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Short Papers 

Prim-Dijkstra Tradeoffs for Improved 
Performance-Driven Routing Tree Design 

C. J.  Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger 

Abstract- Analysis of Elmore delay in distributed RC tree structures 
shows the influence of both tree cost and tree radius on signal delay 
in VLSI interconnects. We give new and efficient interconnection tree 
constructions that smoothly combine the minimum cost and the minimum 
radius objectives, by combining respectively optimnl algorithms due to 
Prim and Dijkstra. Previous “shallow-light” techniques [Z], [31, [81, [131 
are both less direct and less effective: in practice, our methods achieve 
uniformly superior cost-radius tradeoffs. Timing simulations for a range 
of IC and MCM interconnect technologies show that our wirelength 
savings yield reduced signal delays when compared to shallow-light or 
standard minimum spanning tree and Steiner tree routing. 

I. INTRODUCTION AND MOTIVATION 
With the scaling of device technology and die size, interconnection 

delay now contributes up to 5670% of the clock cycle in dense, 
high performance circuits [4]. Performance-driven layout design 
has therefore been studied actively in recent years. Initial research 
centered on timing-driven placement, where the objective is to place 
modules on critical paths close together. Given a module placement, 
timing-driven routing algorithms (e.g., [ 151, [17]) attempt to minimize 
average or maximum signal delay from the source terminal to the 
sink terminals of a signal net. 

A signal net I’ = ( ~ 0 .  u1,  . . . . t in}  is a set of n + 1 terminals, with 
7’0 the source and the remaining terminals sinks. In the underlying 
routing graph G = (L-, E), each edge e,, E E has cost d,, equal 
to the (‘,-U, routing cost. The cost of the shortest P O - P ~  path in G is 
denoted by B,, and R = m a x l ~ , ~ 7 ,  R, is the radius of G. A routing 
tree T = (I-, E’) is a spanning subgraph of G with IE’I = n.  
Given a routing tree T, the cost of the unique I I O - T ’ ~  path in T 
is I , ,  the radius of T is r ( T )  = maxl<,<,l , ,  and the cost of T 
is U’( T)  = E, ’, E T  d,, . We are primarily concerned with the case 
where G is a complete graph with each eZJ having cost equal to the 
Manhattan distance d,, . 

For a given signal net, the proper objective for eficiently con- 
structing a “high-performance routing tree” is not yet established. 
We can obtain valuable insight by considering the Elmore delay, 
i.e., the first moment of the impulse response for a distributed 
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R C  representation of the routing tree [ l  I]. This approximation has 
been shown to have high fidelity with respect to SPICE-computed 
delays, e.g., [14] simulated critical-path delays over a suite of 
209 ripple-cany adder implementations and found near-perfect rank 
correlation between SPICE-computed and Elmore delays, and [24] 
gave theoretical motivations for this phenomenon. 

Elmore delay is defined as follows [20]. Let T ,  and ce denote 
respectively the resistance and capacitance of edge e, and let c, denote 
the node capacitance of t i 2 .  Given T, let T, denote the subtree of T 
that is below edge e when T is rooted at 110, and let C ,  denote the sum 
of node and edge capacitances of T,. Finally, let CO indicate the total 
capacitance of T. The Elmore delay along edge e is T ,  . ( 2 + C ,  ). If 
ro denotes the on-resistance of the output driver at the source node, 
then the Elmore delay t ( v Z )  from source 7’0 to sink o,  is given by 

If re  and ce are proportional to the length of e, then the ro . CO 
term in (1) implies that t ( u z )  has linear dependence on w ( T ) ,  while 
the summation term implies quadratic dependence on I , .  This is the 
essential “cost-radius conflict” of routing tree design: i) when ro is 
relatively large, the ro . CO term dominates the summation term and 
suggests a minimum-cost routing solution, but ii) when ro is relatively 
small, the quadratic dependence on source-sink pathlength dominates, 
and suggests a “star-like’’ sbortest-path tree topology. Typical values 
of ro and ’;” (where F is unit wire resistance; is the “resistance 
ratio” discussed in [5] and [9 ] )  have generally decreased with the 
trend to submicron CMOS and MCM technologies (see Table I), 
suggesting that minimum-cost routing is becoming less correlated 
with performance-driven routing. 

The remainder of this paper is organized as follows. Section I1 
surveys the class of “shallow-light” constructions that have pre- 
viously addressed cost-radius tradeoffs. Section I11 presents our 
two “Prim-Dijkstra” constructions, which directly trade off between 
algorithms that are respectively optimal for cost and radius. Section 
IV compares both the cost-radius and delay performance of our 
heuristics to those of previous methods, and Section V concludes 
with possible directions for future research. 

