
1232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

K-SpecPart: Supervised Embedding Algorithms and
Cut Overlay for Improved Hypergraph Partitioning

Ismail Bustany, Member, IEEE, Andrew B. Kahng , Fellow, IEEE, Ioannis Koutis, Member, IEEE,
Bodhisatta Pramanik, Student Member, IEEE, and Zhiang Wang , Student Member, IEEE

Abstract—State-of-the-art hypergraph partitioners follow the
multilevel paradigm that constructs multiple levels of progres-
sively coarser hypergraphs that are used to drive cut refinement
on each level of the hierarchy. Multilevel partitioners are subject
to two limitations: 1) hypergraph coarsening processes rely
on local neighborhood structure without fully considering the
global structure of the hypergraph and 2) refinement heuristics
risk entrapment in local minima. In this article, we describe
K-SpecPart, a supervised spectral framework for multiway par-
titioning that directly tackles these two limitations. K-SpecPart
relies on the computation of generalized eigenvectors and super-
vised dimensionality reduction techniques to generate vertex
embeddings. These are computational primitives that are not only
fast, but embeddings also capture global structural properties
of the hypergraph that are not explicitly considered by existing
partitioners. K-SpecPart then converts the vertex embeddings
into multiple partitioning solutions. Unlike multilevel partitioners
that only consider the best solution, K-SpecPart introduces
the idea of “ensembling” multiple solutions via a cut-overlay
clustering technique that often enables the use of computationally
demanding partitioning methods such as integer linear program-
ming (ILP). Using the output of a standard partitioner as a
supervision hint, K-SpecPart effectively combines the strengths
of established multilevel partitioning techniques with the benefits
of spectral graph theory and other combinatorial algorithms.
K-SpecPart significantly extends ideas and algorithms that first
appeared in our previous work on the bipartitioner SpecPart
(Bustany et al., ICCAD 2022). Our experiments demonstrate
the effectiveness of K-SpecPart. For bipartitioning, K-SpecPart
produces solutions with up to ∼15% cutsize improvement
over SpecPart. For multiway partitioning, K-SpecPart produces
solutions with up to ∼20% cutsize improvement for smaller K,

Manuscript received 3 June 2023; revised 2 October 2023; accepted
3 November 2023. Date of publication 13 November 2023; date of current
version 21 March 2024. This work was supported in part by NSF under
Grant CCF-2112665, Grant CCF-2039863, and Grant CCF-1813374; and in
part by the Defense Advanced Research Projects Agency (DARPA) under
Grant HR0011-18-2-0032. This article was recommended by Associate Editor
I. H.-R. Jiang. (Corresponding author: Zhiang Wang.)

Ismail Bustany is with the Adaptive and Embedded Computing Group
(AECG), Advanced Micro Devices Inc., Santa Clara, CA 95054 USA (e-mail:
ismail.bustany@amd.com).

Andrew B. Kahng is with the Department of Computer Science and
Engineering and the Department of Electrical and Computer Engineering,
University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
abk@ucsd.edu).

Ioannis Koutis is with the Department of Computer Science, New
Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail: ioannis.
koutis@njit.edu).

Bodhisatta Pramanik is with the Department of Electrical Engineering,
University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
bopramanik@ucsd.edu).

Zhiang Wang is with the Department of Electrical and Computer
Engineering, University of California at San Diego, La Jolla, CA 92093 USA
(e-mail: zhw033@ucsd.edu).

Digital Object Identifier 10.1109/TCAD.2023.3332268

and maintains ∼2% improvement even when K is increased to
128, over leading partitioners hMETIS and KaHyPar.

Index Terms—Hypergraph partitioning, partitioning algo-
rithms, physical design (EDA), spectral partitioning.

I. INTRODUCTION

BALANCED hypergraph partitioning is a well-studied,
fundamental combinatorial optimization problem with

multiple applications in EDA. The objective is to partition
vertices of a hypergraph into a specified number of disjoint
blocks such that each block has bounded size and the cutsize,
i.e., the number of hyperedges spanning multiple blocks, is
minimized [32].

Many hypergraph partitioners have been proposed over
the past decades. State-of-the-art partitioners, including
MLPart [27], PaToH [13], KaHyPar [32], and hMETIS [8],
follow the multilevel paradigm [8]. Another thread of work
that has been less successful in practice uses variants of
unsupervised spectral clustering [35], [36], [38], [39]. All
partitioning algorithms that are constrained by practical runtime
constraints are inevitably bound to limitations, due to the
computational complexity of the problem. However, different
types of algorithms may have complementary strengths. For
example, multilevel algorithms attempt to directly optimize
the combinatorial objective, but they are bound by the local
nature of their clustering heuristics and the entrapment in local
minima that cannot be circumvented by their greedy refinement
heuristics [15], [19]. On the other hand, spectral algorithms by
design take into account the global properties of the hypergraph,
albeit at the expense of optimizing surrogate objectives that
may introduce significant approximation error. Researchers
have proposed several approaches to incorporate the global
properties of the hypergraph into multilevel algorithms. Notably,
Shaydulin et al. [17] proposed a weighting scheme based on
algebraic distances to take distant neighborhoods of vertices
into account. KaHyPar [32] incorporates global information
about the community structure into the coarsening process.

K-SpecPart is based on a novel general concept: a par-
titioning solution is viewed as a hint that can be used
as input to supervised algorithms. The idea enables us to
combine the strengths of established partitioning techniques
with the benefits of supervised methods, and in particular
spectral algorithms. Following are our main algorithmic and
experimental contributions.

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4490-5018
https://orcid.org/0000-0002-6669-9702

BUSTANY et al.: K-SpecPart: SUPERVISED EMBEDDING ALGORITHMS AND CUT OVERLAY 1233

Supervised Spectral K-Way Embedding: Similar to
SpecPart [34], K-SpecPart adapts the supervised spectral
algorithm of [1] to generate a vertex embedding by solving a
generalized eigenvalue problem. Spectral K-way partitioning
usually involves either the computation of K eigenvectors of
a single problem, or recursive bipartitioning. In our work,
the availability of the K-way hint leads to a “one-versus-rest”
approach that involves three fundamental steps: 1) we extract
multiple two-way partitioning solutions from a K-way hint
partitioning solution, and incorporate these as hint solutions
into multiple instances of the generalized eigenvalue problem;
2) we subsequently solve the problem instances to generate
multiple eigenvectors; and 3) the (column) eigenvectors from
these instances are horizontally stacked to form a large-
dimensional embedding. This particular way of generating
a supervised K-way embedding is novel and may be of
independent interest (Section IV).

Supervised Dimensionality Reduction: K-SpecPart gener-
ates embeddings that have larger dimensions than those in
SpecPart, posing a computational bottleneck for subsequent
steps. To mitigate this problem, we use linear discriminant
analysis (LDA), a supervised dimensionality reduction tech-
nique, where we leverage again the K-way hint. This produces
a low-dimensional embedding that respects (spatially) the K-
way hint solution. Our experimental results show that this
step not only reduces the runtime significantly (∼10×) but
also slightly improves (∼1%) the cutsize, relative to using the
large-dimensional embedding (Sections IV and VII-E).

Cut Distilling Trees and Tree Partitioning: Converting a
vertex embedding to a K-way partitioning is an integral step
of K-SpecPart. SpecPart introduced in this context a novel
approach that uses the hypergraph and the vertex embedding
to compute a family of weighted trees that in some sense distill
the cut structure of the hypergraph. This effectively reduces the
hypergraph partitioning problem to a K-way tree partitioning
problem. Of course, K > 2 makes for a significantly more
challenging problem, which we tackle in K-SpecPart. More
specifically, we use recursive bipartitioning by extending the
tree partitioning algorithm of [34] and augmenting it with a
refinement step using the multiway Fiduccia–Mattheyses (FM)
algorithm [15], [19]. This step is essentially an encapsulated
use of an established partitioning algorithm, tapping again into
the power of existing methods (Section V).

