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Abstract 

We analyze relationships among local minima for the traveling salesman and graph bisection problems under standard 
neighborhood structures. Our work reveals surprising correlations that suggest a 91obally convex, or "big valley" structure 
in these optimization cost surfaces. In conjunction with combinatorial results that sharpen previous analyses, our analysis 
directly motivates a new adaptive multi-start paradigm for heuristic global optimization, wherein starting points for greedy 
descent are adaptively derived from the best previously found local minima. We test a simple instance of this method for the 
traveling salesman problem and obtain very significant speedups over previous multi-start implementations. 

Key words. Global optimization; Heuristic search: Stochastic hill-climbing; Multi-start: Traveling salesman problem: 
Graph bisection 

1. Introduction 

A combinator ia l  problem has a finite solution set S and a real-valued cost function f :  S--, ~ .  Global  
opt imizat ion seeks a solution s* ~ S with f (s*) <~ f ( s ' )  Vs' e S. Because many  formulat ions are intractable, 
heuristic methods  are employed which can often be described by the following template: 

Iterative Global Optimizat ion 

for (i = 0; ; i +  + )  

Step l: Given the current solution si, generate a new trial solution s' 
Step 2: Decide whether to set si+l = si or  Si+l = s' 
(When s topping condit ion is satisfied, Return best solution found) 
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Typically, s' is a slight perturbation of sl, i.e., s' ~ N(si), where N(s)i is the neighborhood, or set of all possible 
"neighbor" solutions, of si. The function f then defines a cost surface over the neighborhood topology. 

This template is quite general. For example, simulated annealin9 [14] generates a random s' ~ N(si) in Step 
1, while Step 2 sets si+l = s' with probability one iff(s')<~f(si), and probability exp(( f (s i ) - - f (s ' ) ) /Ti)  if 

f (s ' )  >f(s~), where T~ is the "temperature" parameter at the i th iteration. Other heuristics are greedy with 
si+l = s' in Step 2 only i f f (s ' )<f(s l ) .  Of specific interest to us is the nondeterministic Greedy_Descent 
procedure, which iteratively tests solutions s' ~ N(s~) in random order until an improvement si+ 1 = s' with 
f(si+~ < f(si) can be made; the procedure terminates if no improving s' ~ N(si) exists. With greedy search, 
progress stops when the first local minimum is encountered. Simulated annealing can escape from local 
minima and has gained wide popularity because it is guaranteed theoretically to return a globally optimum 
solution (given infinite time), and in practice yields better solutions than most other methods. On the other 
hand, annealing usually requires large amounts of CPU time to be successful. 

Because greed returns a good solution relatively quickly, one alternative to simulated annealing is to apply 
greed repeatedly and return the best result. Several studies have shown "greedy multi-start" superior to 
simulated annealing in terms of both solution quality and run time. Johnson [10] describes extensive 
empirical studies of the traveling salesman problem (TSP) and indicates that multiple runs of various greedy 
methods can outperform simulated annealing. Recent results of Sorkin [23] show that a multi-start approach 
is superior to standard simulated annealing on a class of fractal cost surfaces. Boese and Kahng [5] have 
computed optimal annealing temperature schedules for small combinatorial problems; these schedules can 
resemble multi-start, with alternating periods of greedy descent and randomization (corresponding to 
annealing to zero and infinite temperatures). Multi-start is also attractive for its trivial parallelizability on 
distributed architectures. 

Nevertheless, the multi-start approach has its weaknesses. Recent analyses of optimization cost surfaces 
show that as problems grow large, random local minima are almost surely of "average" quality, implying that 
current random multi-start heuristics which rely on random starting solutions are doomed to a "central limit 
catastrophe" (e.g., [3, 13]). Moreover, other work on graph partitioning indicates that the number of greedy 
descents needed to achieve stable, good solutions (where stability means a low standard deviation in solution 
cost) can grow rapidly with problem size E11, 26]. 