11. RELATED WORK: SHALLOW-LIGHT TREES 
A minimum spanning tree (MST, or T,tr) minimizes tree cost but 

may have radius an unbounded factor larger than optimal. Conversely, 
a shortest-path tree (SPT, or T . 5 )  minimizes tree radius but may 
have cost an unbounded factor larger than optimal (see Fig. 1). 
Several groups have proposed “shallow-light’’ tree constructions that 
guarantee to capture properties of both T ~ J  and T.5 simultaneously to 
within constant factors of optimal [2] ,  [3], [8], [13]. Following [13], 
we adopt the following definition. 

Definition: Given a signal net I’ and constant parameters n. , j  2 
1, an (a ,  J- t ree  T = ( Ir. E’) is a spanning tree over 1- that satisfies: 
i) 1, 5 0 .  R,. 1 2 i 5 n, and ii) w ( T )  5 d .  w(T,iI). 

A spanning tree construction is shallow-light if for some constants 
(I and jj it always returns an (a, i3)-tree. Since the cost of a spanning 
tree rises as its radius is constrained, we are typically interested in 
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Name IC 1 IC2 IC3 
Technology 2.0 pm CMOS 1.2 pm CMOS 0.5 p m  CMOS 

rn 164.0 R 212.1 R 270.0 fl 

891 

MCM 
MCM 
25.0 St 

TABLE I 
INTERCONNECT PARAMETZRS FOR THREE CMOS IC TECHNOLOGIES AND AN MCM TECHNOLOGYa 

i; = unit wire resistance 
t =  unit wire capacitance 
sink loading capacitance 

(x W p m )  
chip size 

0.033 n / p m  0.073 n / p m  0.112 R / p n  0.008 fl/pm 
0.019 fF /pm 0.022 fF/pm 0.039 fF/pm 0.06 fF/pm 

5.7 fF 7.06 fF 1.0 fF 1000 fF 
0.0050 0.0029 0.0024 0.0031 

1x1 em2 1x1 cm2 1x1 cm2 10x10 cm2 

( c , )  are derived for minimum-size transistors. 

(a) (b) (C) 

Fig. 1. Three interconnection trees for the same signal net with uo at the 
center: (a) the shortest-path tree T5 ; (b) the minimum spanning tree T M ;  and 
(c) a “tradeoff’ between the two constructions. 

shallow-light constructions where N and 8 have an inverse functional 
relationship, i.e., cy is a parameter of the construction and D decreases 
as Q increases. The previous shallow-light constructions are all based 
on the general technique of Awerbuch et al. [2]: i) construct T.w; ii) 
visit the terminals of 1‘ in order of a depth-first traversal of T u ;  
iii) whenever violations of the prescribed radius bound are observed, 
insert or delete edges as necessary; and iv) return the shortest-path tree 
over the resulting graph. Cong er al. [8] proposed the BRBC algorithm 
for performance-driven global routing in VLSI and compared their 
results against Steiner routing using the linear delay model. In [3], 
Awerbuch et al. proposed an algorithm that is identical to BRBC and 
showed that it constructs a (1 + Zc, 1 + $)-tree, for some parameter 
E > 0. Finally, Khuller et al. [13] obtained a (1 + 6 ,  1 + a )  shallow- 
light construction by “relaxing” edges, in contrast to earlier works 
which add complete source-sink shortest paths when violations of 
the radius bound occur. 

A recent paper of Salowe et al. [21] presents a shortest-path 
“bottleneck tree” construction that is not shallow-light. [21] was 
motivated by the preliminary version of our present work [ l ]  and 
is a powerful generalization of what we call the ALG2 construction 
in Section I11 (thus, the ALG2 construction was independently 
developed by two groups; see Section 111-B below). Finally, the 
topic of sparse graph spanners has been treated in the computational 
geometry literature (e.g., [7]). However, a graph spanner has bounded 
pathlengths between allpairs of nodes in a given graph, which is too 
strong a constraint for our (single-source routing) application. 

111. THE PRIM-DIJKSTRA TRADEOFF 

The min-cost and min-radius objectives can be separately addressed 
by Prim’s MST algorithm [18] and Dijkstra’s SPT algorithm [lo]. 
Tarjan [23] discusses the similarity between the Prim and Dijk- 
stra algorithms: each is a variant of the “labeling method’ that 
builds a spanning tree from a fixed source by adding the edge 
that minimizes an algorithm-specific “key.” Our contribution stems 
from observing that the min-cost and min-radius objectives can be 
addressed simultaneously via direct combinations of the Prim and 

Dijkstra constructions. The combination of competing objectives, 
via a tradeoff of algorithms that are respectively optimal for these 
objectives, is unusual. Furthermore, our approach is more natural and 
symmetric than the shallow-light technique. While the constructions 
that we present do not yield ( a ,  d)-trees, they are in practice more 
useful (see Section IV below). 