Cut Overlay and Optimization: K-SpecPart is an iterative
algorithm that uses its partitioning solution from iteration i
as a hint for subsequent iteration i + 1. Standard multilevel
partitioners compute multiple solutions and pick the best while
discarding the rest. K-SpecPart, however, uses its entire pool
of computed solutions in order to find a further improved
partitioning solution, via a solution ensembling technique, cut-
overlay clustering [34]. Specifically, we extract clusters by
removing from the hypergraph the union of the hyperedges cut
by any partitioning solution in the pool. The resulting clustered
hypergraph typically comprises only hundreds of vertices,
enabling integer linear program (ILP)-based hypergraph parti-
tioning to efficiently identify the optimal partitioning of the set
of clusters. The solution is then subsequently “lifted” to the
original hypergraph and further refined with FM (Section VI).

TABLE I
NOTATION

TABLE II
PARAMETERS OF THE K-SpecPart FRAMEWORK

Autotuning: We apply autotuning [54] on the hyperparam-
eters of standard partitioners in order to generate a better
hint for K-SpecPart. Our experiments show that this can
further push the leaderboard for well-studied benchmarks
(Section VII-H).

An Extensive Experimental Study: We validate K-SpecPart
on multiple benchmark sets (ISPD98 VLSI Circuit Benchmark
Suite [4] and Titan23 [11]) with state-of-the-art partitioners
(hMETIS [8] and KaHyPar [32]). Experimental results show
that for some cases, K-SpecPart can improve cutsize by more
than 50% over hMETIS and/or KaHyPar for bipartitioning and
by more than 20% for multiway partitioning (Section VII-A).
We also conduct a large ablation study in Sections VII-D–
VII-H that shows how each of the individual components of
our algorithm contributes in the overall result. Besides publish-
ing all codes and scripts, we also publish a leaderboard with
the best known partitioning solutions for all our benchmark
instances in order to motivate future research [52].

K-SpecPart is built as an extension to SpecPart but sig-
nificantly extends the ideas in [34]. This framework includes
a variety of novel components that may seem challenging
to comply with the strict runtime constraints of practical
hypergraph partitioning. However, the choice of numerical
solvers [24], [26] along with careful engineering enables
a very efficient implementation, with further parallelization
potential (Section VII-B). K-SpecPart’s capacity to include
supervision information makes it potentially even more pow-
erful in industrial pipelines. More importantly, its components
are subject to individual improvement possibly leveraging
machine learning and other optimization-based techniques
(Section VIII). We thus believe that our work may eventually

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

1234 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

lead to a departure from the multilevel paradigm that has
dominated the field for the past quarter-century.

II. PRELIMINARIES

A. Hypergraph Partitioning Formulation

A hypergraph H(V,E) consists of a set of vertices V and
a set of hyperedges E where for each e ∈ E, we have e ⊆ V .
We work with weighted hypergraphs, where each vertex v ∈ V
and each hyperedge e ∈ E are associated with positive weights
wv and we, respectively. Given a hypergraph H, we define the
following.

1) K-Way Partition: A collection S = ∪iVi of K vertex
blocks Vi ⊆ V such that Vi ∩ Vj = ∅ and ∪K−1

i=0 Vi = V.
2) Vertex Set Weight: For U ⊆ V , WU =∑

v∈U wv.

3) ε-Balanced K-Way Partition S: A K-way partition such
that for all Vi ⊆ S , we have 0 ≤ (1/K)−ε ≤ WVi/WV ≤
(1/K)+ ε.1

4) cutH(S) = {e|e
⊆ Vi for all Vi ⊆ S}.
5) cutsizeH(S) =∑

e∈cutH(S) we.

The hypergraph partitioning problem seeks an ε-balanced
K-way partition S that minimizes cutsizeH(S).

B. Laplacians, Cuts, and Eigenvectors

Suppose G = (V,E,w) is a weighted graph. The Laplacian
matrix LG of G is defined as follows: 1) L(u, v) = −weuv if
u
= v and 2) L(u, u) = ∑

v
=u weuv . Let x be an indicator
vector for the bipartitioning solution S = {V0,V1} containing
1s in entries corresponding to V1, and 0s everywhere else (V0).
Then, we have

xTLx = cutsizeG(S). (1)

There is a well-known connection between balanced graph
bipartitioning and spectral methods. Let GC be the complete
unweighted graph on the vertex set V, i.e., for any distinct
vertices u ∈ V and v ∈ V , there exists an edge between u and
v in GC. Let LGC denote the Laplacian of GC. Using (1), we
can express the ratio cut R(x) [55] as

R(x) � cutsizeG(S)

|S| · |V − S| =
xTLx

xTLGC x
. (2)

Minimizing R(x) over 0-1 vectors x incentivizes a small
cutsizeG(S) with a simultaneous balance between |S| and |V−
S|, hence R(x) can be viewed as a proxy for the balanced
partitioning objective. We relax the minimization problem by
looking for real-valued vectors x instead of 0-1 vectors x, while
ensuring that the real-valued vectors x are orthogonal to the
common null space of L and LGC [1]. A minimizer of (2) is
given by the first nontrivial eigenvector of the problem Lx =
λLGC x [1].

C. Spectral Embeddings and Partitioning

A graph embedding is a map of the vertices in V to points
in an m-dimensional space. In particular, a spectral embedding

1The imbalance definition in K-SpecPart differs from that in KaHyPar.
However, K-SpecPart can also accept an argument eps, exactly in the same
way as KaHyPar [32]. Specifically, we set an eps = K × ε for KaHyPar in
all our experiments (Section VII-A).

can be computed by computing m eigenvectors X ∈ R
|V|×m of

a matrix pair (LG,B), in a generalized eigenvalue problem of
the form

LGx = λBx (3)

where LG is a graph Laplacian, and B is a positive semi-
definite matrix. An embedding can be converted into a
partitioning by clustering the points in this m-dimensional
space.

Spectral embeddings have been used for hypergraph parti-
tioning. In this context, the hypergraph H is first transformed to
a graph G, and then the spectral embedding is computed using
LG. For example, the eigenvalue problem solved in [35] sets
B = Dw, where Dw is the diagonal matrix containing positive
vertex weights. In this article, we solve more general problems
where B is a graph Laplacian. This enables us to handle zero
vertex weights as required in practice, and to encode in a
natural “graphical” way prior supervision information into the
matrix B.2

D. Supervised Dimensionality Reduction (LDA)

LDA is a supervised algorithm for dimensionality reduc-
tion [29]. The inputs for LDA are: 1) a matrix XN×M where
the ith row xi is a point in M-dimensional space and 2)
a class label from {0, . . . ,K − 1} for each point xi. Then,
the objective of LDA is to transform XN×M into X̃N×m,
where m (m < M) is the target dimension so that the
clusters of points corresponding to different classes are best
separated in the m-dimensional space, under the simplifying
assumption that the classes are normally distributed and class
covariances are equal [12]. From an algorithmic point of
view, LDA calculates in O(NM2) time two matrices SM×M

B
and SM×M

W capturing between-class-variance and the within-
class-variance, respectively. Then, it calculates a matrix PM×m

containing the m largest eigenvectors of S−1
W SB, and lets X̃ =

XP. Because in our context m is a small constant, LDA can
be computed very efficiently.

E. ILP for Hypergraph Partitioning

Hypergraph partitioning can be solved optimally by casting
the problem as an ILP [31]. To write balanced hypergraph
partitioning as an ILP, for each block Vi we introduce integer
{0, 1} variables, xv,i for each vertex v, and ye,i for each
hyperedge e. Setting xv,i = 1 signifies that vertex v is in block
Vi, and setting ye,i = 1 signifies that all vertices in hyperedge
e are in block Vi. We then define the following constraints for
each 0 ≤ i < K.

1)
∑K−1

j=0 xv,j = 1, for all v ∈ V .
2) ye,i ≤ xv,i for all e ∈ E, and v ∈ e.
3) ([1/K]− ε) ≤∑

v∈Vi
wvxv,i ≤ ([1/K]+ ε)W,

where W =∑
v∈V wv.

2Technical Remark: In this work, we assume that G is connected. Then, the
problem in (3) is well defined even if B does not correspond to a connected
graph, because LG’s null space is a subspace of that of B [16]. The assumption
that G is connected holds for practical instances. In the more general case,
we can work by embedding each connected component of G separately and
work with a larger embedding. The details are omitted.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

BUSTANY et al.: K-SpecPart: SUPERVISED EMBEDDING ALGORITHMS AND CUT OVERLAY 1235

Fig. 1. One iteration of K-SpecPart. The three modules are expanded in
Figs. 3–5, and further described in Sections IV–VI. The initial partitioning
solution S0 can be obtained from any partitioner, but in this work, we
use hMETIS and KaHyPar. During its iterations, K-SpecPart collects its
outputs {S0, S1, . . . , Sβ }. K-SpecPart then applies the ensembling module on
{S0, S1, . . . , Sβ } to compute its final output Sout.

