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DAGSizer: A Directed Graph Convolutional Network

Approach to Discrete Gate Sizing of VLSI Graphs

CHUNG-KUAN CHENG, CHESTER HOLTZ, ANDREW B. KAHNG, BILL LIN, and
UDAY MALLAPPA, University of California, San Diego, USA

The objective of a leakage recovery step is to make use of positive slack and reduce power by performing ap-

propriate standard-cell swaps such as threshold-voltage (Vth ) or channel-length reassignments. The resulting

engineering change order netlist needs to be timing clean. Because this recovery step is performed several

times in a physical design flow and involves long runtimes and high tool-license usage, previous works have

proposed graph neural network–based frameworks that restrict feature aggregation to three-hop neighbor-

hoods and do not fully consider the directed nature of netlist graphs. As a result, the intermediate node

embeddings do not capture the complete structure of the timing graph. In this article, we propose DAGSizer,

a framework that exploits the directed acyclic nature of timing graphs to predict cell reassignments in the dis-

crete gate sizing task. Our DAGSizer (Sizer for DAGs) framework is based on a node ordering-aware recurrent

message-passing scheme for generating the latent node embeddings. The generated node embeddings absorb

the complete information from the fanin cone (predecessors) of the node. To capture the fanout information

into the node embeddings, we enable a bidirectional message-passing mechanism. The concatenated latent

node embeddings from the forward and reverse graphs are then translated to nodewise delta-delay predic-

tions using a teacher sampling mechanism. With eight possible cell-assignments, the experimental results

demonstrate that our model can accurately estimate design-level leakage recovery with an absolute relative

error ϵmodel under 5.4%. As compared to our previous work, GRA-LPO, we also demonstrate a significant

improvement in the model mean squared error.
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1 INTRODUCTION

Multi-threshold CMOS provides many tradeoff points between device speed and leakage. These
tradeoff points are leveraged during post-layout swapping optimizations that reduce leakage power
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without sacrificing timing-correctness. During the post-route leakage optimization, footprint-

compatibility among these tradeoff points offers a great benefit by not introducing any routing
disturbances in the layout. Any disturbance to routing involves multiple iterations of engineering

change order (ECO)-fixing by tools along with manual efforts from routing and verification teams.
Figure 1 demonstrates the delay and leakage tradeoff points (normalization to the largest delay and
leakage value) in a 28-nm FDSOI foundry enablement. All delay and leakage values are computed
for input transition time of 25 ps and output load of 20 fF. The multi-channel-length (P0, P4, P10,
P16) and multi-Vth (LL and LR) cell variants offer eight footprint compatible swap options [14]
(that we refer to as VT1, VT2, VT3, VT4, VT5, VT6, VT7, and VT8). The channel-length variant
PX (X = 0, 4, 10, 16) denotes the gate length (channel dimension) biasing value of X (= 0, 4, 10, 16)
with respect to the nominal gate length. For example, X = 16 refers to +16 nm biasing as compared
to the nominal gate length value. The availability of such fine-grain delay and leakage spectrum
between these cell variants is an opportunity that is exploited by the EDA tools for the purpose of
leakage optimization.

The complexity of leakage optimization is primarily attributed to two reasons: (1) the number of
possible cell reassignments and (2) the constraint that the resulting netlist should not deteriorate
the slack of timing paths with negative slack. Figure 2 elaborates on these complexities during
the leakage optimization step. The circuit on the top is an example circuit with a timing path
(highlighted in red) from FF1 to FF2 having a positive slack of 205 ps. Assume that there are
a total of seven cells in the timing path, with an initial assignment of VT1 cell type for all the
cells. With eight options for each cell (either stay as VT1 or swap to any of the other seven cell
types), a brute-force search for optimal cell assignments must consider 78 possibilities. In addition,
each cell-swap on the red timing path could also lead to the timing changes of other interacting
paths and potentially result in newer timing violations. In this example, reducing the slack below
30 ps leads to newer timing violations on the interacting timing paths. This example serves to
illustrate the criticality of contextual awareness of the interacting paths when making cell-level
predictions.

To mitigate the intractability of exhaustive search during leakage optimization, state-of-the-art
commercial and academic tools use various sensitivity functions to guide iterative cell swapping
meta-heuristics [13]. However, such methods are runtime intensive, since any cell swap must
be assessed using high-accuracy incremental static timing analysis before being committed.
Design methodology teams spend substantial time to develop flows that are likely to achieve
best-possible design power, performance and area (PPA) metrics within schedule and engineering
constraints. However, a design’s true PPA quality is known only after a leakage recovery step
that is executed by commercial tools such as Cadence Tempus-ECO, Synopsys PrimeTime-ECO
or Dorado Tweaker or by internally developed scripts built around incremental STA engines. If
designers could achieve accurate predictions of design leakage power without executing the leak-
age recovery step, then PPA optimizations could be evaluated earlier in the design process with
less impact on schedule and tool licensing during the design exploration phase. Moreover, today’s
physical implementation teams must perform leakage recovery as a signoff step. This is typically
done multiple times leading up to tapeout. If the predicted leakage recovery is very small, then
designers could choose to skip the leakage recovery step for a given netlist and apply schedule
and compute resources elsewhere. This gives rise to a need for an accurate leakage recovery
estimator.