A. The ALGI Tradeoff 
Prim’s algorithm begins initially with the tree consisting only of 

u o .  The algorithm iteratively adds edge e z J  and sink ut to T ,  where 
1 1 ,  and 71J are chosen to minimize 

dt, s.t. C) E T ,  U ,  E 1’ - T 

Dijkstra’s algorithm also begins with the tree consisting only of 110. 

The algorithm iteratively adds edge et, and sink 71, to T ,  where tiz 

and t i ,  are chosen to minimize 

Noticing the similarity between (2) and (3) leads to our ALGl 
tradeoff, which iteratively adds edge e,, and sink ivl to T, where 

and 1 1 ,  are chosen to minimize 

(4) 

for some choice of 0 5 c 5 1. When c = 0, ALGl is identical 
to Prim’s algorithm and constructs trees with minimum cost. As c 
increases, ALGl constructs a tree with higher cost but lower radius, 
and when c = 1 ALGl is identical to Dijkstra’s algorithm. Sample 
executions of ALGl for c = and c = $ are shown in Figs. 2(a)-(b). 

Observation 1: ALGl constructs a tree T with c . I ,  5 R, for 
all sinks t i t .  

ProoJ By strong induction; see Fig. 3. Assume that for every 
ancestor t i J  of uZ in Th, we have c . I ,  5 R,. Consider a snapshot 
of T immediately before ALGl adds sink uZ to T via edge e,,, 
i.e., where U,,, is the parent of U ,  in T .  Let nJ be the sink in T 
which is the closest ancestor to U* in TS (possibly J = 0), and let 
V k  be the sink lying immediately past vJ along the shortest V O - V ,  

path (z’k is not yet in T ,  and possibly k = a ) .  Since ALGl adds ti, 
before r k ,  c . I,, + d,,, 5 I ,  + d J k .  By the inductive hypothesis, 
c . 1, 5 R,, and by the principle of optimality of shortest paths, 
R, + d , k  = Rk 5 R,. Since c . 1 ,  5 c . 1, + d,,, , combining these 

0 
Observation 2: ALGl is not shallow-light for general graph in- 

inequalities yields c . I ,  5 R , .  

stances [l]. 0 
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e ................... e1 

ea .................... 4 

Fig. 4. 
el; ALG2 adds edge e2. Note that paths 11 and I2 may overlap. 

Illustration for proof of Observation 5 .  Prim’s algorithm adds edge 

TABLE I1 
EQUIVALENCES OF ALGORITHM PARAMETERS 

I ALGl I ALG2 I BRBC I KRY 
User parameter I c I p I E I a 

Fig. 2. Sample executions for ALGl and ALG2 for an 8-sink instance in the 
Euclidean plane. The edge labels give the order in which the algorithms add 
the edges into the tree. ALGl is illustrated in (a) with c = $ (radius 15.91, 
cost 26.43) and (b) with c = (radius 10.32, cost 29.69). ALG2 is illustrated 
with “corresponding” pararneterizations according to Table 11: (c) with p = 3 
(radius 17.00, cost 23.63) and (d) with p = $ (radius 10.00, cost 30.28). 

Fig. 3. Illustration for proof of Observation 1. Snapshot of the ALGl tree T 
(solid lines) just before edge e,, is added. With respect to the u - v i  shortest 
path, t), is the sink on the path that is furthest from L’O and in T, while t!k 
lies just after vJ and is not in T.  The observation follows from the fact that 
e,,,, and not is the next edge added to T .  

Observation 3: For instances embedded in Euclidean space of any 
dimension d. ALGl constructs a tree with cost within log n times a 

0 
This last observation of Lenhof, Salowe and Wrege provides some 

encouragement regarding our conjecture [ I ]  that ALGl is actually 
shallow-light for geometric instances. 

constant factor (dependent on d and c )  of ~ ( Z L I )  [16]. 

B. The ALG2 Tradeoff 

Note that Dijkstra’s algorithm can be viewed as using a key (in 
the terminology of [23]) which is the L1 sum of edge costs in the 
source-sink path (although L,  usually denotes a vector norm, here 
we simply say that the L,  sum of quantities 11, x2, .... zn has value 
( s ~ + z ~ + . . . + x P , ) ’ I P ; w e w r i t e  thisas 11z1.sq;..,x,llp).In the 
following, we use If to denote the L, sum of edge costs in the ~ 0 - z ’ ~  

path in T.  We will also use 12, I to denote the largest edge cost in the 
VO-v, path. The observation regarding Dijkstra’s algorithm suggests 
our ALG2 tradeoff iteratively add edge e,, and sink t~~ to T ,  where 
tiz ahd U ,  are chosen to minimize 

for some choice of 1 5 p < (x. Sample executions of ALG2 for 
p = 3 and p = $ are shown in Fig. 2(c)-(d). 