2. Global structure of optimization cost surfaces 

Our motivating hypothesis is that multi-start heuristics can remain successful for large problem instances 
only by exploiting 91obal structure in the cost surface. Several general structural models have been proposed; 
for example, Sorkin [-22] and Weinberger [-27] have fitted fractal and AR(1) processes, respectively, to 
real-world optimization cost surfaces. For our purposes, the leading study is due to Kirkpatrick and 
Toulouse [15], who attempt to confirm an ultrametric relationship between local minima for the traveling 
salesman problem (TSP). They observe only inconclusive evidence for ultrametricity, but do find that the 
distances between random pairs of local minima satisfy a normal distribution with surprisingly low average. 
(Related studies are due to Mezard and Parisi [-17] and Sourlas [24]; the latter fails to find evidence for 
ultrametricity in the TSP, and goes on to propose a modified simulated annealing heuristic which eliminates 
edges from consideration if they appear infrequently in good solutions. Similar studies of ultrametricity have 
been made for other combinatorial problems such as graph coloring [2] and one-dimensional circuit 
placement [21]. Both [24, 17] discuss correlations of TSP tour costs with distances between tours, much as 
we do in Section 2.1 below; however, they fail to make any of the enabling observations that we present here.) 

We also study relationships among local minima, but in a different way: we consider the set of local 
minima from the perspective of  the best local minimum. As we describe in the remainder of this section, our 
results indicate that many problem spaces exhibit a "globally convex" [-9] structure, suggesting improved 



K.D. Boese et al. / Operations Research Letters 16 (1994) 101 113 103 

multi-start strategies which derive starting points from the best previously found local minima. Section 3 will 
develop this new class of adaptive multi-start (AMS) methods. AMS bears some similarities to '~genetic local 
search" algorithms El, 18, 19, 25], although the latter generally form new starting solutions from only two 
"parents", rather than from many local minima. Moreover, AMS does not depend on any evolutionary 
analogy for its motivation. (Note that Mfihlenbein [,18] and Ackley [,1, p. 35] do mention multi-parent, 
voting approaches for forming new solutions and that Mfihlenbein et al. [-19] also analyze the distribution of 
local minima in a manner similar to ours. Note also that while "iterated greed" [10] and tabu search in some 
sense use information about local minima, such methods do not follow a "multi-start" paradigm.) 

2.1. The symmetric traveling salesman problem 

The symmetric TSP is perhaps the most well-studied of all NP-hard combinatorial problems [16]. Given 
n cities with symmetric intercity distances, the TSP seeks a minimum-cost tour, i.e., a (cyclic) permutation of 
the cities which minimizes the sum of the n distances between adjacent cities in the tour. We use the Lin 2-opt 
neighborhood operator that is usual in studies of the TSP [-16]: a 2-opt deletes two nonadjacent edges of the 
current tour and then reconnects the two resulting paths into a new tour. 

To study the structure of the TSP solution space, we require a measure of distance between two tours tl 
and t2. A natural definition of distance is the minimum number of 2-opts needed to transform tl into t2; we 
call this the 2-opt distance, denoted d(tl, t2). Since no polynomial method for computing d(t~, rE) is known, 
Kirkpatrick and Toulouse [15] measure the similarity between tl and t2 according to the number of edges, or 
"bonds", common to both tours. We will use the term bond distance, denoted b(tl, t2), tO equal n minus the 
number of edges that are present in both tl and t 2 (disregarding edge direction). No previous results directly 
link bond distance to the 2-opt or any other TSP neighborhood structure. We have partially addressed this 
gap through the following result (see Appendix A for proof), which supports the existing practice of 
measuring bond distance even in a 2-opt neighborhood structure. 

Theorem 1. For any two tours tl and t 2 of a given TSP instance, b(tl, t2)/2 ~< d(ta, t2) <~ b(t~, t2), with the lower 
bound being tight. 

Recall that our new approach to multi-start will be motivated by examining the set of local minima from 
the perspective of the best local minimum. From each of 2500 random locally minimum tours for a 100-city 
random Euclidean TSP instance, Fig. l(a) plots the tour's cost versus its average bond distance to all (2499) 
other local minima. All TSP instances that we discuss are chosen randomly from a uniform distribution over 
the unit square. A "random local minimum" is found by starting at a random initial solution and executing 
Greedy_Descent. In the figure we see a clear correlation: the best local minimum appears to be "central" to 
all other local minima, and indeed a "big valley" structure [6] can be said to govern the set of locally 
minimum tours. 

