
a9o IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 7. JULY 1995

Short Papers

Prim-Dijkstra Tradeoffs for Improved
Performance-Driven Routing Tree Design

C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger

Abstract- Analysis of Elmore delay in distributed RC tree structures
shows the influence of both tree cost and tree radius on signal delay
in VLSI interconnects. We give new and efficient interconnection tree
constructions that smoothly combine the minimum cost and the minimum
radius objectives, by combining respectively optimnl algorithms due to
Prim and Dijkstra. Previous “shallow-light” techniques [Z], [31, [81, [131
are both less direct and less effective: in practice, our methods achieve
uniformly superior cost-radius tradeoffs. Timing simulations for a range
of IC and MCM interconnect technologies show that our wirelength
savings yield reduced signal delays when compared to shallow-light or
standard minimum spanning tree and Steiner tree routing.

I. INTRODUCTION AND MOTIVATION
With the scaling of device technology and die size, interconnection

delay now contributes up to 5670% of the clock cycle in dense,
high performance circuits [4]. Performance-driven layout design
has therefore been studied actively in recent years. Initial research
centered on timing-driven placement, where the objective is to place
modules on critical paths close together. Given a module placement,
timing-driven routing algorithms (e.g., [151, [17]) attempt to minimize
average or maximum signal delay from the source terminal to the
sink terminals of a signal net.

A signal net I’ = (~ 0 . u1, t in} is a set of n + 1 terminals, with
7’0 the source and the remaining terminals sinks. In the underlying
routing graph G = (L-, E), each edge e,, E E has cost d,, equal
to the (‘,-U, routing cost. The cost of the shortest P O - P ~ path in G is
denoted by B,, and R = m a x l ~ , ~ 7 , R, is the radius of G. A routing
tree T = (I-, E’) is a spanning subgraph of G with IE’I = n.
Given a routing tree T, the cost of the unique I I O - T ’ ~ path in T
is I , , the radius of T is r (T) = maxl<,<,l , , and the cost of T
is U’(T) = E, ’, E T d,, . We are primarily concerned with the case
where G is a complete graph with each eZJ having cost equal to the
Manhattan distance d,, .

For a given signal net, the proper objective for eficiently con-
structing a “high-performance routing tree” is not yet established.
We can obtain valuable insight by considering the Elmore delay,
i.e., the first moment of the impulse response for a distributed

Manuqcript received July 7, 1993; revised March 28, 1994. This work was
supported in part by the Department of Defense Graduate Fellowship: by NSF
MIP-9110696, NSF Young Investigator Award MIP-9257982, ARO DAAK-
70-92-K-0001, and ARO DAAL-03-92-G-0050; and by an NSF Graduate
Fellowship, NSF CCR-9010517, and Grants from Mitsubishi and OTL. This
paper was recommended by Associate Editor M. Sarrafzadeh.

C. J. Alpert, J. H. Huang, and A. B. Kahng are with the Computer Science
Department, University of California, Los Angeles, CA 90024 USA.

T. C. Hu is with the CSE Department, University of California at San
Diego, La Jolla, CA 92093 USA.

D. Karger was with the Computer Science Department, Stanford University,
Stanford, CA 94305 USA. He is now with the MIT Laboratory for Computer
Science, Cambridge, MA 02139 USA.

IEEE Log Number 9410373.

R C representation of the routing tree [l I]. This approximation has
been shown to have high fidelity with respect to SPICE-computed
delays, e.g., [14] simulated critical-path delays over a suite of
209 ripple-cany adder implementations and found near-perfect rank
correlation between SPICE-computed and Elmore delays, and [24]
gave theoretical motivations for this phenomenon.

Elmore delay is defined as follows [20]. Let T , and ce denote
respectively the resistance and capacitance of edge e, and let c, denote
the node capacitance of t i 2 . Given T, let T, denote the subtree of T
that is below edge e when T is rooted at 110, and let C , denote the sum
of node and edge capacitances of T,. Finally, let CO indicate the total
capacitance of T. The Elmore delay along edge e is T , . (2 + C ,). If
ro denotes the on-resistance of the output driver at the source node,
then the Elmore delay t (v Z) from source 7’0 to sink o, is given by

If re and ce are proportional to the length of e, then the ro . CO
term in (1) implies that t (u z) has linear dependence on w (T) , while
the summation term implies quadratic dependence on I , . This is the
essential “cost-radius conflict” of routing tree design: i) when ro is
relatively large, the ro . CO term dominates the summation term and
suggests a minimum-cost routing solution, but ii) when ro is relatively
small, the quadratic dependence on source-sink pathlength dominates,
and suggests a “star-like’’ sbortest-path tree topology. Typical values
of ro and ’;” (where F is unit wire resistance; is the “resistance
ratio” discussed in [5] and [9]) have generally decreased with the
trend to submicron CMOS and MCM technologies (see Table I),
suggesting that minimum-cost routing is becoming less correlated
with performance-driven routing.

The remainder of this paper is organized as follows. Section I1
surveys the class of “shallow-light” constructions that have pre-
viously addressed cost-radius tradeoffs. Section I11 presents our
two “Prim-Dijkstra” constructions, which directly trade off between
algorithms that are respectively optimal for cost and radius. Section
IV compares both the cost-radius and delay performance of our
heuristics to those of previous methods, and Section V concludes
with possible directions for future research.