The objective is to maximize the total weight of the
hyperedges that are not cut, i.e.,

maximize
∑

e∈E

K−1∑

i=0

weye,i.

III. K-SPECPART FRAMEWORK

We view K-SpecPart as an instantiation of a general
framework for improving a given solution to a partitioning
instance. The framework involves three modules: 1) vertex
embedding module; 2) solution extraction module; and 3)
ensembling module, as illustrated in Fig. 1. The details are
given in Algorithm 1.

The input is the hypergraph H and a partitioning solution Si

in the form of block labels {0, . . . ,K−1} for the vertices. The
vertex embedding module computes a map of each hypergraph
vertex to a point in a low-dimensional space. The embedding
is computed by a supervised algorithm, using Si as the super-
vision input (Algorithm 1, lines 7–19). The intuition is that
the vertex embedding is incentivized to conform with Si, thus
staying in the “vicinity” of Si, but simultaneously to respect the
global structure of the hypergraph, thus having the potential to
improve Si. The solution extraction module computes a pool
of different partitioning solutions {Si,1 . . . , Si,δ} (lines 20–22).
These are then sent to the ensembling module, which uses
our cut-overlay method to convert the given solutions to a
small instance of the K-way partition which can be solved
much more reliably by more expensive partitioning algorithms
(line 23). The solution to this small problem instance is then
lifted (i.e., mapping back to the original hypergraph H) and
further refined to the output Si+1. The remainder of this article
presents our implementations of these three modules.

IV. SUPERVISED VERTEX EMBEDDING

The supervised vertex embedding module takes as inputs the
hypergraph H(V,E) and a K-way partitioning solution Shint,
and outputs an m-dimensional embedding X|V|×m.

In K-SpecPart, we use a spectral embedding algorithm that
encodes into a generalized eigenvalue problem the supervision
information Shint. Fig. 2 illustrates how the inclusion of the
hint incentivizes the computation of an embedding that in

Algorithm 1: K-SpecPart Framework
Input: Hypergraph H(V,E), Number of blocks K,

Initial partitioning solution Sinit ,
Number of supervision iterations β,
Allowed imbalance between blocks ε

Output: Improved partitioning solution Sout

1 Construct the clique expansion graph G of H and the Laplacian
matrix LG of G (Section IV)

2 Construct the weight-balance graph Gw of H and the Laplacian
matrix LGw of Gw (Section IV)

3 Initialize the empty candidate solution list {Scandidate}
4 {Scandidate}.push_back(Sinit)
5 S0 = Sinit
6 for i = 0; i < β; i++ do

/* Supervised hypergraph vertex embedding
(Section IV) */

7 if K = 2 then
8 Construct the hint graph Gh based on Si and the Laplacian

matrix LGhi
of Gh (Section IV-A)

9 Solve the generalized eigenvalue problem
LGx = λ(LGw + LGhi

)x to obtain the first m nontrivial

eigenvectors Xemb ∈ R|V|×m

10 end
11 else
12 Decompose the K-way partitioning solution Si into K

bipartitioning (2-way) solutions {Sb0 , . . . , SbK−1 }
(Section IV-B)

13 for j = 0; j < K; j++ do
14 Construct the hint graph Ghj based on Sbj and the

Laplacian matrix LGhj
of Ghj (Section IV-B)

15 Solve the generalized eigenvalue problem
LGj x = λ(LGw + LGhj

)x to obtain the first m nontrivial

eigenvectors Xm
j ∈ R|V|×m

16 end
17 Xemb = [Xm

0 |Xm
1 | · · · |Xm

K−1]
18 Perform linear discriminant analysis (LDA) to generate the

vertex embedding Xemb ∈ R|V|×m.
19 end

/* Extracting solutions from embedding
(Section V) */

20 Construct a family of trees {T0, T1, . . .} leveraging the vertex
embedding Xemb ∈ R|V|×m

21 Generate hypergraph partitioning solutions {ST0 , ST1 , . . .} through
cut distilling and tree partitioning

22 Refine {ST0 , ST1 , . . .} using multi-way FM
/* Solution ensembling via cut overlay

(Section VI) */
23 Si+1 ← perform cut-overlay clustering and ILP-based

partitioning on the top δ solutions from {ST0 , ST1 , . . .}
24 {Scandidate}.push_back(Si+1)
25 end

/* Solution ensembling via cut overlay */
26 Sout ← perform cut-overlay clustering and ILP-based partitioning on

solutions {Scandidate}
27 Refine Sout using multi-way FM
28 return Sout

general respects (spatially) the given solution Shint, but also
identifies vertices of contention where improving the solution
may be possible.

A. Embedding From Two-Way Hint

The embedding algorithm for two-way hints is identical to
that used in SpecPart [34], which is shown in Fig. 3. It consists
of two major steps.

1) Graph Construction: We define the three graphs used by
the embedding algorithm: a) clique expansion graph G;
b) weight-balance graph Gw; and c) hint graph Gh. The

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

1236 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

Fig. 2. Vertex embeddings of the ISPD IBM14 benchmark. Point colors
indicate block membership in a 3-way partitioning solution with ε = 5%
computed by hMETIS. The embedding on the right uses as a hint the same
hMETIS solution, while the embedding on the left is unsupervised.

Fig. 3. Supervised embedding with a two-way hint.

clique expansion graph G is a superposition of weighted
cliques. The clique corresponding to the hyperedge
e ∈ E has the same vertices as e and edge weights
[1/|e| − 1]. The weight-balance graph Gw is a complete
weighted graph used to capture arbitrary vertex weights
and incentivize balanced cuts. Gw has the same vertices
as hypergraph H, and edges of weight wu · wv between
any two vertices u and v. The hint graph Gh is a
complete unweighted bipartite graph on the two vertex
sets V0 and V1 defined by the two-way hint solution Sb.

2) Generalized Eigenvalue Problem and Embedding: Given
a two-way partitioning solution Shint, we solve the
generalized eigenvalue problem LGx = λBx where
B = LGw + LGh , and compute the first m nontrivial
eigenvectors X ∈ R

|V|×m whose rows provide the vertex
embedding. We solve LGx = λBx using LOBPCG, an
iterative preconditioned eigensolver.

B. Embedding From Multiway Hint

The flow for generating an m-dimensional embedding from
a K-way hint is shown in Fig. 4. The steps are described in
the following paragraphs.

Embedding by Concatenation: In the K-way case where
K > 2, the solution hint Shint corresponds to a K-way parti-
tioning solution {V0, . . . ,VK−1}. We then extract K different
bipartitions, Sbi , for i = 0, . . . ,K − 1, where

Sbj =
⎧
⎨

⎩
Vj,

K−1⋃

i=0,i
=j

Vi

⎫
⎬

⎭
.

Fig. 4. Vertex embedding generation process for a given multiway (K > 2)
hint, using the two-way embedding subroutine from Section IV-A.

Fig. 5. Flow of extracting solutions from embeddings.

For each Sbj , we solve an instance of the generalized problem
we set up in Section IV-A. This generates K different embed-
dings Xj ∈ R

|V|×m. We then concatenate these K embeddings
horizontally to get our final embedding Xemb ∈ R

|V|×K·m, i.e.,

Xemb =
[
X0|X1| . . . |XK−1

]
, where Xj ∈ R

|V|×m.

Supervised Dimensionality Reduction: Note that the above
embedding Xemb has dimension K ·m. We then apply on Xemb
a supervised dimensionality reduction algorithm, specifically
LDA (see Section VII-E), as illustrated in Fig. 4. We use LDA
primarily to reduce the runtime of subsequent steps, but also
because this second application of supervision has the potential
to increase the quality of the embedding.

Besides Xemb, LDA takes as input a target dimension, and
class labels for the points in Xemb. We choose m as the target
dimension. We assign label i to vertex v if V ∈ Vi. For the
computation, we use a Julia-based LDA implementation from
the MultivariateStats.jl package [57].