Further insight is gained from Fig. l(b), which plots the costs of the same 2500 local minima against their 
distances from the best local minimum found. Note that all local minima are within bond distance 48. In 
Appendix B, we show that the average distance between two random n-city tours is just under n - 2, slightly 
sharpening an observation in [-15]. Appendix B also gives the first efficient enumeration of tours at each bond 
distance; for a 100-city TSP instance, this calculation indicates that less than 1/1059 of the solution space lies 
within a "ball" of radius equal to 48. Thus, the set of local minima not only has a "big valley" structure, but is 
also confined to a tiny portion of the solution space S. Such intuitions are clearly suggestive vis-a-vis 
multi-start strategies. Finally, Fig. 2 gives analogous plots for a random 500-city Euclidean TSP instance (for 
which a ball of radius 243 corresponds to less than 1/1046s of the solution space). In [6], we have obtained 
similar results for random symmetric TSPs (with edge weights uniform in I-0, 1]), which are studied in [,15] 
and elsewhere. 
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Fig. 1. Analysis of 2500 random local minima for a 100-city Euclidean TSP instance. Tour cost {vertical axis) is plotted against (a) average 
distance from the other 2499 local minima and (b) distance from the local minimum with lowest cost. All 2500 local minima are distinct. 
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Fig. 2. Analysis of 2500 random local minima from a 500-city Euclidean TSP instance. All 2500 local minima are distinct. In (b), we do 
not show the best local minimum, which is at distance zero. 

2.2. The graph bisection problem 

We have found tha t  a s imilar  s t ructure  governs  the local m in ima  for graph bisection instances. Given  an 
unweighted graph G = (V, E), the graph bisection problem seeks a partition of V into disjoint subsets U and 
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Fig .  4. A n a l y s i s  o f  2 5 0 0  r a n d o m  l o c a l l y  m i n i m u m  b i s e c t i o n s  for g r a p h  in GBui ( 100,  4, 10). T h e  d a t a  r e p r e s e n t  2 3 4 3  d i s t i n c t  l o c a l  m i n i m a ,  

14/, with ]UJ = [W[, such that number of edges (u, w) ~ E with u ~ U, w E W is minimized. We adopt the 
standard 2-interchange neighborhood structure, where a 2-interchange swaps a pair of vertices u e U and 
w ~ W. The distance between solutions sl and s2 is the number of 2-interchanges required to transform sl 
into s2, and can be at most  IV[/4. 

We first study a standard class of  random graphs G(n, p), i.e., graphs having n vertices and each possible 
edge present independently with probability p (see [-7]). Because graphs in G(n, p) have expected minimum 
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bisection cost within a constant factor of the expected random bisection cost [8], more "difficult", structured 
models have been proposed. In particular, we also study the class GBul (n, d, b) of random graphs proposed by 
Bui et al. ]-8], which have n nodes, are d-regular, and have minimum bisection cost almost certainly equal to 
b. Typical results are shown in Figs. 3 and 4. The "big valley" correlation is again clearly apparent, although 
local minima are not as strongly confined to a small region of the solution space. (Some local minima have 
maximum distance from the best local minimum. Note that the expected distance between random bisections 
is easily computed to be 23.02 for n = 100 and 35.04 for n = 150.) 

3. Exploiting global structure: adaptive multi-start 

It is natural to wonder whether more effective starting solutions for Greedy_Descent can be derived if we 
assume that a "big valley" structure holds for the set of local minima. In this section, we consider a simple 
instance of such an Adaptive Multi-Start (AMS) methodology and demonstrate its effectiveness in practice. 

3.1. A simple adaptive multi-start (AMS) heuristic 

We have implemented a simple AMS heuristic consisting of two phases: 
Phase One: Generate R random starting solutions and run Greedy-Descent  from each to determine a set 

of corresponding random local minima. 
Phase Two: Based on the local minima obtained so far, construct adaptive starting solutions and run 

Greedy_Descent  A times from each one to yield corresponding adaptive local minima. 
Intuitively, the two phases respectively develop, then exploit, a structural picture of the cost surface. Our 

AMS heuristic is more precisely described in Fig. 5. (Note that henceforth our discussion is couched with 
respect to the symmetric TSP.) 