The ALG2 tradeoff and some of its properties were discovered 
independently by Salowe, Richards and Wrege [21], via an approach 
that is considerably different from ours. Salowe et al. apply the 
general single-source shortest path labeling method developed by 
Tarjan [23] to the “bottleneck’ shortest-path problem, i.e., they use 
the label max{ [ I ,  1, d z , }  and then generalize this to the objective of 
(5) .  Unique to our work is that ALG2 embodies a Prim-Dijkstra 
tradeoff, i.e., that ALG2 can return either T I I  or Ts depending on 
the value of p .  

Observation 4: When p = 1, ALG2 yields a shortest path 
tree. 0 

When p = w, the ALG2 objective reduces to max{ 11, I. (It ,} ,  
which yields a “bottleneck” shortest-path tree, i.e., if the cost of a 
path in the tree is the cost of the largest edge in that path, then 
ALG2 constructs a shortest-path tree in this sense when p = x. The 
optimal “bottleneck” tree is not unique: once a bottleneck edge with 
large cost is present in some source-sink shortest path, a bottleneck 
shortest-path tree is maintained by appending any edge with less cost 
than the bottleneck edge. In order for ALG2 at p = x, to capture 
the limiting behavior from large finite values of p ,  we break ties 
by choosing the sink v, according to ( 5 )  which also minimizes d t J .  
Given this tie-breaking rule, we have 

Observation 5: When p = m. ALG2 is identical to Prim’s 
algorithm. 

Proo$ By induction on the current size of T .  Both Prim’s algo- 
rithm and ALG2 will add the same first edge to T .  Assume that Prim’s 
algorithm and ALG2 both add the same first k edges and assume 
toward a contradiction that they differ at the ( k  + l)st edge, i.e., 
Prim’s algorithm adds edge e1 and ALG2 adds edge e 2  as in Fig. 4. 
Because e1 and e2 are distinct, the Prim objective implies el < e2 

Since ALG2 added e 2 ,  max{IZ2l,e2} 5 max{llll.e1}. Moreover, 
if rnax(llz1, e 2 )  = max{lll [,el}, the tie-breaking rule would force 
ALG2 to choose e l ,  hence max{(Zzl,ez} < max{(ll l ,el}.  Having 
max{llll,el} = e l  contradictsel < e2 ,somax{l l l l , r l}  = Ill( and 
hence max{llz(,ez} < 1111. Let e be the edge in I1 with cost 1111. 

Consider the tree immediately before edge e was added. Since every 
edge in the b e 2  path has less cost than e, Prim’s algorithm could not 
have added e before completely adding the Ize2 path, contradicting 

Salowe et al .  [21] have shown that ALG2 constructs a tree T with 
I ,  5 R, ~ n ’ - ’ ’ ~  for all sinks U,, and that this bound is tight. It is easy 

the inductive hypothesis. 0 
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&inks 1 ALG. I IC1 I IC2 

TABLE 111 
MAXIMUM SOURCE-SINK DELAY AND AVERAGE SOURCE-SINK DELAY IN THE BEST TREE FOR EACH ALGORITHM. VALUES ARE GIVEN AS A RATIO TO CORRESPONDING 
MST DELAY VALUES, AVERAGED OVER 250 RANDOM INSTANCES. NUMBERS IN PARENTHESES GIVE THE AVERAGE BEST PARAMETER VALLJE FOR EACH ALGORITHM 

IC3 I MCMl 
4 

8 

16  

ALGl  
ALG2 
KRY 
BRBC 
ALGl 
ALG2 
KRY 
BRBC 
ALGl 
ALG2 
KRY 

0.896 ( 0.13) 
0.900 (23.62) 
0.897 (22.88) 
0.906 ( 0.09) 
0.808 ( 0.19) 
0.823 (11.24) 
0.815 ( 9.83) 
0.850 ( 0.13) 
0.742 ( 0.23) 
0.772 ( 4.78) 
0.752 ( 3.52) 

0.859 ( 0.28) 
0.861 (19.25) 
0.859 (19.17) 
0.872 ( 0.06) 
0.746 ( 0.45) 
0.760 ( 7.66) 
0.752 ( 6.62) 
0.796 ( 0.08) 
0.666 ( 0.49) 
0.696 ( 3.39) 
0.671 [ 2.38) 