V. EXTRACTING SOLUTIONS FROM EMBEDDINGS

The inputs of the solution extraction module are the hyper-
graph H, number of blocks K, balance constraint ε, and
an embedding Xemb ∈ R|V|×m, and the output is a pool
of solutions {S0, . . . , Sδ−1}. The main idea of the algorithm
is to use the embedding to reduce the K-way hypergraph
partitioning problem to multiple K-way balanced partitioning
problems on trees whose edge weights “summarize” the
underlying cuts of the hypergraph. The steps of the algorithm
are shown in Fig. 5 and described in Sections V-C and V-B.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

BUSTANY et al.: K-SpecPart: SUPERVISED EMBEDDING ALGORITHMS AND CUT OVERLAY 1237

A. Tree Generation

In our algorithm, each Si in the output comes from a tree
that spans the set of vertices V . Here, we define the types of
trees we use.

Path Graph: We first define a path graph on the vertices
V , which appears in the proofs of Cheeger inequalities for
bipartitioning [41], [42]. Let Xembi be the ith column of X.
We sort the values in Xembi and let o(j) be vertex at the jth
position of the sorted Xembi . Then, we define the path graph
on V to be vo(1), vo(2), . . . , vo(|V|).

Clique Expansion Spanning Tree: The path graph is likely
not a spanning tree of the clique expansion graph G. To take
connectivity directly into account, we work with a weighted
graph that reflects both the connectivity of H and the global
information contained in the embedding, adapting an idea that
has been used in work on K-way Cheeger inequalities [28].
Concretely, we form a graph Ĝ by replacing every hyperedge
e of H with a sum of ζ cycles (as also done in Section IV-A).
Suppose that Y ∈ R

|V|×d is an embedding matrix. We denote
by Yu the row of Y containing the embedding of vertex u.
We construct the weighted graph ĜY by setting the weight of
each edge euv ∈ Ĝ to ||Yu − Yv||2, i.e., equal to the Euclidean
distance between the two vertices in the embedding. Using ĜY

we build two spanning trees.
Low Stretch Spanning Tree (LSST): A desired property

for a spanning tree T̂ of ĜY is to preserve the embedding
information contained in Ĝ as faithfully as possible. Thus, we
let T̂ be an LSST of Ĝ, which by definition means that the
weight weuv of each edge in Ĝ is approximated on average,
and up to a small function f (|V|), by the distance between
the nodes u and v in T̂ [2]. We compute the LSST using the
AKPW algorithm of Alon et al. [2]. The output of the AKPW
algorithm depends on the vertex ordering of its input. To make
it invariant to the vertex ordering in the original hypergraph H,
we relabel the vertices of ĜY using the order induced by
sorting the smallest nontrivial eigenvector computed earlier.
Empirically, this order has the advantage of producing LSSTs
that contain slightly better cutsizes.

MST: A graph can contain multiple different LSSTs, with
each of them approximating to different degrees the weight
weuv for any given euv. It is known that the AKPW algorithm
is suboptimal with respect to the approximation factor f (|V|);
more sophisticated algorithms exist but they are far from
practical. Hence, we also apply Kruskal’s algorithm [3] to
compute a Minimum Spanning Tree of Ĝ, which serves as an
easy-to-compute proxy to an LSST. The MST can potentially
have better or complementary distance-preserving properties
relative to the tree computed by the AKPW algorithm.

In summary, we compute m path graphs, and also generate
the LSSTs and MSTs by letting Y range over each subset of
columns of Xemb. This produces a family of t = 2(2m−1)+m
trees.

B. Cut Distilling

We reweight each tree T in the given family of trees to
distill the cut structure of H over T , in the following sense:
1) for a given tree T = (V,ET), observe that the removal of

Fig. 6. Hyperedge, junctions, and their numerical labels. The vertices
highlighted in red are the junction vertices.

an edge eT of T yields a partitioning SeT of V and thus of the
original hypergraph H and 2) we reweight each edge eT ∈ ET

with the corresponding cutsizeH(SeT).
With this choice of weights, we have cutSizeH(S) ≤

cutSizeT(S), and owing to the reasoning behind the construc-
tion of T , cutSizeT(S) provides a proxy for cutSizeH(S).

Computing edge weights on T can be done in O(
∑

e |e|)
time, via an algorithm involving the computation of least
common ancestors (LCAs) on T , in combination with dynamic
programming on T [9]. We provide pseudocode in Algorithm 2
and give a fast implementation in [52]. We illustrate the idea
using the example in Fig. 6.

We consider T to be rooted at an arbitrary vertex. In the
example of Fig. 6, consider hyperedge e = {v1, v5, v9}. The
LCA of its vertices is v7. Then, the weight of e should be
accounted for the set Ce ⊂ ET of all tree edges that are
ancestors of {v1, v5, v9} and descendants of v7. We do this as
follows (Algorithm 2, lines 2–13).

1) We compute a set of junction vertices that are LCAs of
{v1, v5} and {v1, v5, v9}.

2) We then “label” these junctions with −we, where we is
the weight of e. More generally, for a hyperedge e =
{vi1 , . . . , vip} ordered according to the post-order depth-
first search traversal on T , we calculate the LCAs for
the p − 1 sets {vi1 , . . . , vij} for j = 2, . . . , p, and the
junctions are labeled with appropriate negative multiples
of we. We also label the vertices in e with we.

3) All other vertices are labeled with 0.
Consider then an arbitrary edge eT of the tree, and compute

the sum-below-eT , i.e., the sum of the labels of vertices that
are descendants of eT . This will be we on all edges of Ce and
0 otherwise, thus correctly accounting for the hyperedge e on
the intended set of edges Ce (Algorithm 2, lines 14–16). In
order to compute the correct total counts of cut hyperedges
on all tree edges, we iterate over hyperedges, compute their
junction vertices, and aggregate the associated labels. Then, for
any tree edge eT , the sum-below-eT will equal cutsizeH(SeT).
These sums can be computed in O(|V|) time, via dynamic
programming on T .

C. Tree Partitioning

We use a linear “tree-sweep” method and METIS to partition
the trees. In our studies, we have observed that only using
METIS as the tree partitioner results in an average of 3%,

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

1238 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

Algorithm 2: Cut Distilling
Input: Hypergraph H(V,E), Tree T(V,ET)
Output: Tree T with updated edge weights

1 Select an arbitrary vertex vroot from V and root T at vroot
2 Perform a post-order depth-first search traversal on T and

store the sequence of visited vertices in visited_sequence
/* Label each vertex in T based on the

hyperedge weight we for e ∈ E */
3 cuts_delta[v]← 0 for all v in V
4 for each e in E do
5 cuts_delta[v] = cuts_delta[v]+ we for all v in e
6 {vi0, . . . , vi(|e|−1)} ← arrange the vertices of e according

to their positions in visited_sequence
7 vLCA ← vi0
8 for j = 1; j < |e|; j++ do
9 vLCA ← identify the least common ancestor (LCA)

for vLCA and vij in T
10 cuts_delta[vLCA] = cuts_delta[vLCA]− we
11 end
12 cuts_delta[vLCA] = cuts_delta[vLCA]− we
13 end

/* Reweight edges of T */
14 for each eT in ET do
15 weT ← compute the sum-below-eT (i.e., the sum of the

labels cuts_delta of vertices that are descendants of eT)
in the post-order depth-first search ordering

16 end
17 return T with updated edge weights

4%, and 3% deterioration in cutsize for K = 2, 3, and 4,
respectively.

K = 2: Given a cut-distilling tree T , and referring back to
Fig. 6, an application of dynamic programming can compute
the total weight of the vertices that lie below eT on T . We can
thus compute the value for the balanced cut objective for SeT

and pick the SeT that minimizes the objective among the n−1
cuts suggested by the tree. This tree-sweep algorithm generates
a good-quality two-way partitioning solution from the tree.
Additionally, we use METIS [7] to solve a balanced two-
way partitioning problem on the edge-weighted tree, with the
original vertex weights from H. In some cases, this improves
the solution.

K > 2: Similar to K = 2, we use two algorithms to compute
two potentially different K-way partitioning solutions of the
tree. The first algorithm is METIS [7]. The second algorithm
extends the two-way cut partitioning of the tree to K-way
partitioning. To this end, we apply the two-way algorithm
recursively, for K − 1 levels. We use a similar idea as the
VILE (“very illegal”) method [27] to generate an imbalanced
partitioning solution and then refine the solution with the FM
algorithm. Specifically, while computing the ith level biparti-
tioning solution Si

eT
on the tree eT , the balance constraint for

block Vi0 in the bipartitioning solution S(Vi0,Vi1) is: ([1/K]−
ε) ·W ≤∑

v∈Vi0
wv ≤ ([1/K]+ ε) ·W.