In the Fig. 5 template, the term descent denotes a single execution of Greedy_Descent. We use D to denote 
the total number of calls to Greedy_Descent. The number of passes through Phase Two (Lines 3-6) is deter- 
mined by the relationship passes = r(D - R)/A 7. In obtaining the results of Section 4, we uniformly use R = D/2 
(i.e., we spend exactly half our CPU budget in Phase One) and A = 10. When D - R is not an exact mul- 
tiple of A we truncate the final pass in Line 5. The subroutine Construct_Adaptive_Start ing_Tour always 
constructs an adaptive starting tour from the set of k best local minima found so far; we use k = 10 in our experi- 
ments. In the description of Construct_Adaptive_Start ing_Tour,  a partial tour is a set of edges that is a subset 
of the edges in some tour. Given a partial tour t, edge e is a valid tour edge wtih respect to t ifft w {e} is a partial 
tour. The experimental results in Section 3.2 were obtained using the following additional implementation details: 

1. In Line $4, w(e~) is the sum of the inverse tour costs for tours in which e~ appears, i.e., 

1 
w ( e l ) =  ~ cost(My (1) 

M j : ' e  i 

2. In Line $6, we use 

{w(el) ) 
Pr(ei) = exp~ W - 1 

where 
rMr l 

W= y, cost(Mj) j=l 

is the weight of an edge that is contained in all tours in M. 
3. In Lines $7 and $8, we simply insert random valid edges until t becomes a tour. 

(2) 
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A d a p t i v e _ M u l t i - S t a r t  ( G , D , R , k , A )  
Input: TSP instance G = (V, E)  with I y l  = n 

D = limit on number of descents = CPU budget 
R = number of descents from random starting tours 
k = number of local minima used to construct each adaptive tour 
A = number of descents made from each adaptive starting tour 

O u t p u t :  t* - best local minimum found after D descents 
Local Variables: 

M = set of k best local minimum tours so far 
/ *  ( P h a s e  One )  * /  
1. Generate R random local minima 
/ *  ( P h a s e  T w o )  * /  
2. r e p e a t  
3. Update M 
4. t *-- C o n s t r u c t . A d a p t i v e _ S t a r t i n g _ T o u r ( M )  
5. Run G r e e d y _ D e s c e n t ( t )  A times 
6. Update t* 
7. u n t i l  D total descents. 

S u b r o u t i n e  C o n s t r u c t . _ A d a p t i v e _ S t a r t i n g _ T o u r ( M )  
I n p u t :  Set M = {M1, . . . ,  Mk) of locally minimum tours 
O u t p u t :  Set t of edges forming a new starting tour 
S1. In  = union of all edges in set of tours M 
$2. t = 0 .  
$3. Assign weight w(e i )  to each edge ei E In  
$4. fo r  ei E In  in order of decreasing w(e i )  do  
$5. i f  ei is a valid tour edge with respect to t t h e n  
$6. t = t U {e i )  with probability P r ( e l )  
$7. wh i l e  ]t I < n (i.e., t is not yet a tour) do  
$8. Add a randomly chosen valid tour edge from E \ t 

Fig. 5. Adaptive Multi-Start template. 

(In Line $4, our definition of w(ei) gives greater weight to edges that are present in many short tours: however, 
we have obtained similar results using uniform edge weights. In Line $6, while we have also tried other 
probabilistic weighting methods, our choice allows the probability that el is included in t to approach 1 as 
w(e~) approaches its maximum possible value. In Lines $7 and $8, we have found that a number of other 
strategies yield very similar results, e.g., adding the shortest valid edge, testing edges according to a fixed 
order, or following a nearest-neighbor heuristic.) 

Given these implementation decisions, Construct_Adaptive Start ing_Tour has O(knlog n + H 2) worst- 
case run time. Of course, this is dominated by the known exponential worst-case run time of Greedy Descent 
for 2-opt in the TSP [20]. 

3.2. Exper imental  results 

Table 1 compares results of our AMS implementation with results of random multi-start and nearest 
neighbor (NN) multi-start (i.e., multi-start from initial tours obtained by the nearest-neighbor TSP heuristic). 
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NN tours are suggested in [10] for obtaining initial tours for 2-opt descents; although Bentley [4] has since 
shown that the greedy TSP tour is a slightly better starting point for a single descent, it may be less appropriate 
for multi-start because there is only one greedy tour of a given instance versus up to n different NN tours. As 
problem size and the CPU budget D increase, we obtain significant improvements over the current methods, 
e.g., for 100-city TSP instances, our adaptive strategy achieves in only 200 descents what random multi-start 
would require over 5700 descents to achieve. A more detailed portrait of this data is given in Fig. 6. 