0.849 ( 0.30) 0.759 ( 0.39) 
0.851 (18.29) 0.759 (14.84) 
0.850 (18.08) 0.759 (14.64) 
0.863 ( 0.07) 0.786 ( 0.04) 
0.732 ( 0.46) 0.584 ( 0.62) 
0.745 ( 6.80) 0.590 ( 3.46) 
0.736 ( 6.47) 0.584 ( 2.93) 
0.784 ( 0.09) 0.657 ( 0.06) 
0.648 ( 0.52) 0.458 ( 0.73) 
0 678 ( 3.09) 0.484 ( 1.40) 
0.648 ( 2.07) 0.456 ( 1.29) 

I BRBC 
Spanning Trees 
#sinks ALG. 

4 ALGl  
ALG2 
KRY 
BRBC 0.928 0.09 
ALGl  0.808 ( 0.15) 
ALG2. 0.861 (11.45) 

BRBC 0.899 0.08) 
ALGl  0.800 ( 0.20) 

0.831 ( 0.17j I 0.772 ( o m j  I 0.758 ( 0.12j I 0.615 ( 0.07j 
Avg sink delay vs. MST (best  parameter) 

IC 1 IC2 IC3 MCMl 
0.911 ( 0.10) 0.866 ( 0.32) 0.854 ( 0.34) 0.712 ( 0.55) 
0.916 (21.29) 0.871 (17.28) 0.858 (16.27) 0.714 ( 8.59) 
0.912 (19.56) 0.866 (16.22) 0.854 (15.83) 0.712 ( 8.10) 

0.808 ( 3.57) 

0.880 ( 0.10) 
0.759 ( 0.49) 
0.774 ( 5.85) 
0.760 ( 3.96) 
0.834 ( 0.05) 
0.697 ( 0.50) 
0.726 ( 2.58) 
0.696 ( 1.87) 
0.824 f 0.13) 

0.891 ( 0.10) 
0.778 ( 0.47) 

0.768 ( 0.11) 
0.540 ( 0.75) 
0.551 ( 2.00) 
0.540 ( 1.79) 
0.678 ( 0.04) 
0.429 ( 0.82) 
0.452 ( 1.24) 
0.424 ( 1.19) 
0.648 f 0.12) 

0.794 ( 6.31) 
0.781 ( 4.83) 
0.848 ( 0.06) 
0.720 ( 0.48) 
0.749 ( 2.90) 
0.723 ( 1.99) 
0.839 f 0.13) 

to see that for any finite value of p ,  ALG2 may yield a tree with cost 
an unbounded factor greater than the MST cost, even in geometry. 

IV. EXPERIMENTAL RESULTS 

Both ALGl and ALG2 have time complexity 0 ( n 2 ) ,  since each 
is extendible from Dijkstra’s algorithm. We tested our Prim-Dijkstra 
tradeoffs against the MST construction that is traditional in VLSI 
global routing, as well as against previous shallow-light algorithms 
(the KRY method of [13], and the BRBC method of [3], [8]). For a 
given problem instance, each cost-radius tradeoff generates a family 
of spanning trees corresponding to the range of parameter values; we 
study such families of output trees to determine the parameter values 
best suited to particular technology or area-performance requirements. 
In what follows, we compare the cost-radius tradeoffs over the 
families of trees output by each algorithm, as well as delay simulation 
results over a range of IC and MCM technologies. We also compare 
cost-radius tradeoff and signal delay performance of the Steiner trees 
which are induced from the various spanning tree constructions. 

A .  Comparing Cost and Radius 

For each signal net, we generated a “family” of 5 1 output trees for 
ALGl with c ranging from 0 to 1 at intervals of 0.02. To generate 
corresponding families of trees for the other algorithms, we used 
input parameters that matched the ALGl parameter values according 
to relationships inferred from the algorithms’ limiting behaviors (see 
Table 11). We found that use of these relationships led to a good 
sampling of the families of trees generated by ALG2 and KRY. 
However, since BRBC tends to generate trees virtually identical to 
T<II for F 2 1.5, we study the family of 51 trees generated by BRBC 
with the parameter E ranging from 0 to 1.5 at intervals of 0.03. 