After obtaining the ith bipartitioning solution S(Vi0,Vi1),
we mark all the vertices in Vi0 as fixed vertices and set their
weights to zero. We then proceed with the (i + 1)th level
bipartitioning solution Si+1

eT
on the tree eT .

D. Refinement on the Hypergraph

The previous step solves balanced partitioning on trees that
share the same vertex set V with H. Note that the number of
solutions will be larger than the number of trees t, because
we apply different partitioning algorithms to each tree. These
solutions are then transferred to H, and each is further refined
using the FM algorithm [15] on the entire hypergraph H. In
particular, we use the FM implementation in [53].

VI. SOLUTION ENSEMBLING VIA CUT OVERLAY

The input of this module is the given K-way partitioning
instance and a pool of partitioning solutions. We then perform
the following steps.

Cut-Overlay Clustering: In contrast to the widely used
V-cycle refinement [8], cut-overlay clustering adopts a similar
idea as the Edge-Frequency Multi-Recombine approach [5].
V-cycle refinement takes the (sole) best solution obtained from
the multilevel partitioning algorithm and improves it using
multiphase refinement repeatedly; in contrast, cut-overlay
clustering tries to reveal the high-quality cut structure by
combining a pool of partitioning solutions. We first select the
δ best solutions. Let E1, . . . ,Eδ ⊂ E be the sets of hyperedges
cut in the δ solutions. We remove the union of these sets from
H to yield a number of connected clusters. Then, we perform
a cluster contraction process that is standard in multilevel
partitioners, to give rise to a clustered hypergraph Hc(Vc,Ec).
By construction, Ec consists of E1 ∪ · · · ∪ Eδ and hence is
guaranteed to contain a solution which is at least as good as
the best among the cuts Ei.

ILP-Based Partitioning: The coarse hypergraph (Hc)

obtained from cut-overlay clustering usually has a few hun-
dreds of vertices and hyperedges (including with the default
setting δ = 5). While even this small size would be expected
to be prohibitive for applying an exact optimization algorithm,
somewhat surprisingly, an ILP formulation can frequently
solve the problem optimally. In most cases, our ILP produces
a solution better than any of the δ candidate solutions. We
solve the ILP with the CPLEX solver [47]. We have found
that the open-source OR-Tools package [56] is significantly
slower. In our current implementation, we include a parameter
γ : in the case when the number of hyperedges in Hc is larger
than γ , we run hMETIS on Hc. This step generates a K-way
solution S′ on Hc.

Lifting and Refinement: The solution S′ from the previous
step is lifted to H, with the standard lifting process that
multilevel partitioners use. Finally, we apply FM refinement
on H to obtain the final solution S. Here, we again use the
FM implementation from [53].

VII. EXPERIMENTAL VALIDATION

The K-SpecPart framework is implemented in Julia. We
use CPLEX [47] and LOBPCG [23] as our ILP solver (we
provide an OR-Tools-based implementation) and eigenvalue
solver, respectively. We run all experiments on a server with an
Intel Xeon E5-2650L, 1.70-GHz CPU, and 256-GB memory.
We have compared our framework with two state-of-the-art
hypergraph partitioners (hMETIS [8] and KaHyPar [32]) on

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

BUSTANY et al.: K-SpecPart: SUPERVISED EMBEDDING ALGORITHMS AND CUT OVERLAY 1239

Fig. 7. K-SpecPart results on the ISPD98 Benchmarks [4] with unit vertex
weights for ε = 2%. Top to bottom: K = 2, 3, 4.

the ISPD98 VLSI Circuit Benchmark Suite [4] and the Titan23
Suite [11]. We make public all partitioning solutions, scripts,
and code at [52].

A. Cutsize Comparison

We run hMETIS and KaHyPar with their respective default
parameter settings.3 We denote by hMETISt the best cutsize
obtained by t runs of hMETIS, using t different seeds. We
denote by hMETISavg the average (over 50 samples) cutsize of
hMETIS20. We adopt similar notation for KaHyPar. In all our
experiments we run K-SpecPart with its default settings (see
Table I) and a hint that comes from hMETIS1. We compare
K-SpecPart against hMETIS5 and KaHyPar5; this is because 5
runs of hMETIS have a similar runtime with K-SpecPart. For
a more robust and challenging comparison, we also compare
K-SpecPart against hMETISavg and KaHyParavg, which gives

3For hMETIS [10], we use the multilevel recursive bisection paradigm
(hmetis), and the default parameter setting is: Nruns = 10, CType = 1, RType
= 1, Vcycle = 1, Reconst = 0, and seed = 0. The default configuration file
we use for KaHyPar is cut_kKaHyPar_sea20.ini [51].

Fig. 8. K-SpecPart results on the ISPD98 Benchmarks [4] with actual vertex
weights for ε = 2%. Top to bottom: K = 2, 3, 4. Cutsizes are normalized
with respect to those by hMETIS5.

to these partitioners at least ∼5× the walltime of K-SpecPart.4

In all our experiments, we adapt the imbalance factor as eps =
K × ε for KaHyPar.

ISPD98 Benchmarks With Unit Weights: Comparisons with
hMETIS5 and KaHypar5 are presented in Fig. 7. K-SpecPart
significantly improves over both hMETIS5 and KaHyPar5
on numerous benchmarks for both two-way and multiway
partitioning. Comparisons with hMETISavg and KaHyParavg

are reported in Table III. Each average value is rounded to
the nearest tenth (0.1). We observe that K-SpecPart gen-
erates better partitions (∼2% better on some benchmarks)
than hMETISavg and KaHyParavg on the majority of ISPD98
testcases.

ISPD98 Benchmarks With Actual Weights: The inclusion of
weights makes the problem more general and potentially more
challenging. Fig. 8 compares K-SpecPart against hMETIS5
and KaHyPar5, while Table IV provides comparisons with
hMETISavg and KaHyParavg. We see that K-SpecPart tends to

4The hint for K-SpecPart comes from hMETIS1. Because hMETISavg is
the average (over 50 samples) cutsize of hMETIS20, K-SpecPart may perform
worse than hMETISavg in some testcases.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

1240 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

TABLE III
COMPARISON OF hMETIS (hMETISavg), KaHyPar (KaHyParavg), AND K-SpecPart ON ISPD98 BENCHMARKS WITH UNIT VERTEX

WEIGHTS FOR MULTIWAY PARTITIONING WITH NUMBER OF BLOCKS (K) = 2, 3, 4 AND IMBALANCE FACTOR (ε) = 2%

TABLE IV
COMPARISON OF hMETIS (hMETISavg), KaHyPar (KaHyParavg), AND K-SpecPart ON ISPD98 BENCHMARKS WITH ACTUAL WEIGHTS

FOR MULTIWAY PARTITIONING WITH NUMBER OF BLOCKS (K) = 2, 3, 4 AND IMBALANCE FACTOR (ε) = 2%

yield more significant improvements relative to the unit-weight
case. For example, for IBM11w, K-SpecPart generates almost
27% improvement over hMETIS and KaHyPar for K = 2. We
notice similar improvements for K > 2 as seen on IBM04w

for K = 3 and IBM10w for K = 4.
Titan23 Benchmarks: The Titan23 benchmarks are

interesting not only because they are substantially larger than
the ISPD98 benchmarks but also because they are generated
by different, more modern synthesis processes. In some sense,
they provide a “test of time” for hMETIS, as well as for
KaHyPar which does not include Titan23 in its experimental
study [32]. Fig. 9 compares K-SpecPart against hMETIS5,
while Table V compares with hMETISavg. Although the K-
SpecPart runtime is still similar to hMETIS5, the runtime
of KaHyPar on some of these benchmarks is exceedingly
long (over 2 h), making it unsuitable for any reasonable
industrial setting (for more details on runtime, see [52]).
For this reason, we do not compare against KaHyPar. We
observe that K-SpecPart generates better partitioning solutions
compared to hMETIS5 and hMETISavg. On gsm_switch
in particular, K-SpecPart achieves more than 50% better
cutsize.