11. RELATED WORK: SHALLOW-LIGHT TREES
A minimum spanning tree (MST, or T,tr) minimizes tree cost but

may have radius an unbounded factor larger than optimal. Conversely,
a shortest-path tree (SPT, or T . 5) minimizes tree radius but may
have cost an unbounded factor larger than optimal (see Fig. 1).
Several groups have proposed “shallow-light’’ tree constructions that
guarantee to capture properties of both T ~ J and T.5 simultaneously to
within constant factors of optimal [2] , [3], [8], [13]. Following [13],
we adopt the following definition.

Definition: Given a signal net I’ and constant parameters n. , j 2
1, an (a , J- t ree T = (Ir. E’) is a spanning tree over 1- that satisfies:
i) 1, 5 0 . R,. 1 2 i 5 n, and ii) w (T) 5 d . w(T,iI).

A spanning tree construction is shallow-light if for some constants
(I and jj it always returns an (a, i3)-tree. Since the cost of a spanning
tree rises as its radius is constrained, we are typically interested in

0278-0070/95$04.00 0 1995 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14. NO. 7, JULY 1995

Name IC 1 IC2 IC3
Technology 2.0 pm CMOS 1.2 pm CMOS 0.5 p m CMOS

rn 164.0 R 212.1 R 270.0 fl

891

MCM
MCM
25.0 St

TABLE I
INTERCONNECT PARAMETZRS FOR THREE CMOS IC TECHNOLOGIES AND AN MCM TECHNOLOGYa

i; = unit wire resistance
t = unit wire capacitance
sink loading capacitance

(x W p m)
chip size

0.033 n / p m 0.073 n / p m 0.112 R / p n 0.008 fl/pm
0.019 fF /pm 0.022 fF/pm 0.039 fF/pm 0.06 fF/pm

5.7 fF 7.06 fF 1.0 fF 1000 fF
0.0050 0.0029 0.0024 0.0031

1x1 em2 1x1 cm2 1x1 cm2 10x10 cm2

(c ,) are derived for minimum-size transistors.

(a) (b) (C)

Fig. 1. Three interconnection trees for the same signal net with uo at the
center: (a) the shortest-path tree T5 ; (b) the minimum spanning tree T M ; and
(c) a “tradeoff’ between the two constructions.

shallow-light constructions where N and 8 have an inverse functional
relationship, i.e., cy is a parameter of the construction and D decreases
as Q increases. The previous shallow-light constructions are all based
on the general technique of Awerbuch et al. [2]: i) construct T.w; ii)
visit the terminals of 1‘ in order of a depth-first traversal of T u ;
iii) whenever violations of the prescribed radius bound are observed,
insert or delete edges as necessary; and iv) return the shortest-path tree
over the resulting graph. Cong er al. [8] proposed the BRBC algorithm
for performance-driven global routing in VLSI and compared their
results against Steiner routing using the linear delay model. In [3],
Awerbuch et al. proposed an algorithm that is identical to BRBC and
showed that it constructs a (1 + Zc, 1 + $)-tree, for some parameter
E > 0. Finally, Khuller et al. [13] obtained a (1 + 6 , 1 + a) shallow-
light construction by “relaxing” edges, in contrast to earlier works
which add complete source-sink shortest paths when violations of
the radius bound occur.

A recent paper of Salowe et al. [21] presents a shortest-path
“bottleneck tree” construction that is not shallow-light. [21] was
motivated by the preliminary version of our present work [l] and
is a powerful generalization of what we call the ALG2 construction
in Section I11 (thus, the ALG2 construction was independently
developed by two groups; see Section 111-B below). Finally, the
topic of sparse graph spanners has been treated in the computational
geometry literature (e.g., [7]). However, a graph spanner has bounded
pathlengths between allpairs of nodes in a given graph, which is too
strong a constraint for our (single-source routing) application.

111. THE PRIM-DIJKSTRA TRADEOFF

The min-cost and min-radius objectives can be separately addressed
by Prim’s MST algorithm [18] and Dijkstra’s SPT algorithm [lo].
Tarjan [23] discusses the similarity between the Prim and Dijk-
stra algorithms: each is a variant of the “labeling method’ that
builds a spanning tree from a fixed source by adding the edge
that minimizes an algorithm-specific “key.” Our contribution stems
from observing that the min-cost and min-radius objectives can be
addressed simultaneously via direct combinations of the Prim and

Dijkstra constructions. The combination of competing objectives,
via a tradeoff of algorithms that are respectively optimal for these
objectives, is unusual. Furthermore, our approach is more natural and
symmetric than the shallow-light technique. While the constructions
that we present do not yield (a , d)-trees, they are in practice more
useful (see Section IV below).

A. The ALGI Tradeoff
Prim’s algorithm begins initially with the tree consisting only of

u o . The algorithm iteratively adds edge e z J and sink ut to T , where
1 1 , and 71J are chosen to minimize

dt, s.t. C) E T , U , E 1’ - T

Dijkstra’s algorithm also begins with the tree consisting only of 110.