We ran each algorithm over its family of parameter values, for 
signal nets of 16 sinks chosen randomly from a uniform distribution 
in a 1 cm by 1 cm Manhattan square; each point in Fig. 5(a) represents 
an average over 250 such instances. All four algorithms “smoothly” 
trade off between cost and radius, with ALGl being clearly superior, 
i.e., for any desired cosdradius tradeoff, ALGl performs uniformly 
better than the other algorithms. The superiority of ALGl is especially 
clear for the tradeoff region that is of likely practical interest, i.e., 
when we wish to reduce tree radius without sacrificing more than 10% 
or 20% extra tree cost. ALG2 does not do as well as ALG1, but does 
provide superior costlradius tradeoffs over the previous methods. 

B. Delay Simulations 

We also compared the various tree constructions for uniformly 
random signal nets of 4, 8, and 16 sinks. Delays at all sink nodes 
were computed using the Two-Pole circuit simulator developed by 
Zhou et al. [25], for each of the four interconnect technologies listed 
in Table I of the Introduction. The Two-Pole simulator is a moment- 
matching distributed RCL delay code which produces very accurate 
results (within a few percent) when tested against SPICE3e [25]. We 
recorded both average delay (over all sinks) and maximum delay 
(i.e., the latest arrival time of the signal to any sink), with all results 
normalized to the corresponding values for the MST routing. (Delay 
was measured as the rise time to a stable value of 0.9 times the 
reference voltage of 5.0 V, given a step input function.) For each 
instance, we ran each algorithm over each of the 5 1 user parameters 
described above, and recorded the lowest delay value of any tree in 
the family. 

Table I11 gives maximum and average signal delays, averaged over 
250 instances. Because practitioners might not wish to compute the 
best of 51 distinct trees, we also show the average value for each 
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(b) 

Fig. 5 .  Graph of radius ratio (10) versus cost ratio (m) for ALGI, 
ALG2, KRY[13] and BRBC[3][8] for uniformly random instances of 16 sinks 
in the Manhattan unit square. Each point indicates the algorithm performance 
for a specific parameter value, (a) averaged over 250 instances, and (b) the 
same experiments with the edges overlapped to induce a Steiner topology. 

1 ( T s )  

algorithm’s best parameterization under both the maximum sink delay 
objective and the average sink delay objective. This indicates how the 
ideal cost-radius tradeoff parameter is correlated with technology and 
net size (for example, the best ALGl c parameter for 16 sinks is 0.23 
for IC1 and 0.73 for MCM). If only one spanning tree construction 
is allowed, we believe the “best” parameter will generally yield a 
tree with low delay (see Footnote 2 below for further discussion 
of this issue). We find that ALGl is the best algorithm of those 
tested, yielding delays that are better than or equal to those of its 
nearest competitor, KRY, in 27 of 30 comparisons. The Prim-Dijkstra 
tradeoffs achieve particularly substantial delay reductions over the 
minimum spanning tree routing for MCM, reinforcing our intuition 
that minimum-cost tree constructions are becoming less useful for 
newer interconnect technologies. 

The KRY delays are surprisingly good in view of the algorithm’s 
inferior costhadius tradeoff. While ALGl seems to yield a more 
“natural” tree (e.g., KRY trees are commonly self-intersecting, while 
ALGl trees rarely are-see Fig. (6)), we believe that KRY bene- 

(C) 

Fig. 6. Execution of ALGl with c = 0.5  (a) and KRY [13] with 0 = 1 .5  
(b), on a 100-sink example using Euclidean distance. ALGl trees may also 
be self-intersecting, e.g. (c), with c = 0.22 and source at (0,  0 ) ,  though this 
is rare in practice. 

fits from its tendency to branch early from 1’0. causing relatively 
little off-path tree weight for any given source-sink path. While 
our Prim-Dijkstra methods offer clear advantages over previous 
(performance-driven) routing constructions, the success of KRY 
underscores the continuing need for better routing tree analysis and 
design techniques. 

C. Steiner Routing 
Many global routing approaches require rectilinear Steiner tree 

constructions. A popular approach converts a spanning tree to a 
Steiner tree by overlapping the embeddings of tree edges. This 
method preserves the tree radius of the initial spanning topology 
within the eventual Steiner tree output. Ho et al. [I21 have given 
a linear time construction that optimally converts a spanning tree to 
a Steiner tree by edge overlapping, but there are several reasons why 
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TABLE IV 

IS USED TO INDUCE A STEINER ROUTING. VALUES ARE GIVEN AS A RATIO TO CORRESPONDING MST DELAY VALUES, AVERAGED OVER 
250 RANDOM INSTANCES. NUMBERS IN PARENTHESES GIVE THE AVERAGE BEST PARAMETER VALUE FOR EACH ALGORITHM. 