B. Runtime Remarks

Our current Julia implementation of K-SpecPart has a
walltime approximately 5× that of a single hMETIS run.
Table V presents a detailed runtime comparison between K-
SpecPart and hMETIS, while the runtime breakdown for
K-SpecPart is shown in Fig. 10. K-SpecPart does utilize
multiple cores, but there is still potential for speedup, in the
following ways.

1) Most of the computational effort is in the embedding
generation module as seen in Fig. 10. For K > 2,
K-SpecPart employs limited parallelism in the embed-
ding generation module, by solving in parallel the
K eigenvector problem instances. The eigensolver has
much more potential for parallelism since it relies
on sequential and unoptimized sparse matrix–vector
multiplications. These can be significantly speeded up on
multicore CPUs, GPUs, or other specialized hardware.

2) In the tree partitioning module, K-SpecPart uses paral-
lelism to handle partitioning of multiple trees. The most
time-consuming component of this module is the cut
distillation algorithm, where there is scope for runtime
improvement, especially for larger instances. This can

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

BUSTANY et al.: K-SpecPart: SUPERVISED EMBEDDING ALGORITHMS AND CUT OVERLAY 1241

TABLE V
COMPARISON OF hMETIS (hMETISavg) AND K-SpecPart ON TITAN23 BENCHMARKS FOR MULTIWAY PARTITIONING WITH NUMBER OF BLOCKS (K) =

2, 3, 4 AND IMBALANCE FACTOR (ε) = 2%. hMavg-t AND K-SP-t, RESPECTIVELY, DENOTE THE RUNTIMES OF hMETIS AND K-SpecPart IN SECONDS

be achieved by implementing the faster LCA algorithm
in [9].

3) The CPLEX solver can also be accelerated by leveraging
the “warm-start” feature where a previously computed
partitioning solution can be used as an initial solution for
the ILP. Furthermore, the CPLEX solver often computes
a solution prior to its termination where extra time
is spent to produce a computational proof of optimal-
ity [47]. Using a timeout is an option that can accelerate
the solver without significantly affecting the quality of
the output, but we have not explored this option in
K-SpecPart.

To further investigate the scalability of K-SpecPart for
large values of K, we run K-SpecPart with K =
6, 8, 12, 24, 32, 48, 64, 80, 96, 128 and ε = 2% on six Titan23
benchmarks: 1) sparcT1_core; 2) cholesky_mc; 3) segmenta-
tion; 4) denoise; 5) gsm_switch; and 6) directf . The results are
shown in Fig. 11. Cutsizes are normalized to hMETIS10 and
runtime is normalized to hMETIS1. We denoise these results by
reporting the average (over 20 samples) cutsize of hMETIS10.
The cutsize and runtime of K-SpecPart are also averaged
over 20 samples, with each sample generated from a different
hMETIS hint. We see that 1) the runtime of K-SpecPart grows
linearly for large values of K and 2) for K = 128, K-SpecPart
achieves ∼ 2% improvement with over 60× runtime overhead
over hMETIS1. The effectiveness of K-SpecPart decreases
with increasing values of K. We leave improvement of this
aspect of K-SpecPart as a direction for future work.

C. K-SpecPart Improvements Over SpecPart

We have also compared K-SpecPart directly against
SpecPart [34] for the case K = 2. The results are
presented in Fig. 12. Although SpecPart also improves the
hint solutions from hMETIS and KaHyPar, we observe that
K-SpecPart generates significant improvement (often in the
range of 10%–15%) over SpecPart on various benchmarks.

This improvement can be attributed to two main factors:
1) K-SpecPart refines the partitioning solutions generated
from the constructed trees using an FM refinement algo-
rithm and 2) K-SpecPart incorporates cut-overlay clustering
and ILP-based partitioning in each iteration. To assess the
contribution of each of these factors, we have conducted an
ablation study on the Titan23 benchmarks and observe the
following results: 1) enabling cut-overlay clustering while
disabling FM refinement results in a roughly 4% average
improvement over SpecPart; 2) enabling FM refinement while
disabling cut-overlay clustering results in a roughly 3% aver-
age improvement over SpecPart; and 3) enabling both factors
results in a roughly 6% average improvement over SpecPart.

D. Parameter Validation

We now discuss the sensitivity of K-SpecPart with respect
to its parameters, shown in Table II. We define the score
value as the average improvement of K-SpecPart with respect
to hMETISavg on benchmarks sparcT1_core, cholesky_mc,
segmentation, denoise, gsm_switch, and directf , for K = 2 and
ε = 5%. With respect to γ , we have found that using hMETIS
instead of ILP for partitioning (i.e., setting γ = 0) worsens the
score value by 2.68%. We have also found that settings of γ >
500 do not improve the score value. For the other parameters,
we perform the following experiment. When we vary the
value of one parameter (parameter sweep), the remaining
parameters are fixed at their default values. The results are
presented in Fig. 13. From the results of tuning parameters
on K-SpecPart we establish that our default parameter setting
represents a local minimum in the hyperparameter search
space. We also notice that the cutsize does not improve with
additional iterations if the number of iterations (β) exceeds
two. This may be because further iterations do not increase
the diversity of the pool of partitioning solutions used by
cut-overlay clustering (Section VI).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

1242 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

Fig. 9. K-SpecPart results on the Titan23 Benchmarks [11] for ε = 2%.
Top-to-bottom: K = 2, 3, 4. Cutsizes are normalized with respect to those by
hMETIS5.

Fig. 10. Runtime breakdown of K-SpecPart for K = 3 and ε = 2%
on Titan23 benchmarks: sparcT1_core, cholesky_mc, segmentation, denoise,
gsm_switch, and directf .

E. Effect of Linear Discriminant Analysis

We have compared the cutsize and runtime of K-SpecPart
with LDA, and K-SpecPart without LDA, i.e., utilizing the
horizontally stacked eigenvectors Xemb. The result for multi-
way partitioning (K = 4) is presented in Fig. 14. We observe

Fig. 11. Normalized cutsize versus runtime comparison of K-SpecPart for
different values of K and ε = 2%: geometric means taken over six Titan23
benchmarks sparcT1_core, cholesky_mc, segmentation, denoise, gsm_switch,
and directf . Numbers next to blue dots indicate the values of K.

Fig. 12. Comparison of K-SpecPart and SpecPart on the bipartitioning
problem (ε = 2%). Top-to-bottom: ISPD98 with unit weights, ISPD98 with
actual weights, and Titan23.

that K-SpecPart with LDA generates slightly better (∼1%)
cutsize with significantly faster (∼10×) runtime compared to
K-SpecPart without LDA. However, for the case of biparti-
tioning (K = 2) we do not observe any significant difference
in cutsize when employing LDA.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

BUSTANY et al.: K-SpecPart: SUPERVISED EMBEDDING ALGORITHMS AND CUT OVERLAY 1243

Fig. 13. Validation of K-SpecPart parameters. (a) Number of eigenvectors
(m) sweep. (b) Number of best solutions (δ) sweep. (c) Number of iterations
(β) sweep. (d) Number of random cycles (ζ) sweep.

Fig. 14. Comparison of cutsize and runtime of K-SpecPart with LDA and
K-SpecPart without LDA, for K = 4 and ε = 2%.

F. VILE Versus Recursive Balanced Tree Partitioning

We additionally compare the “VILE” tree partitioning algo-
rithm (Section V-C) with a balanced tree partitioning baseline,
based on a recursive two-way cut distilling and partitioning of
the tree, similar to Section V. During each level of recursive
partitioning, we dynamically adjust the balance constraint to
ensure that the final K-way partitioning solution satisfies the
balance constraints (see Section II-A). In particular, while
executing the ith (1 ≤ i ≤ K − 1) level bipartitioning, the
balance constraints associated with the bipartitioning solution
S(Vi0,Vi1) are

(
1

K
− ε

)

W ≤
∑

v∈Vi0

wv ≤
(

1

K
+ ε

)

W (4)

∑

v∈Vi0

wv ≥
⎛

⎝
∑

v∈Vi0,Vi1

wv

⎞

⎠− (K − i)

(
1

K
+ ε

)

W. (5)

After obtaining the bipartitioning solution S(Vi0,Vi1), we
proceed with the (i+ 1)th level bipartitioning. A comparison
of cutsize obtained with VILE tree partitioning and balanced
tree partitioning is presented in Fig. 15. The plots are nor-
malized with respect to the cutsize obtained with balanced
tree partitioning. We observe that VILE tree partitioning yields
better cutsize (on average 2% better) compared to balanced
tree partitioning.