The algorithm iteratively adds edge et, and sink 71, to T , where tiz

and t i , are chosen to minimize

Noticing the similarity between (2) and (3) leads to our ALGl
tradeoff, which iteratively adds edge e,, and sink ivl to T, where

and 1 1 , are chosen to minimize

(4)

for some choice of 0 5 c 5 1. When c = 0, ALGl is identical
to Prim’s algorithm and constructs trees with minimum cost. As c
increases, ALGl constructs a tree with higher cost but lower radius,
and when c = 1 ALGl is identical to Dijkstra’s algorithm. Sample
executions of ALGl for c = and c = $ are shown in Figs. 2(a)-(b).

Observation 1: ALGl constructs a tree T with c . I , 5 R, for
all sinks t i t .

ProoJ By strong induction; see Fig. 3. Assume that for every
ancestor t i J of uZ in Th, we have c . I , 5 R,. Consider a snapshot
of T immediately before ALGl adds sink uZ to T via edge e,,,
i.e., where U,,, is the parent of U , in T . Let nJ be the sink in T
which is the closest ancestor to U* in TS (possibly J = 0), and let
V k be the sink lying immediately past vJ along the shortest V O - V ,

path (z’k is not yet in T , and possibly k = a) . Since ALGl adds ti,
before r k , c . I,, + d,,, 5 I , + d J k . By the inductive hypothesis,
c . 1, 5 R,, and by the principle of optimality of shortest paths,
R, + d , k = Rk 5 R,. Since c . 1 , 5 c . 1, + d,,, , combining these

0
Observation 2: ALGl is not shallow-light for general graph in-

inequalities yields c . I , 5 R , .

stances [l]. 0

IEEE ’IRANSACTONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. VOL. 14, NO. 7, JULY 1995

e e1

ea 4

Fig. 4.
el; ALG2 adds edge e2. Note that paths 11 and I2 may overlap.

Illustration for proof of Observation 5 . Prim’s algorithm adds edge

TABLE I1
EQUIVALENCES OF ALGORITHM PARAMETERS

I ALGl I ALG2 I BRBC I KRY
User parameter I c I p I E I a

Fig. 2. Sample executions for ALGl and ALG2 for an 8-sink instance in the
Euclidean plane. The edge labels give the order in which the algorithms add
the edges into the tree. ALGl is illustrated in (a) with c = $ (radius 15.91,
cost 26.43) and (b) with c = (radius 10.32, cost 29.69). ALG2 is illustrated
with “corresponding” pararneterizations according to Table 11: (c) with p = 3
(radius 17.00, cost 23.63) and (d) with p = $ (radius 10.00, cost 30.28).

Fig. 3. Illustration for proof of Observation 1. Snapshot of the ALGl tree T
(solid lines) just before edge e,, is added. With respect to the u - v i shortest
path, t), is the sink on the path that is furthest from L’O and in T, while t!k
lies just after vJ and is not in T. The observation follows from the fact that
e,,,, and not is the next edge added to T .

Observation 3: For instances embedded in Euclidean space of any
dimension d. ALGl constructs a tree with cost within log n times a

0
This last observation of Lenhof, Salowe and Wrege provides some

encouragement regarding our conjecture [I] that ALGl is actually
shallow-light for geometric instances.

constant factor (dependent on d and c) of ~ (Z L I) [16].

B. The ALG2 Tradeoff

Note that Dijkstra’s algorithm can be viewed as using a key (in
the terminology of [23]) which is the L1 sum of edge costs in the
source-sink path (although L, usually denotes a vector norm, here
we simply say that the L, sum of quantities 11, x2, zn has value
(s ~ + z ~ + . . . + x P ,) ’ I P ; w e w r i t e thisas 11z1.sq;..,x,llp).In the
following, we use If to denote the L, sum of edge costs in the ~ 0 - z ’ ~

path in T. We will also use 12, I to denote the largest edge cost in the
VO-v, path. The observation regarding Dijkstra’s algorithm suggests
our ALG2 tradeoff iteratively add edge e,, and sink t~~ to T , where
tiz ahd U , are chosen to minimize

for some choice of 1 5 p < (x. Sample executions of ALG2 for
p = 3 and p = $ are shown in Fig. 2(c)-(d).

The ALG2 tradeoff and some of its properties were discovered
independently by Salowe, Richards and Wrege [21], via an approach
that is considerably different from ours. Salowe et al. apply the
general single-source shortest path labeling method developed by
Tarjan [23] to the “bottleneck’ shortest-path problem, i.e., they use
the label max{ [I , 1, d z , } and then generalize this to the objective of
(5) . Unique to our work is that ALG2 embodies a Prim-Dijkstra
tradeoff, i.e., that ALG2 can return either T I I or Ts depending on
the value of p .

Observation 4: When p = 1, ALG2 yields a shortest path
tree. 0

When p = w, the ALG2 objective reduces to max{ 11, I. (It ,} ,
which yields a “bottleneck” shortest-path tree, i.e., if the cost of a
path in the tree is the cost of the largest edge in that path, then
ALG2 constructs a shortest-path tree in this sense when p = x. The
optimal “bottleneck” tree is not unique: once a bottleneck edge with
large cost is present in some source-sink shortest path, a bottleneck
shortest-path tree is maintained by appending any edge with less cost
than the bottleneck edge. In order for ALG2 at p = x, to capture
the limiting behavior from large finite values of p , we break ties
by choosing the sink v, according to (5) which also minimizes d t J .
Given this tie-breaking rule, we have

Observation 5: When p = m. ALG2 is identical to Prim’s
algorithm.