MAXIMUM SOURCE-SINK DELAY AND AVERAGE SOURCE-SINK DELAY IN THE BEST TREE FOR EACH ALGORITHM. AFTER EDGE-OVERLAPPING 

I Steiner Trees 

ALG 2 

BRBC 
ALGl 
ALG2 
KRY 
BRBC 

TC3 IC1 
0.812 ( 0.17) 
0.837 (32.56) 
0.812 (31.77) 
0.816 ( 0.03) 
0.727 ( 0.34) 
0.797 (16.53) 
0.728 (14.45) 
0.744 ( 0.10) 
0.665 ( 0.44) 
0.758 (11.52) 
0.671 ( 5.66) 
0.713 ( 0.16) 

IC2 
0.789 ( 0.21) 
0.813 (30.46) 
0.789 (28.85) 
0.794 ( 0.05) 
0.684 ( 0.46) 
0.755 ( 9.81) 
0.684 ( 8.97) 
0.707 ( 0.10) 
0.606 ( 0.52) 
0.699 ( 5.63) 
0.611 ( 3.73) 
0.664 ( 0.16) 

Avg sink delay vs. R 
IC 1 I IC 2 

0.777 ( 0.18) I 0.735 ( 0.15) 
0.711 ( 0.52) I 0.644 ( 0.60) 

- - _  

0.780 ( 0.24) 
0.804 (29.14) 
0.780 (27.86) 
0.785 ( 0.06) 
0.672 ( 0.49) 
0.742 ( 9.25) 
0.672 ( 8.72) 
0.694 ( 0.10) 
0.590 ( 0.54) 
0.682 ( 3.72) 
0.596 ( 3.85) 
0.651 ( 0.15) 
iT (best para 

IC3 
0.763 ( 0.28) 
0.773 (27.04) 
0.763 (24.56) 
0.775 ( 0.06j 
0.680 ( 0.56) 
0.737 ( 7.34j 
0.682 ( 5.55) 
0.720 ( 0.17) 
0.624 ( 0.62) 
0.697 ( 3.38) 
0.628 ( 2.28) 
0.702 ( 0.25) 

ter) 
MCMl 

0.748 (0.30) 
0.778 (25.33) 
0.747 (23.79) 
0.758 (0.04)  
0.587 ( 0.57) 
0.671 (6.77)  
0.586 ( 6.15) 
0.628 ( 0.10) 
0.463 ( 0.68) 
0.567 ( 1.93) 
0.466 ( 1.76) 
0.556 ( 0.12) 
ter) 

MCMl 
0.694 ( 0.32) 
0.706 (22.88) 
0.694 (21.85) 
0.716 ( 0.06) 
0.551 (0.64)  
0.617 ( 4.27) 
0.550 ( 3.38) 
0.625 (0.13) 
0.443 ( 0.75) 
0.526 ( 1.56) 
0.445 ( 1.29) 
0.579 ( 0.29) 

their code is not applicable to our spanning trees (e.g., our spanning 
trees can have high-degree nodes, and do not always satisfy the 
sepurubifity requirement of [12]). Thus, for simplicity we adopt a 
greedy edge-overlapping algorithm.’ 

Fig. 5fb) and Table IV show that the utility of our Prim-Dijkstra 
spanning tree constructions is preserved when the trees are converted 
to Steiner trees in this manner. The performance-driven spanning 
tree constructions with lowest delay still have lowest delay when 
Steiner points are incorporated. The average best values of the input 
parameters shift to more star-like spanning topologies when the 
Steiner conversion is employed: since edge-overlapping decreases 
cost without affecting radius, we can afford spanning trees that use 
additional tree cost to further reduce the radius. (Anomalies may 
result since the overlapping process diminishes the star-like nature of 
the tree topology. Thus, a Steiner tree can have greater sink delay 
than its spanning tree precursor.) 

Finally, we observe that our delay results are substantially better 
than the leading “fixed” methods, i.e., tree constructions which cannot 
be parameterized to track interconnect technology. For example, we 

’ Our greedy edge-overlapping method simply examines the bounding boxes 
of every pair of adjacent edges in the tree, and calculates the cost reduction 
achievable by optimally overlapping these edges (i.e., inducing a Steiner 
point). The Steiner point which yields the maximum cost savings is added, 
until no additional cost reduction is possible. While this heuristic is not 
guaranteed to be optimal, its output is nearly identical to that of the optimal 
edge-overlapping algorithm of Ho er al. (called S-RST in [12]). For random 
10-node instances, our heuristic averages 8.8% cost reduction from an input 
minimum spanning tree, while S-RST is reported to average 9.0% reduction. 
For random 25-node instances, our heuristic averages 9.3% percent cost 
reduction over the minimum spanning tree, while S-RST is reported to average 
9.5% reduction. Thus, we believe that the greedy heuristic is adequate for our 
study.‘ 