Fig. 15. Comparison of VILE tree partitioning and balanced tree partitioning
for K = 3, 4 and ε = 2%.

G. Effect of Supervision in K-SpecPart

In order to show the effect of supervision in K-SpecPart, we
run solution ensembling via cut overlay directly on candidate
solutions, which are generated by running hMETIS multiple
times with different random seeds. The flow is as follows.

1) We generate candidate solutions {S1, S2, . . . , Sψ } by
running hMETIS ψ times with different random seeds,
and report the best cutsize Multistart-hMETIS. Here, ψ
is an integer parameter ranging from 1 to 20.

2) We run solution ensembling via cut overlay directly on
the best five solutions from {S1, S2, . . . , Sψ } and report
the cutsize Solution-overlay-part. For each value of ψ ,
we run this flow 100 times and report the average result
in Fig. 16.

Based on the results shown in Fig. 16, we draw the following
conclusions.

1) The Solution-overlay-part is much better than
Multistart-hMETIS, which shows that solution ensem-
bling via cut overlay produces solutions of higher quality
compared to the plain multistart approach. Put another
way, solution ensembling via cut overlay is established
as a stronger baseline than the plain multistart approach.

2) Even compared against the stronger baseline of solu-
tion ensembling via cut overlay, K-SpecPart generates
superior solutions in less runtime. This suggests that
supervision is an important component of K-SpecPart.

H. Solution Enhancement by Autotuning

hMETIS has parameters whose settings may significantly
impact the quality of generated partitioning solutions. We use
Ray [54] to tune the following parameters of hMETIS: CType
with possible values {1, 2, 3, 4, 5}, RType with possible values
{1, 2, 3}, Vcycle with possible values {1, 2, 3}, and Reconst
with possible values {0, 1}. The search algorithm we use in
Ray [54] is HyperOptSearch. We set the number of trials,
i.e., the total number of runs of hMETIS launched by Ray,
to 5, 10, and 40. We set the number of threads to 10 to
reduce the runtime (elapsed walltime). Here, we normalize
the cutsize and runtime to that of running hMETIS once with
default random seed. Autotuning increases the runtime for
hMETIS and computes a better hint Sinit; it leads to further
cutsize improvements of 15% and 2% from K-SpecPart on

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

1244 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

Fig. 16. Cutsize versus runtime on gsm_switch, for ε = 2%. Top-to-bottom:
K = 2, 4.

gsm_switch for K = 2 and K = 4, respectively.5 This suggests
that the cutsize improvement from K-SpecPart could be further
augmented if a better hint is provided.

VIII. CONCLUSION AND FUTURE DIRECTIONS

We have proposed K-SpecPart, the first general super-
vised framework for hypergraph multiway partitioning solution
improvement. Our experimental results demonstrate the supe-
rior performance of K-SpecPart in comparison to traditional
multilevel partitioners, while maintaining comparable runtimes
for both bipartitioning and multiway partitioning. The findings
from SpecPart and K-SpecPart indicate that the partitioning
problem may not be as comprehensively solved as previously
believed, and that substantial advancements may yet remain
to be discovered. K-SpecPart can be integrated with the
internal levels of multilevel partitioners; producing improved
solutions on each level may lead to further improve solutions.
Furthermore, we believe that the cut-overlay clustering and
LDA-based embedding generation hold independent interest
and are amenable to machine learning techniques. Extensions
of K-SpecPart to handle the connectivity metric will also be
of interest.

ACKNOWLEDGMENT

The authors thank Dr. Grigor Gasparyan for sharing his
thoughts on K-SpecPart.

5On gsm_switch with K = 2, the tuned hMETIS parameters are:
Nruns = 10, CType = 4, RType = 1, Vcycle = 3, Reconst = 0, and seed
= 20. For K = 4, the parameters are: Nruns = 10, CType = 2, RType = 2,
Vcycle = 0, Reconst = 0, and seed = 34.

REFERENCES

[1] M. Cucuringu, I. Koutis, S. Chawla, G. Miller, and R. Peng, “Simple
and scalable constrained clustering: A generalized spectral method,” in
Proc. 19th Int. Conf. Artif. Intell. Stat., 2016, pp. 445–454.

[2] N. Alon, R. M. Karp, D. Peleg, and D. West, “A graph-theoretic game
and its application to the k-server problem,” SIAM J. Comput. vol. 24,
no. 1, pp. 78–100, 1995.

[3] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proc. Amer. Math. Soc., vol. 7, no. 1,
pp. 48–50, Feb. 1956.

[4] C. J. Alpert, “The ISPD98 circuit benchmark suite,” in Proc. ACM/IEEE
Int. Symp. Phys. Des., 1998, pp. 80–85.

[5] R. Andre, S. Schlag, and C. Schulz, “Memetic multilevel hypergraph
partitioning,” in Proc. Genet. Evol. Comput. Conf., 2018, pp. 347–354.

[6] L. Gottesbüren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier, “Deep
multilevel graph partitioning,” in Proc. Annu. Eur. Symp. Algorithm,
2021, pp. 1–17.

[7] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput. vol. 20, no. 1,
pp. 359–392, 1998.

[8] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: Applications in VLSI domain,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 69–79, Mar. 1999.

[9] M. Bender and M. Farach-Colton, “The LCA problem revisited,” in
Proc. Latin Amer. Symp. Theor. Informat., 2000, pp. 88–94.

[10] G. Karypis and V. Kumar. hMETIS, A Hypergraph Partitioning Package,
Version 1.5.3. (1998). [Online]. Available: http://glaros.dtc.umn.edu/
gkhome/fetch/sw/hMETIS/manual.pdf

[11] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling
large and complex benchmarks in academic CAD,” in Proc. 23rd Int.
Conf. Field Program. Logic Appl., 2013, pp. 1–8.

[12] S. Balakrishnama and A. Ganapathiraju, “Linear discriminant analysis—
A brief tutorial,” in Proc. Inst. Signal Inf. Process., vol. 18, 1998,
pp. 1–8.

[13] Ü. Çatalyürek and C. Aykanat, “PaToH (partitioning tool for hyper-
graphs),” in Encyclopedia of Parallel Computing. Boston, MA, USA:
Springer, 2011.

[14] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Rev., vol. 59, no. 1, pp. 65–98,
2017.

[15] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. IEEE/ACM Des. Autom. Conf.,
1982, pp. 175–181.

[16] B. Ghojogh, F. Karray, and M. Crowley, “Eigenvalue and generalized
eigenvalue problems: Tutorial,” 2019, arXiv:1903.11240.

[17] R. Shaydulin, J. Chen, and I. Safro, “Relaxation-based coarsening for
multilevel hypergraph partitioning,” Multiscale Model. Simul., vol. 17,
no. 1, pp. 482–506, 2019.

[18] A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method,” SIAM J. Sci.
Comput. vol. 23, no. 2, pp. 517–541, 2001.

[19] T. Heuer, P. Sanders, and S. Schlag, “Network flow-based refinement for
multilevel hypergraph partitioning,” ACM J. Exp. Algorithm., vol. 24,
no. 2, pp. 1–36, Sep. 2019.

[20] A. Henzinger, A. Noe, and C. Schulz, “ILP-based local search for graph
partitioning,” ACM J. Exp. Algorithm., vol. 25, pp. 1–26, Jul. 2020.

[21] D. Kucar, S. Areibi, and A. Vannelli, “Hypergraph partitioning tech-
niques,” Dyn. Contin., Discret. Impuls. Syst. Ser. A Math. Anal., vol. 11,
no. 2, pp. 339–367, 2004.

[22] R. Merris, “Laplacian matrices of graphs: A survey,” Linear Algebra
Appl., vol. 197, pp. 143–176, Jan./Feb. 1994.

[23] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. E. Ovchinnikov,
“Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in
hypre and PETSc,” SIAM J. Sci. Comput., vol. 25, no. 5, pp. 2224–2239,
2007.

[24] I. Koutis, G. L. Miller, and R. Peng, “Approaching optimality for solving
SDD linear system,” SIAM J. Comput., vol. 43, no. 1, pp. 337–354,
2014.

[25] J. G. Sun and G. W. Stewart, Matrix Perturbation Theory. Boston, MA,
USA: Academic, 1990.