Proo$ By induction on the current size of T . Both Prim’s algo-
rithm and ALG2 will add the same first edge to T . Assume that Prim’s
algorithm and ALG2 both add the same first k edges and assume
toward a contradiction that they differ at the (k + l)st edge, i.e.,
Prim’s algorithm adds edge e1 and ALG2 adds edge e 2 as in Fig. 4.
Because e1 and e2 are distinct, the Prim objective implies el < e2

Since ALG2 added e 2 , max{IZ2l,e2} 5 max{llll.e1}. Moreover,
if rnax(llz1, e 2) = max{lll [,el}, the tie-breaking rule would force
ALG2 to choose e l , hence max{(Zzl,ez} < max{(ll l ,el}. Having
max{llll,el} = e l contradictsel < e2 ,somax{l l l l , r l} = Ill(and
hence max{llz(,ez} < 1111. Let e be the edge in I1 with cost 1111.

Consider the tree immediately before edge e was added. Since every
edge in the b e 2 path has less cost than e, Prim’s algorithm could not
have added e before completely adding the Ize2 path, contradicting

Salowe et al . [21] have shown that ALG2 constructs a tree T with
I , 5 R, ~ n ’ - ’ ’ ~ for all sinks U,, and that this bound is tight. It is easy

the inductive hypothesis. 0

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 7, JULY 1995 893

&inks 1 ALG. I IC1 I IC2

TABLE 111
MAXIMUM SOURCE-SINK DELAY AND AVERAGE SOURCE-SINK DELAY IN THE BEST TREE FOR EACH ALGORITHM. VALUES ARE GIVEN AS A RATIO TO CORRESPONDING
MST DELAY VALUES, AVERAGED OVER 250 RANDOM INSTANCES. NUMBERS IN PARENTHESES GIVE THE AVERAGE BEST PARAMETER VALLJE FOR EACH ALGORITHM

IC3 I MCMl
4

8

16

ALGl
ALG2
KRY
BRBC
ALGl
ALG2
KRY
BRBC
ALGl
ALG2
KRY

0.896 (0.13)
0.900 (23.62)
0.897 (22.88)
0.906 (0.09)
0.808 (0.19)
0.823 (11.24)
0.815 (9.83)
0.850 (0.13)
0.742 (0.23)
0.772 (4.78)
0.752 (3.52)

0.859 (0.28)
0.861 (19.25)
0.859 (19.17)
0.872 (0.06)
0.746 (0.45)
0.760 (7.66)
0.752 (6.62)
0.796 (0.08)
0.666 (0.49)
0.696 (3.39)
0.671 [2.38)

0.849 (0.30) 0.759 (0.39)
0.851 (18.29) 0.759 (14.84)
0.850 (18.08) 0.759 (14.64)
0.863 (0.07) 0.786 (0.04)
0.732 (0.46) 0.584 (0.62)
0.745 (6.80) 0.590 (3.46)
0.736 (6.47) 0.584 (2.93)
0.784 (0.09) 0.657 (0.06)
0.648 (0.52) 0.458 (0.73)
0 678 (3.09) 0.484 (1.40)
0.648 (2.07) 0.456 (1.29)

I BRBC
Spanning Trees
#sinks ALG.

4 ALGl
ALG2
KRY
BRBC 0.928 0.09
ALGl 0.808 (0.15)
ALG2. 0.861 (11.45)

BRBC 0.899 0.08)
ALGl 0.800 (0.20)

0.831 (0.17j I 0.772 (o m j I 0.758 (0.12j I 0.615 (0.07j
Avg sink delay vs. MST (best parameter)

IC 1 IC2 IC3 MCMl
0.911 (0.10) 0.866 (0.32) 0.854 (0.34) 0.712 (0.55)
0.916 (21.29) 0.871 (17.28) 0.858 (16.27) 0.714 (8.59)
0.912 (19.56) 0.866 (16.22) 0.854 (15.83) 0.712 (8.10)

0.808 (3.57)

0.880 (0.10)
0.759 (0.49)
0.774 (5.85)
0.760 (3.96)
0.834 (0.05)
0.697 (0.50)
0.726 (2.58)
0.696 (1.87)
0.824 f 0.13)

0.891 (0.10)
0.778 (0.47)

0.768 (0.11)
0.540 (0.75)
0.551 (2.00)
0.540 (1.79)
0.678 (0.04)
0.429 (0.82)
0.452 (1.24)
0.424 (1.19)
0.648 f 0.12)

0.794 (6.31)
0.781 (4.83)
0.848 (0.06)
0.720 (0.48)
0.749 (2.90)
0.723 (1.99)
0.839 f 0.13)

to see that for any finite value of p , ALG2 may yield a tree with cost
an unbounded factor greater than the MST cost, even in geometry.