average over 25% reduction in average sink delay when compared 
with the results reported in [9]; this is not surprising since even ALGl 
or ALG1-Steiner (i.e., ALGl followed by greedy edge-overlapping to 
create a Steiner tree) withfied c = 1.00 already constitutes a reason- 
ably good heuristic Steiner arborescence, or “A-tree,’’ construction’. 
We may similarly compare our constructions against the standard 
minimum Steiner tree heuristic of edge-overlapping a minimum 
spanning tree (this is identical to ALGl-Steiner with fixed c = 0). For 
this standard technique using MCM parameters, the ratios of average 
sink delays to corresponding MST delays are 0.802 (4 sinks), 0.808 
(8 sinks), 0.818 (16 sinks). By contrast, a single ALGl execution 
using the fixed, best c value from Table I11 will attain ratios of 0.788, 
0.590, and 0.461, respectively. When edge-flipping is added in ALG 1 - 
Steiner and we use the best c values from Table IV, the average-delay 
ratios are 0.756,0.586, and 0.468, respectively. (Delay ratios obtained 
by considering the family of ALGl trees can be read off directly 
from Tables I11 and IV.) 

*Reference [9] presents numerical results for one set of interconnect 
technology parameters, namely, MCM; the parameters and simulation method- 
ology are identical to those we use here. By normalizing the reported .4-tree 
results to those of BRBC with parameter F = 1.0-i.e., the comparison made 
in [9]-we obtain the following ratios for average sink delay: i)  -4-treelBRBC- 
1.0 = 1.024 (4 sinks), 0.846 (8 sinks), 0.645 (16 sinks). When we use a 
fixed, “best” c value for ALGl as giwn in Tables 111 and IV, we obtain 
the following results: ii) ALGIIBRBC-1.0 = 0.805 (4 sinks), 0.598 (8 sinks), 
0.463 (16 sinks); and iii) ALGI-SteinerlBRBC-1.0 = 0.896 (4 sinks), 0.728 
(8 sinks), 0.577 (16 sinks). Note that i)  and iii) both represent Steiner routing 
constructions. If we are allowed to consider the enlire family of ALGl trees, 
the results improve to ii’) ALGIlBRBC-1.0 = 0.702 (4 sinks), 0.547 (8 sinks), 
0.431 (16 sinks); and iii’) ALGI-SteinerlBRBC-1.0 = 0.738 (4 sinks), 0.598 
(8 sinks), 0.502 (I6 sinks). 
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V. CONCLUSION 
Analysis of Elmore delay in RC trees suggests that low-delay 

routing trees should trade off cost and radius according to net size and 
interconnect technology. Previous approaches [2], [3], [81, [I31 begin 
with a depth-first traversal of TM and insert shortest paths as needed 
to maintain a prescribed radius bound. In contrast, our ALGl and 
ALG2 constructions directly combine the recurrences for Prim’s MST 

‘,algorithm and Dijkstra’s SPT algorithm. This more natural tradeoff 
significantly improves over the cost-radius performance of BRBC [3], 
[8] and KRY [13]. Simulation results show that ALGl yields routing 
trees with less maximum and average delay than ALG2, KRY or 
BRBC in both IC and MCM interconnect technologies; improvements 
over the “probably good” BRBC approach are particularly substantial. 
Our delay reductions over fixed constructions are also substantial 
(such constructions include standard MST routing and heuristic min- 
imum Steiner tree routing as well as the recent Steiner arborescence 
approach of [9]). It is therefore of interest to pursue integration of 
ALG I within existing performance-driven global routers. 
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A Preprocessor for Improving Channel 
Routing Hierarchical Pin Permutation 

C. Y. Roger Chen, Cliff Yungchin Hou, and Bradley S. Carlson 

Abstract-In standard cell design, many cell terminals and gates are 
permutable, and it is important for a channel router to take advantage 
of this to obtain better results. An efficient hierarchical algorithm is 
presented to determine the proper positions of permutable gates and cell 
terminals such that the results of the subsequent channel routing can 
be significantly improved. Experimental results show that our proposed 
algorithm considerably reduces the number of tracks and vias, and its 
time complexity is linear in the number of cell terminals. 

I. INTRODUCTION 
Channel routing is one of the critical problems in VLSI design. 

Algorithms for channel routing with fixed terminals have been 
studied extensively [1]-[5]. Optimal or near optimal results have been 
obtained by these algorithms. The problem of permutable channel 
routing in ‘which some of the terminals are interchangeable has 
received considerable attention in recent years [6]-[ 121. For example, 
in programmable logic cells (e.g., PLA’s and ROM’s), the terminals 
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