[26] I. Koutis, G. L. Miller, and D. Tolliver, “Combinatorial precondi-
tioners and multilevel solvers for problems in computer vision and
image processing,” Comput. Vis. Image Understand., vol. 115, no. 12,
pp. 1638–1646, Dec. 2011.

[27] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Improved algorithms
for hypergraph bipartitioning,” in Proc. IEEE/ACM Des. Autom. Conf.,
2000, pp. 661–666.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

BUSTANY et al.: K-SpecPart: SUPERVISED EMBEDDING ALGORITHMS AND CUT OVERLAY 1245

[28] J. R. Lee, S. O. Gharan, and L. Trevisan, “Multiway spectral partitioning
and higher-order cheeger inequalities,” J. ACM, vol. 61, no. 6, pp. 1–30,
Dec. 2014.

[29] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller, “Fisher
discriminant analysis with kernels,” in Proc. IEEE Signal Process. Soc.
Workshop Neural Netw. Signal Process., 1999, pp. 41–48.

[30] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Ann. Eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[31] T. Heuer, “Engineering initial partitioning algorithms for direct k-way
hypergraph partitioning,” B.S. thesis, Dept. Informat., Karlsruhe Inst.
Technol., Karlsruhe, Germany, 2015.

[32] S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz,
and P. Sanders, “High-quality hypergraph partitioning,” ACM J. Exp.
Algorithm., vol. 27, pp. 1–39, Feb. 2023.

[33] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and
C. Schulz, “k-way hypergraph partitioning via n-level recursive bisec-
tion,” in Proc. Meet. Algorithm Eng. Exp., 2016, pp. 53–67.

[34] I. Bustany, A. B. Kahng, Y. Koutis, B. Pramanik, and Z. Wang,
“SpecPart: A supervised spectral framework for hypergraph partitioning
solution improvement,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design, 2022, pp. 1–9.

[35] J. Y. Zien, M. D. F. Schlag, and P. K. Chan, “Multilevel
spectral hypergraph partitioning with arbitrary vertex sizes,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 9,
pp. 1389–1399, 1999.

[36] L. Hagen and A. B. Kahng, “Fast spectral methods for ratio cut
partitioning and clustering,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design, 1991, pp. 10–13.

[37] T. Heuer and S. Schlag, “Improving coarsening schemes for hypergraph
partitioning by exploiting community structure,” in Proc. Int. Symp. Exp.
Algorithms, 2017, pp. 1–19.

[38] N. Rebagliati and A. Verri, “Spectral clustering with more than K eigen-
vectors,” Neurocomputing vol. 74, no. 9, pp. 1391–1401, Apr. 2011.

[39] C. J. Alpert and A. B. Kahng, “Multiway partitioning via geo-
metric embeddings, orderings, and dynamic programming,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 14, no. 11,
pp. 1342–1358, 1995.

[40] R. Horaud (INRIA Grenoble-Rhône-Alpes Res. Centre, Montbonnot-
Saint-Martin, France). A Short Tutorial on Graph Laplacians, Laplacian
Embedding, and Spectral Clustering. (2009). [Online]. Available: https://
csustan.csustan.edu/ tom/Clustering/GraphLaplacian-tutorial.pdf

[41] F. R. K. Chung, Spectral Graph Theory. Providence, RI, USA: Amer.
Math. Soc., 1997.

[42] I. Koutis, G. Miller, and R. Peng, “A generalized cheeger inequal-
ity,” Linear Algebra Appl., vol. 665, pp. 139–152, May 2023.

[43] M. Kapralov and R. Panigrahy, “Spectral sparsification via random span-
ners,” in Proc. Innovat. Theor. Comput. Sci. Conf., 2012, pp. 393–398.

[44] S. Hoory and N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bull. Trans. Amer. Math. Soc., vol. 43, no. 4, pp. 439–561,
2006.

[45] C. Ravishankar, D. Gaitonde, and T. Bauer, “Placement strategies for
2.5D FPGA fabric architectures,” in Proc. Int. Conf. Field Program.
Logic Appl., 2018, pp. 16–164.

[46] R. L. Graham and P. Hell, “On the history of the minimum span-
ning tree problem,” Ann. History Comput., vol. 7, no. 1, pp. 43–57,
Jan.–Mar. 1985.

[47] “IBM ILOG CPLEX optimizer version 12.8.0.” ibm.com. [Online].
Available: https://www.ibm.com/analytics/cplex-optimizer

[48] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mechan. Theory
Exp., vol. 2008, no. 10, p. 10008, 2008.

[49] E. G. Boman and B. Hendrickson, “Support theory for precondition-
ing,” SIAM J. Matrix Anal. Appl., vol. 25, no. 3, pp. 694–717, 2003.

[50] C. J Alpert, A. B. Kahng, and S.-Z. Yao, “Spectral partitioning with
multiple eigenvectors,” Discret. Appl. Math., vol. 90, nos. 1–3, pp. 3–26,
1999.

[51] github.com. 2023. [Online]. Available: https://github.com/kahypar/
kahypar/blob/master/config/cut_rKaHyPar_sea20.ini

[52] “Partition solutions, scripts and K-SpecPart.” github.com. 2023.
[Online]. Available: https://github.com/TILOS-AI-Institute/Hypergraph
Partitioning

[53] “TritonPart, an open-source partitioner.” github.com. 2023. [Online].
Available: https://github.com/ABKGroup/TritonPart_OpenROAD

[54] Ray. github.com. 2023. [Online]. Available: https://docs.ray.io/en/latest/
index.html

[55] Y.-C. A. Wei and C.-K. Cheng, “Towards efficient hierarchical designs
by ratio cut partitioning,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design, 1989, pp. 298–301.

[56] “Google OR-tools version 9.4.” github.com. 2023. [Online]. Available:
https://developers.google.com/optimization/

[57] “MultivariateStats.jl.” github.com. 2023. [Online]. Available: https://
github.com/JuliaStats/MultivariateStats.jl

[58] “Combinatorial multigrid solver, an implementation in Julia.”
github.com. 2023. [Online]. Available: https://github.com/bodhi91/
CombinatorialMultigrid.jl

[59] “Experimental results of KaHyPar.” github.com. 2023. [Online].
Available: https://github.com/kahypar/kahyparexperimental-results

[60] “KaHIP.” github.com. 2023. [Online]. Available: https://kahip.github.io/

Ismail Bustany (Member, IEEE) received the M.S.
and Ph.D. degrees in EECS from the University of
California at Berkeley, Berkeley, CA, USA, in 1994
and 1999, respectively.

He is a Fellow with Advanced Micro Devices
Inc., Santa Clara, CA, USA, working in the Adaptive
and Embedded Computing Group on physical design
algorithms and MLCAD. His research interests
include physical design, computationally efficient
optimization algorithms, MLCAD, sparse matrix
computations, hypergraph partitioning, and hardware
acceleration.

Andrew B. Kahng (Fellow, IEEE) received
the Ph.D. degree in computer science from the
University of California at San Diego, La Jolla, CA,
USA, in 1989.

He is a Distinguished Professor with the
Department of Computer Science and Engineering
and the Department of Electrical and Computer
Engineering, University of California at San Diego.
His interests include IC physical design, the design–
manufacturing interface, large-scale combinatorial
optimization, AI/ML for EDA and IC design, and
technology roadmapping.

Ioannis Koutis (Member, IEEE) received the Ph.D.
degree in computer science from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2007.

He is an Associate Professor of Computer Science
with the New Jersey Institute of Technology,
Newark, NJ, USA. His interests include spec-
tral graph theory and its powerful applications in
designing algorithms for problems on graphs and
hypergraphs with applications in various contexts,
including electronic design automation.

Bodhisatta Pramanik (Student Member, IEEE)
received the M.S. degree in computer engineering
from Iowa State University, Ames, IA, USA, in
2022. He is currently pursuing the Ph.D. degree with
the University of California at San Diego, La Jolla,
CA, USA.

His research interests include hypergraph parti-
tioning, graph clustering, placement methodology,
and optimization algorithms.

Zhiang Wang (Student Member, IEEE) received the
M.S. degree in electrical and computer engineering
from the University of California at San Diego, La
Jolla, CA, USA, in 2022, where he is currently
pursuing the Ph.D. degree.

His current research interests include partitioning,
placement methodology, and optimization.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on March 22,2024 at 00:57:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