Table 2 shows the stability of our AMS method, where we define stability to be the standard deviation of 
cost (t*). Measured over 50 separate executions on a single 100-city instance, the stability of AMS is very 
good, with a standard deviation of only 0.030. Although other multi-start methods can have greater stability, 
AMS maintains its superiority because of its low average solution cost. AMS is also "stably better" than the 
other methods. For example, Table 1, AMS with D = 200 gave a superior solution to random multi-start in 
all instances and to NN multi-start in 47 out of 50 instances. 

Table 1 
Experimental results for AMS executions on 50 random 100-city Euclidean TSP instances in 
the unit square 

Equivalent # Descents 
Average % above 

# Descents used Random NN Tour cost Held-Karp 
in AMS strategy strategy (AMS) Lower bound 

1 1 1 8.5404 10.91 
50 442 50 7.9835 3.68 

100 1508 176 7.9266 2.94 
150 >4100 426 7.8967 2.55 
200 >5300 826 7.8806 2.34 
400 >7200 > 3000 7.8555 2.02 
600 >8600 > 4000 7.8367 1.78 

1000 >9300 > 4500 7.8275 1.66 

Results show the number of descents needed for random multi-start or nearest-neighbor- 
based multi-start to achieve the same solution quality. Random multi-start was run for 3000 
descents and nearest-neighbor multi-start for 2000 descents on each of the 50 instances. Entries 
with > are conservative estimates based on linear extrapolation. Average tour costs and their 
relationship to the expected Held-Karp lower bound on TSP cost (provided by Johnson and 
Rothberg [121t are shown in order to facilitate comparison with other work, e.g., [10]. 
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Fig. 6. Graphical comparison of AMS, random multi-start, and nearest-neighbor multi-start approaches averaged over 50 random 
100-city Euclidean TSP instances. 
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Table 2 
Stability comparison of different multi-start strategies on a single random 100-city TSP instance 

109 

Adaptive NN Random 

Mean Std. dev. Mean Std. dev, Mean Std. dev. 

D ~  1 7.713 0.17l 8.015 0.265 
D =  100 7.412 0.030 7.492 0.020 7.597 0.011 
D=200 7.393 0.020 7.456 0.019 7.552 0.009 

Mean and standard deviation of solution cost are computed for 50 executions of each strategy. 

Table 3 
Mean (standard deviation) of bond distance between 50 starting tours and the corresponding locally minimum tours found by 
Greedy.Descent. Also given are the mean (standard deviationl of the average bond distance between each starting tour and 100 
"~random'" local minima 

50-city instance 100-city instance 

Starting tours Random NN Adaptive Random NN Adaptive 

Distance to local minima 47.52 (1.32) 13.20 (1.66) 5.18 (1.93~ 97.90 ~1.34) 27.16 (3.92~ 9.6915.251 
Average distance to 100 
local random minima 47 .58 (1 .13 )  22.99(0.82) 13.51 (0.88) 98.08tl.01) 39.01 (1.14) 31.27tl.52) 

Sample size is 50 for all data; single random Euclidean instances are used for both n = 50 and for n = 100. 

Final ly ,  Table  3 shows the s t rong re la t ionship  between our  adap t ive  s tar t ing tours  and  the co r r e spond ing  
local  minima.  F o r  the three  types of s tar t ing tours  ( random,  NN,  adaptive) ,  the table  shows average b o n d  
dis tance  between the s ta r t ing  tou r  used by  G r e e d y _ D e s c e n t  and  the local ly m i n i m u m  tour  it returns.  It also 
compares  these dis tances  with the average b o n d  dis tance  between s ta r t ing  tours  and  100 " r a n d o m "  local 
m in ima  ob t a ined  by G r e e d y  Descent  from 100 different r a n d o m  s tar t ing tours.  We see tha t  the pos i t ion  of 
a random s tar t ing  tou r  has little effect on the pos i t ion  of the local ly  m i n i m u m  tour  found by G r e e d y  Descent;  
in fact, this local  m i n i m u m  is no closer to the s ta r t ing  tou r  than  a " ' random local  min imum".  By contras t ,  the 
N N  and  adap t ive  local m i n i m a  are  not  only  much  closer to their  s tar t ing tours,  but  are also significantly 
closer than  o ther  " r a n d o m "  local  minima.  (The high s t anda rd  dev ia t ion  of  b o n d  dis tance from the adap t ive  
s ta r t ing  tou r  to the co r r e spond ing  local m i n i m u m  tour  is due to our  da t a  col lect ion me thodo logy :  to ob ta in  
50 dis t inct  adap t ive  s tar t ing tours  using the A M S  heurist ic  with the usual  R = D/2, A = 10, etc., we must  use 
D ~ 1000, and  the qual i ty  of  the adap t ive  init ial  tours  increases signif icantly over  the course  of this process.  
We  could  also ob ta in  the adap t ive  initial  tours  by execut ing A M S  50 separa te  t imes with D = 20; this yields 
sl ightly h igher  means  and lower  s t a n d a r d  devia t ions  of  7.46 (1.766) for n = 50, and  15.20 (3.339) for n = 100,) 