IV. EXPERIMENTAL RESULTS

Both ALGl and ALG2 have time complexity 0 (n 2) , since each
is extendible from Dijkstra’s algorithm. We tested our Prim-Dijkstra
tradeoffs against the MST construction that is traditional in VLSI
global routing, as well as against previous shallow-light algorithms
(the KRY method of [13], and the BRBC method of [3], [8]). For a
given problem instance, each cost-radius tradeoff generates a family
of spanning trees corresponding to the range of parameter values; we
study such families of output trees to determine the parameter values
best suited to particular technology or area-performance requirements.
In what follows, we compare the cost-radius tradeoffs over the
families of trees output by each algorithm, as well as delay simulation
results over a range of IC and MCM technologies. We also compare
cost-radius tradeoff and signal delay performance of the Steiner trees
which are induced from the various spanning tree constructions.

A . Comparing Cost and Radius

For each signal net, we generated a “family” of 5 1 output trees for
ALGl with c ranging from 0 to 1 at intervals of 0.02. To generate
corresponding families of trees for the other algorithms, we used
input parameters that matched the ALGl parameter values according
to relationships inferred from the algorithms’ limiting behaviors (see
Table 11). We found that use of these relationships led to a good
sampling of the families of trees generated by ALG2 and KRY.
However, since BRBC tends to generate trees virtually identical to
T<II for F 2 1.5, we study the family of 51 trees generated by BRBC
with the parameter E ranging from 0 to 1.5 at intervals of 0.03.

We ran each algorithm over its family of parameter values, for
signal nets of 16 sinks chosen randomly from a uniform distribution
in a 1 cm by 1 cm Manhattan square; each point in Fig. 5(a) represents
an average over 250 such instances. All four algorithms “smoothly”
trade off between cost and radius, with ALGl being clearly superior,
i.e., for any desired cosdradius tradeoff, ALGl performs uniformly
better than the other algorithms. The superiority of ALGl is especially
clear for the tradeoff region that is of likely practical interest, i.e.,
when we wish to reduce tree radius without sacrificing more than 10%
or 20% extra tree cost. ALG2 does not do as well as ALG1, but does
provide superior costlradius tradeoffs over the previous methods.

B. Delay Simulations

We also compared the various tree constructions for uniformly
random signal nets of 4, 8, and 16 sinks. Delays at all sink nodes
were computed using the Two-Pole circuit simulator developed by
Zhou et al. [25], for each of the four interconnect technologies listed
in Table I of the Introduction. The Two-Pole simulator is a moment-
matching distributed RCL delay code which produces very accurate
results (within a few percent) when tested against SPICE3e [25]. We
recorded both average delay (over all sinks) and maximum delay
(i.e., the latest arrival time of the signal to any sink), with all results
normalized to the corresponding values for the MST routing. (Delay
was measured as the rise time to a stable value of 0.9 times the
reference voltage of 5.0 V, given a step input function.) For each
instance, we ran each algorithm over each of the 5 1 user parameters
described above, and recorded the lowest delay value of any tree in
the family.

Table I11 gives maximum and average signal delays, averaged over
250 instances. Because practitioners might not wish to compute the
best of 51 distinct trees, we also show the average value for each

f

894 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 7, JULY 1995

-
ALG 1

ALG2

KRY
BRBC

- - - - -
....“I

---.I-

1.60 -
i

1.oO-T -. , , I I I I

1.00 1.10 1.20 1.30 1.40 1.50 1.60

w(T)
W(TM)

(a)

ALGl

ALGP

KRY
BRBC

- - - - -
... “I -..
-.--I

0.90 0.95 1.00 1.05 1.10

w(T)
W V M)

(b)

Fig. 5 . Graph of radius ratio (10) versus cost ratio (m) for ALGI,
ALG2, KRY[13] and BRBC[3][8] for uniformly random instances of 16 sinks
in the Manhattan unit square. Each point indicates the algorithm performance
for a specific parameter value, (a) averaged over 250 instances, and (b) the
same experiments with the edges overlapped to induce a Steiner topology.

1 (T s)

algorithm’s best parameterization under both the maximum sink delay
objective and the average sink delay objective. This indicates how the
ideal cost-radius tradeoff parameter is correlated with technology and
net size (for example, the best ALGl c parameter for 16 sinks is 0.23
for IC1 and 0.73 for MCM). If only one spanning tree construction
is allowed, we believe the “best” parameter will generally yield a
tree with low delay (see Footnote 2 below for further discussion
of this issue). We find that ALGl is the best algorithm of those
tested, yielding delays that are better than or equal to those of its
nearest competitor, KRY, in 27 of 30 comparisons. The Prim-Dijkstra
tradeoffs achieve particularly substantial delay reductions over the
minimum spanning tree routing for MCM, reinforcing our intuition
that minimum-cost tree constructions are becoming less useful for
newer interconnect technologies.

The KRY delays are surprisingly good in view of the algorithm’s
inferior costhadius tradeoff. While ALGl seems to yield a more
“natural” tree (e.g., KRY trees are commonly self-intersecting, while
ALGl trees rarely are-see Fig. (6)), we believe that KRY bene-

(C)

Fig. 6. Execution of ALGl with c = 0.5 (a) and KRY [13] with 0 = 1 .5
(b), on a 100-sink example using Euclidean distance. ALGl trees may also
be self-intersecting, e.g. (c), with c = 0.22 and source at (0, 0) , though this
is rare in practice.

fits from its tendency to branch early from 1’0. causing relatively
little off-path tree weight for any given source-sink path. While
our Prim-Dijkstra methods offer clear advantages over previous
(performance-driven) routing constructions, the success of KRY
underscores the continuing need for better routing tree analysis and
design techniques.

