, Dordrecht, 2nd ed., 1991).