4. Conclusions 

Mul t i - s t a r t  greedy op t imiza t ion  has shown much  promise  in prac t ica l  appl ica t ions ,  but  the I rad i t iona l  
r a n d o m  mul t i - s ta r t  imp lemen ta t i on  suffers from a "cent ra l - l imi t  ca t a s t rophe"  when p rob l e m size grows 
large. In  this pape r  we address  this difficulty with an adaptive mult i -s tart  m e t h o d o l o g y  that  is based on new 
insights in to  g loba l  s t ructure  of  op t imiza t i on  cost  surfaces. 

F o r  instances  of the symmet r ic  T S P  and  g raph  bisection,  we s tudy cor re la t ions  between the cost  of a local 
m i n i m u m  and  its average dis tance  to all o ther  local  m in ima  (as well as its d is tance  to the bes t - found local 
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minimum). Our analyses show evidence of a "big valley" governing local minima in the optimization cost 
surface, and motivate the adaptive multi-start methodology. In other words, our evidence suggests a globally 
convex [9] structure for the set of local minima (we may make an analogy to the structure of an integer 
polytope, which "viewed from afar" may appear to have a single minimum point, but which up close has 
many local minima). Our results may explain why simulated annealing, tabu search, iterated greed, and other 
hill-climbing heuristics have been so successful in practice: very good solutions are located near other good 
solutions. 

Based on these insights, our adaptive multi-start (AMS) heuristic uses best-known locally minimum 
solutions to generate starting points for subsequent greedy descents. Experimental evidence for TSP 
instances shows significant improvement in run time and solution quality over previous multi-start methods 
(random- and nearest-neighbor-based). Future work should apply our adaptive approach to other greedy 
methods (e.g., 3-opt and Lin-Kernighan for TSP) and other combinatorial formulations (e.g., graph 
partitioning and VLSI circuit placement). Our current study also motivates consideration of alternate 
neighborhood structures which can induce a "big valley" over the solution space. 

Appendix A: Relation between d(t, t') and b(t, t') 

Recall from Section 2.1 that d(t, t') is the 2-opt distance and b(t, t') is the bond distance between TSP tours. 

Theorem 1. For any two tours tx and t2 of a given TSP instance, b(tl, t2)/2 <~ d(tl, t2) <~ b(tl, t2), with the lower 
bound being tight. 

Proof. The lower bound d(t, t') >>. b(tl, t2)/2 follows easily by noting that a single 2-opt affects only two edges 
in the tour, and can therefore increase the bond distance by at most two. This bound is tight, since a sequence 
of j  2-opts from t (1 <~j <~ Ln/2A), each of which is applied to two edges remaining from t, will yield t' with 
d(t, t') = j and b(t, t') = 2j. 

We depict tours as permutations (1 . . . .  ) with city 1 listed first, followed by its lower-index neighbor. In 
proving the upper bound, we use a canonical t-subtour representation to express t' in terms of t. A t-subtour of 
t' is a sequence of contiguous cities in t that are also contiguous in t'; we use capital letters to label the 
t-subtours, with these labels assigned in alphabetic order according to their positions in t. A t-subtour is 
defined to be lower (higher) than another t-subtour if its label is closer to the beginning (end) of the alphabet 
(e.g., B is lower than C). Because all tours are notated as permutations beginning with city 1, the canonical 
t-subtour representation always begins with A. A t-subtour that appears in t' in reverse order is denoted by 
a bar above its label. For  example, if t = (1, 2, 3, 4, 5, 6) and t' = (1, 2, 4, 3, 5, 6), then the t-subtour 
representation of t' is ABC, where A = (1, 2~, B = (3, 4), and C = (5, 6). Any 2-opt in t' which preserves 
t-subtours will reverse a sequence of contiguous t-subtours in t', e.g., a 2-opt involving the two edges 
separating AIB and CIA in t' = A B C  will yield the tour ACB = (1, 2, 6, 5, 3, 4). 