C. Steiner Routing
Many global routing approaches require rectilinear Steiner tree

constructions. A popular approach converts a spanning tree to a
Steiner tree by overlapping the embeddings of tree edges. This
method preserves the tree radius of the initial spanning topology
within the eventual Steiner tree output. Ho et al. [I21 have given
a linear time construction that optimally converts a spanning tree to
a Steiner tree by edge overlapping, but there are several reasons why

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 7, JULY 1995 895

TABLE IV

IS USED TO INDUCE A STEINER ROUTING. VALUES ARE GIVEN AS A RATIO TO CORRESPONDING MST DELAY VALUES, AVERAGED OVER
250 RANDOM INSTANCES. NUMBERS IN PARENTHESES GIVE THE AVERAGE BEST PARAMETER VALUE FOR EACH ALGORITHM.

MAXIMUM SOURCE-SINK DELAY AND AVERAGE SOURCE-SINK DELAY IN THE BEST TREE FOR EACH ALGORITHM. AFTER EDGE-OVERLAPPING

I Steiner Trees

ALG 2

BRBC
ALGl
ALG2
KRY
BRBC

TC3 IC1
0.812 (0.17)
0.837 (32.56)
0.812 (31.77)
0.816 (0.03)
0.727 (0.34)
0.797 (16.53)
0.728 (14.45)
0.744 (0.10)
0.665 (0.44)
0.758 (11.52)
0.671 (5.66)
0.713 (0.16)

IC2
0.789 (0.21)
0.813 (30.46)
0.789 (28.85)
0.794 (0.05)
0.684 (0.46)
0.755 (9.81)
0.684 (8.97)
0.707 (0.10)
0.606 (0.52)
0.699 (5.63)
0.611 (3.73)
0.664 (0.16)

Avg sink delay vs. R
IC 1 I IC 2

0.777 (0.18) I 0.735 (0.15)
0.711 (0.52) I 0.644 (0.60)

- - _

0.780 (0.24)
0.804 (29.14)
0.780 (27.86)
0.785 (0.06)
0.672 (0.49)
0.742 (9.25)
0.672 (8.72)
0.694 (0.10)
0.590 (0.54)
0.682 (3.72)
0.596 (3.85)
0.651 (0.15)
iT (best para

IC3
0.763 (0.28)
0.773 (27.04)
0.763 (24.56)
0.775 (0.06j
0.680 (0.56)
0.737 (7.34j
0.682 (5.55)
0.720 (0.17)
0.624 (0.62)
0.697 (3.38)
0.628 (2.28)
0.702 (0.25)

ter)
MCMl

0.748 (0.30)
0.778 (25.33)
0.747 (23.79)
0.758 (0.04)
0.587 (0.57)
0.671 (6.77)
0.586 (6.15)
0.628 (0.10)
0.463 (0.68)
0.567 (1.93)
0.466 (1.76)
0.556 (0.12)
ter)

MCMl
0.694 (0.32)
0.706 (22.88)
0.694 (21.85)
0.716 (0.06)
0.551 (0.64)
0.617 (4.27)
0.550 (3.38)
0.625 (0.13)
0.443 (0.75)
0.526 (1.56)
0.445 (1.29)
0.579 (0.29)

their code is not applicable to our spanning trees (e.g., our spanning
trees can have high-degree nodes, and do not always satisfy the
sepurubifity requirement of [12]). Thus, for simplicity we adopt a
greedy edge-overlapping algorithm.’

Fig. 5fb) and Table IV show that the utility of our Prim-Dijkstra
spanning tree constructions is preserved when the trees are converted
to Steiner trees in this manner. The performance-driven spanning
tree constructions with lowest delay still have lowest delay when
Steiner points are incorporated. The average best values of the input
parameters shift to more star-like spanning topologies when the
Steiner conversion is employed: since edge-overlapping decreases
cost without affecting radius, we can afford spanning trees that use
additional tree cost to further reduce the radius. (Anomalies may
result since the overlapping process diminishes the star-like nature of
the tree topology. Thus, a Steiner tree can have greater sink delay
than its spanning tree precursor.)

Finally, we observe that our delay results are substantially better
than the leading “fixed” methods, i.e., tree constructions which cannot
be parameterized to track interconnect technology. For example, we

’ Our greedy edge-overlapping method simply examines the bounding boxes
of every pair of adjacent edges in the tree, and calculates the cost reduction
achievable by optimally overlapping these edges (i.e., inducing a Steiner
point). The Steiner point which yields the maximum cost savings is added,
until no additional cost reduction is possible. While this heuristic is not
guaranteed to be optimal, its output is nearly identical to that of the optimal
edge-overlapping algorithm of Ho er al. (called S-RST in [12]). For random
10-node instances, our heuristic averages 8.8% cost reduction from an input
minimum spanning tree, while S-RST is reported to average 9.0% reduction.
For random 25-node instances, our heuristic averages 9.3% percent cost
reduction over the minimum spanning tree, while S-RST is reported to average
9.5% reduction. Thus, we believe that the greedy heuristic is adequate for our
study.‘

average over 25% reduction in average sink delay when compared
with the results reported in [9]; this is not surprising since even ALGl
or ALG1-Steiner (i.e., ALGl followed by greedy edge-overlapping to
create a Steiner tree) withfied c = 1.00 already constitutes a reason-
ably good heuristic Steiner arborescence, or “A-tree,’’ construction’.
We may similarly compare our constructions against the standard
minimum Steiner tree heuristic of edge-overlapping a minimum
spanning tree (this is identical to ALGl-Steiner with fixed c = 0). For
this standard technique using MCM parameters, the ratios of average
sink delays to corresponding MST delays are 0.802 (4 sinks), 0.808
(8 sinks), 0.818 (16 sinks). By contrast, a single ALGl execution
using the fixed, best c value from Table I11 will attain ratios of 0.788,
0.590, and 0.461, respectively. When edge-flipping is added in ALG 1 -
Steiner and we use the best c values from Table IV, the average-delay
ratios are 0.756,0.586, and 0.468, respectively. (Delay ratios obtained
by considering the family of ALGl trees can be read off directly
from Tables I11 and IV.)

*Reference [9] presents numerical results for one set of interconnect
technology parameters, namely, MCM; the parameters and simulation method-
ology are identical to those we use here. By normalizing the reported .4-tree
results to those of BRBC with parameter F = 1.0-i.e., the comparison made
in [9]-we obtain the following ratios for average sink delay: i) -4-treelBRBC-
1.0 = 1.024 (4 sinks), 0.846 (8 sinks), 0.645 (16 sinks). When we use a
fixed, “best” c value for ALGl as giwn in Tables 111 and IV, we obtain
the following results: ii) ALGIIBRBC-1.0 = 0.805 (4 sinks), 0.598 (8 sinks),
0.463 (16 sinks); and iii) ALGI-SteinerlBRBC-1.0 = 0.896 (4 sinks), 0.728
(8 sinks), 0.577 (16 sinks). Note that i) and iii) both represent Steiner routing
constructions. If we are allowed to consider the enlire family of ALGl trees,
the results improve to ii’) ALGIlBRBC-1.0 = 0.702 (4 sinks), 0.547 (8 sinks),
0.431 (16 sinks); and iii’) ALGI-SteinerlBRBC-1.0 = 0.738 (4 sinks), 0.598
(8 sinks), 0.502 (I6 sinks).

896 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 14, NO. 7. JULY 1995

V. CONCLUSION
Analysis of Elmore delay in RC trees suggests that low-delay

routing trees should trade off cost and radius according to net size and
interconnect technology. Previous approaches [2], [3], [81, [I31 begin
with a depth-first traversal of TM and insert shortest paths as needed
to maintain a prescribed radius bound. In contrast, our ALGl and
ALG2 constructions directly combine the recurrences for Prim’s MST

‘,algorithm and Dijkstra’s SPT algorithm. This more natural tradeoff
significantly improves over the cost-radius performance of BRBC [3],
[8] and KRY [13]. Simulation results show that ALGl yields routing
trees with less maximum and average delay than ALG2, KRY or
BRBC in both IC and MCM interconnect technologies; improvements
over the “probably good” BRBC approach are particularly substantial.
Our delay reductions over fixed constructions are also substantial
(such constructions include standard MST routing and heuristic min-
imum Steiner tree routing as well as the recent Steiner arborescence
approach of [9]). It is therefore of interest to pursue integration of
ALG I within existing performance-driven global routers.

ACKNOWLEDGMENT

The authors would like to thank Professor J. Salowe, Professor
S. Khuller, and Dr. N. Young for illuminating discussions of the
shallow-light literature and their works in this area. We also thank
the authors of [25] for use of their simulator code, and Professor
W. W.-M. Dai for releasing MCM simulation parameters for our
study. The anonymous referees gave many helpful comments on the
original draft of this work.

REFERENCES

[I] C. J . Alpert, T. C. Hu, J. H. Huang, and A. B. Kahng, “A di-
rect combination of the Prim and Dijkstra constructions for improved
performance-driven global routing,” in Proc. IEEE Inf. Symp. Circuits
Syst., Chicago, IL, May 1993, pp. 1869-1872 (also issued as UCLA CS
Dept. TR-920051, Fall 1992).

[2] B. Awerbuch, A. Baratz, and D. Peleg, “Cost-sensitive analysis of
communication protocols,” in P mc. ACM Symp. Principles Disfribuf.
CompuL, Aug. 1990, pp. 177-187.

131 -, “Efficient broadcast and light-weight spanners,” submitted man-
uscript, Nov. 1991.

[4] H. B. Bakoglu, Circuits, Inferconnecrions and Packaging for VLSI.
Reading, MA: Addison-Wesley, 1990, pp. 81-1 33.

151 K. D. Boese, J. Cong, A. B. Kahng, K. S. Leung, and D. Zhou, “On high-
speed VLSI interconnects: Analysis and design,” in Proc. Asia-Pacific
Con$ Circuits Syst., Dec. 1992, pp. 3540.