We will prove the following three facts. (Note that b(t, t') = 1 is impossible.) 

Fact A.1. I f  b(t, t') = 2, then d(t, t') = 1. 

Fact A.2. I f  the t-subtour representation of t' contains a reversed t-subtour, then there is a 2-opt which 
transforms t' into t" such that b(t", t) < b(t', t). 

Fact A.3. I f  the t-subtour representation of t' contains a reversed t-subtour, then there is a 2-opt which 
transforms t' into t" such that either (i) b(t", t) <~ b(t', t) - 1 and t" contains a reversed t-subtour, or (ii) 
b(t", t) = b(t'~ t) - 2 and t" contains no reversed t-subtour. 

The following recipe transforms t' to t using at most b(t, t') 2-opts; the recipe relies directly on Facts A.1 
and A.3. (Fact A.2 is used in the proof of Fact A.3.) Each 2-opt used in the recipe reduces the bond distance 
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from t' to t by either 0, 1, or 2; and every move  that  leaves the bond  distance unchanged  can be paired with 
a move  that  decreases the bond  distance by 2. Thus,  we are left only with proving  Facts  A.1-A.3. 

1. If  t' contains  no reversed t -subtours  
arbi t rar i ly  reverse a t -subtour,  leaving the bond  distance to t unchanged.  

2. If t' contains  at least one reversed t-subtour,  per form a 2-opt  that  either 
reduces b(t, t') by 1 or 2 and leaves a reversed t-subtour;  or 
reduces b(t, t') by 2 and leaves no reversed t -subtours  (Fact  A.3). 

3. If  b(t, t') = 2 per form a 2-opt  which t ransforms t' into t (Fact  A.I). 
4. Repeat  Lines 1-3 until t ' =  t. 

Proof of  Fac t  A.I .  If  b(t, t ') = 2, then t' can be represented using t -subtours  as either A/~ or A B C .  In either 
case, a single 2-opt  reversing B will t ransform t' into t. [] 

Proof of  Fac t  A.2. Let fl represent  the lowest t - subtour  that  is reversed in t', i.e., it appears  as/~, and let ~ be 
the (nonreversed) t - subtour  immedia te ly  preceding fi alphabetically.  The basic idea is to reduce the bond  
distance by bringing a and fl next to each other  using a single 2-opt. If a occurs before fi in t', then a 2-opt  
which places fl directly after ~ will reduce the bond  distance to t by at least one, i.e., t' = A . . .  ~ / ~ . . .  becomes  
t" = A . . .  ~fl~'  . . . .  where ~e represents the sequence of t -subtours  between ~ and fl in t'. (For  example,  if 
t' = A C E ,  then fl = B, ~ = A, and t" --= ABf f . )  If  ~ occurs af ter /~  in t', then the 2-opt  which places ~ directly 

af ter /~  will reduce the bond  distance to t; i.e., A . . . / ~ a . . .  becomes A . . .  f l ~ . . .  [] 

Proof  of  F a c t  A.3. Suppose  t' con ta ins  a reversed t -subtour ,  and  tha t  (i) is not  true, i.e., there is no 2-opt  
which t rans forms  t' to t", with t" con ta in ing  a reversed t - sub tour  and hav ing  b(t", t) < b(t', t). Let 5~ be the 
first max ima l  con t iguous  sequence of reversed t - sub tours  in t'. Suppose  t' conta ins  a t - sub tour  outs ide X. 
Then  any  2-opt  will leave a reversed subtour .  Since by Fac t  A.2, there mus t  be some 2-opt  move  reducing 
the bond  dis tance to t, it mus t  be that  all reversed t - sub tours  in t' are con ta ined  in X. As before, let fl be the 
lowest  reversed t - sub tour  in t', let ~ be the t - sub tour  preceding  fl a lphabet ical ly ,  and  let ~( be the sequence 
of t - sub tours  between ~ and r ,  with t /deno t ing  ano the r  t - sub tour  which m a y  be present  in t'. The  templa te  
below shows tha t  the fol lowing three condi t ions  mus t  hold  when  there is no 2-opt  m o v e  which bo th  
reduces the b o n d  dis tance to t and leaves a reversed t -subtour :  (a) ~ appea r s  before fi; (b) fl is located at the 
end of b lock ,~'; and  (c) ~ is located  immedia te ly  before b lock  .~. If  we let 7 denote  the highest  reversed 
t - sub tour  in t' and  let 6 denote  the t - sub tour  after ~ a lphabet ica l ly  (we use 6 = A if 7 is the highest  
t -subtour) ,  a similar  a r g u m e n t  shows tha t  ~ mus t  be located at the beginning of X ,  and 6 mus t  lie 