[6] K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins, “Fidelity and
near-optimality of Elmore-based routing constructions,” in P roc. IEEE
Inf. Conk Computer Design, Boston, MA, Oct. 1993, pp. 81-84.

[7] B. Chandra, G. Das, G. Narasimhan, and J. Soares, “New sparseness
results on graph spanners,” in Proc. 8th Ann. Symp. Compufaf. Geomefry
June 1992, pp. 192-201.

[8] J. Cong, A.. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong,
“Provably good performance-driven global routing,” IEEE Trans.
Compurer-Aided Design,, vol. 11 , no. 6, pp. 739-752, June 1992.

[9] J. Cong, K. Leung, and D. Zhou, “Performance-driven interconnect
design based on distributed RC delay model,” in Pmc. ACM/IEEE
Design Automat. Cont, June 1993, pp. 606-611.

[lo] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathemafik, vol. 1, pp. 269-271, 1959.

[111 W. C. Elmore, “The transient response of damped linear network with
particular regard to wideband amplifiers,” J. Applied Phys., vol. 19, pp.
5 5 4 3 , 1948.

[121 J. Ho, G. Vijayan, and C. K. Wong, “New algorithms for the rectilinear
Steiner tree problem,” IEEE Trans. Compufer-Aided Design, vol. 9, no.
2, pp. 185-193, Feb. 1992.

1131 S. Khuller, B. Raghavachari, and N. Young, “Balancing minimum
spanning and shortest path trees,” in Proc. ACM/SIAM Symp. Discrere
Algorifhms, Jan. 1993, pp. 243-250.

1141 S. Kim, R. M. Owens, and M. J. Irwin “Experiments with a performance
driven module generator,” in Proc. ACM/IEEE Design Aufomaf. Con$,
June 1992, pp. 687-690.

(151 E. Kuh, M. A. B. Jackson, and M. Marek-Sadowska, “Timing-driven
routing for building block layout,” in Proc. IEEE Inf. Symp. Circuits
Syst., May 1987, pp. 518-519.

[16] H.-P. Lenhof, J. S. Salowe, and D. E. Wrege, “New methods to
mix shortest-path and minimum spanning trees,” submitted manuscript,
1993.

[17] S. Prastjutrakul and W. J. Kubitz, “A timing-driven global router for
custom chip design,” in Pmc. IEEE In?. Conf Computer-Aided Design,

[I81 R. C. Prim, “Shortest connecting networks and some generalizations,”
Bell System Tech. J . , vol. 36, pp. 1389-1401. 1957.

[19] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The
rectilinear Steiner arborescence problem,” Algorithmica, vol. 7, no. 2-3,
pp. 277-288, 1992.

1201 J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal delay in RC
tree networks,” IEEE Trans. Computer-Aided Design, vol. 2, no. 3, pp.
202-211, July 1983.

[21] J. S. Salowe, D. S. Richards, and D. Wrege,“Mixed spanning trees,” in
Pmc. Grear Lakes Symp. VLSI, Mar. 1993, pp. 62-66.

[22] S. Sutanthavibul and E. Shragowitz, “Adaptive timing-driven layout for
high speed VLSI,” in Proc. ACM/IEEE Design Auromaf. Conf, June

NOV. 1990, pp. 48-51.

1990, pp. 90-95.
1231 R. E. Tarjan, Dara Structures and Nerwork Algorithms, 1983.
[24] J. Vlach, J. A. Barby, A. Vannelli, T. Talkhan, and C. J. Shi, “Group

delay as an estimate of delay in logic,” IEEE Trans. Compufer-Aided
Design, vol. 10, no. 7, pp. 949-953, July 1991.

1251 D. Zhou, S. Su, F. Tsui, D. S. Gao, and J. Cong, “Analysis of trees of
transmission lines,” Tech. Rep. UCLA CSD-920010, Mar. 1992.

A Preprocessor for Improving Channel
Routing Hierarchical Pin Permutation

C. Y. Roger Chen, Cliff Yungchin Hou, and Bradley S. Carlson

Abstract-In standard cell design, many cell terminals and gates are
permutable, and it is important for a channel router to take advantage
of this to obtain better results. An efficient hierarchical algorithm is
presented to determine the proper positions of permutable gates and cell
terminals such that the results of the subsequent channel routing can
be significantly improved. Experimental results show that our proposed
algorithm considerably reduces the number of tracks and vias, and its
time complexity is linear in the number of cell terminals.

I. INTRODUCTION
Channel routing is one of the critical problems in VLSI design.

Algorithms for channel routing with fixed terminals have been
studied extensively [1]-[5]. Optimal or near optimal results have been
obtained by these algorithms. The problem of permutable channel
routing in ‘which some of the terminals are interchangeable has
received considerable attention in recent years [6]-[121. For example,
in programmable logic cells (e.g., PLA’s and ROM’s), the terminals

Manuscript received August 20, 1991; revised January 19, 1995. This paper

The authors are with the Department of Electrical and Computer Engineer-

IEEE Log Number 941 1259.

was recommended by Associate Editor R. H. J. M Otten.

ing, Syracuse University. Syracuse, NY 13244 USA.

0278-0070/95$04.00 0 1995 IEEE