immedia te ly  after X. Hence,  the result ing tour  s t ructure  al lows a 2-opt  f rom t ' =  . . . ~ 7 ~ f l 6 . . .  to 
t" = . . .  ~ f l~76  . . . .  which reduces the bond  dis tance to t by 2. Thus,  if t' conta ins  a reversed t - sub tour  and (i) 
is false, then (ii) mus t  be true. 

Case If ( ) holds Then 3 2-opt satisfying (i) 

(a) (7 not before fiin t') . . .fi~e . . . . . . .  fle~... 
(b) (/~ not at end of ~r in t') -.- ~ f lq  . . . . . . .  efiY'fl. •. 
(c) (e not next to X in t') ...ctrt~- ~ . . . . . . .  ~fl~f,/... 

5.  
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Appendix B: Distribution of tours in the TSP 

In F15], an analysis of  the distr ibution of tours  at each bond  distance f rom a given tour  is a t t r ibuted to D. 
Gross  and M. Mezard.  By symmetry ,  this distr ibution is the same as the distr ibution of b(tl ,  t2) between 
r a n d o m  tours  tl and t2. The  cited result is that  the n umber  of  c o m m o n  edges between two r a n d o m  tours tl 
and t2, i.e., n - b ( q ,  t2), approaches  a Poisson distr ibution with mean  = 2 as n ~ ~ .  We have studied this 
dis t r ibut ion somewhat  more  precisely. In what  follows, we show that  the number  of edges in c o m m o n  has 
mean  = 2 * n/(n - 1). We then describe an efficient me thod  for exactly calculating the b(t~, t2) distribution. 

Fac t  B.1. The expec ted  number o f  edges in common be tween two random tours on n cities is 2 * n/(n - 1). 

Proof. Each edge between cities occurs in exactly (n - 2)! different tours. Since each tour  has n edges, the 
expected n u m b e r  of  overlaps between a given tour  and a r a n d o m  tour  in the solution space S is equal to 

n(n - 2)! n(n - 2)! n 
- 2 * - -  

ISI - ( n -  1)!/2 n -  1' 
[] 

To  compu te  the b(t l ,  t2) distribution, wi thout  loss of  generality, we compu te  the distr ibution of I(n, k), 
where I(n, k) denotes the n u m b e r  of tours  on n cities that  have k edges in c o m m o n  with the identity tour 
a(n) = (1, 2 . . . . .  n - 1, n).  Each I(n + 1, k) can be calculated exactly based on the observat ion  that  any tour  
t' of  n + 1 cities is uniquely expressible as the insertion of city n + 1 into a tour  t of n cities. 

The  basic me thodo logy  is that  of  dynamic  p rog ramming :  given the values I(n,  k) for 0 ~< k ~< n we can 
compu te  all the values I (n  + I, k) for 0 ~< k ~< n + 1. Fo r  a given n, the entire compu ta t i on  of all I (n, k) values 
requires only O(n 3) t ime and ®(n z) space. We use the te rm bond to denote  any adjacency in an n-city tour  
t that  is also conta ined  in a(n), i.e., t has k bonds  if b(t, a(n)) = n - k, or equivalently if there are k edges in 
c o m m o n  between t and a(n). We say that  we break a bond  in t when we insert city n + 1 between the two 
cities forming a bond  in t. One  readily sees that  breaking  a bond  will usually decrement  by one the number  of  
bonds  remaining in t'; similarly, inserting n + 1 next to city 1 or n will generally increment  the number  of  
bonds  by one, while other  posi t ions for city n + 1 will generally leave the number  of  bonds  unchanged.  The  
analysis considers eight cases for each k, 0 ~< k ~< n, cor responding to the possible presence or absence of each 
of three "special" bonds  (1, 2), (1, n) and (n - 1, n). The  reader  is referred to I-6] for details. 
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