An estimate of the recoverable slack per-cell might provide valuable insight about the potential
power recovery (based on the available space of swaps). From our experiments, we observe
that this per-cell recoverable slack in a design is influenced by various cell-level, path-level, and
design-level attributes such as cell types, frequency of the clock, placement utilization, and so on.
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Fig. 1. Normalized propagation delay and leakage power values of an Inverter (INVX8), a two-input NAND
gate (NAND2X3) and a two-input NOR gate (NOR2X5) for combinations of Vth and channel-length biasing
values in 28-nm FDSOI technology. On the right are the corresponding delay plots for various cell types (VT1
to VT8).

Fig. 2. The circuit on the top represents a pre-recovery netlist with a positive slack (205 ps) for the FF1 to
FF2 timing path (red). The bottom circuit represents the post-recovery netlist after appropriate cell-swaps
(from the available cell types) by exploiting the positive slack.

For example, a timing path with all VT8 variants (largest delay) cells will not admit leakage power
recovery (except possibly through downsizing) even if it has a large magnitude of positive slack.
Cell properties such as the depth in a timing path (relative to the path’s startpoint), fanin, fanout,
and attributes of a cell’s sibling cells together determine the amount of available path-slack that
of which a cell can make use. In addition, the directed acyclic structure of the netlist plays a
crucial role in learning the timing propagation (estimation of arrival times and required times
at each node) in the netlist graph. In other words, a leakage recovery model should be aware of
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these cell-level attributes and understand the sequence in which timing propagation transpires.
This motivates a predictive model that can more clearly interpret directed acyclic timing graphs
with nodewise features and learn to predict netlist changes (at the node level) during the recovery
process.

In this work, we propose DAGSizer, a node-ordering aware sequential message passing mecha-
nism for directed acyclic graphs (DAGs). We apply DAGSizer to the task of discrete gate-sizing. The
goal of the model is to predict the recoverable slack per-cell (node-level predictions in the graph
representation). The predictions are post-processed using library mapping, to generate an ECO
netlist along with an estimate of the potential leakage recovery. Importantly, we do not seek to
create a new signoff quality gate-sizing tool for leakage recovery, as that function is well served by
high-quality commercial and academic tools. Rather, we intend to provide an accurate estimate of
the leakage recovery that will result if a specific “golden tool” is launched. The key contributions
of our work are summarized as follows:

• Directed Graphs: We use graph convolution operations for directed acyclic graphs, which
are particularly suitable for the prediction of node assignments during leakage optimization.
• Sequential Message Passing: We exploit the topological ordering of the nodes in DAGs

and sequentially aggregate the information (message passing) from the direct predecessor-
set (immediate parents) of every node. To enable bidirectional message passing, we also use
the reversed timing graph in addition to the original timing graph.
• Teacher Sampling: Since we derive the intermediate node embeddings sequentially, we use

the idea of teacher sampling to exploit the predictions made on the predecessor-set, while
making predictions on the child nodes. This is in contrast to the previous methods, which
generate the node embeddings simultaneously, thereby not capturing the conditional depen-
dency of node-assignments.

The remainder of the article is organized as follows. We provide a brief background to Graph Con-

volutional Networks (GCN) in Section 2. In Section 2.1, we introduce the notations and provide
a quick overview of existing GCN-based formulations in the context of discrete gate-sizing. We
then motivate the need for a reformulation and introduce our DAGSizer in Section 2.2. Section 3
summarizes the previous works in the category of discrete gate-sizing and GCNs. We provide
our mathematical formulation of DAGSizer in Section 4. In Section 5, we discuss our experimen-
tal setup and results. In Section 6, we provide insights on the observed results. The last section
summarizes our conclusions and future works.

2 GRAPH CONVOLUTIONAL NETWORKS: BACKGROUND

Similarly to the convolutional filters used in regular structures, the convolution operation on
graphs involves two main steps (1) weighted aggregation of neighboring node features and
(2) applying some activation function (usually a nonlinear) on the aggregated vector, to generate
a latent representation of the node, in which the graph connectivity is embedded.

The basic idea of GCN is to aggregate a given node’s information with information from its
neighboring nodes, while generating a node representation (latent embedding) that comprehends
contextual neighborhood information. These latent representations are used for prediction using
fully connected layers for various classification or regression tasks. The aggregation operator (con-
volution) is the key to represent the neighborhood information and is typically realized by param-
eterized neural networks. Because VLSI netlists can be simplified to directed acyclic graphs, with
nodes in a graph representing the cells in the netlist and directed edges representing the pin-pin
net connectivity between these cells, GCN-based aggregation serves as a useful means to capture
the information of interacting timing paths, while enabling node-level or graph-level predictions.
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2.1 Notation

Now, we discuss mathematical notation that we use throughout this article. A graph is represented
as G = (V ,E), whereV is the set of N vertices or nodes and E is the set of edges connecting these
nodes.

• The adjacency matrix A representing the graph structure is a N × N matrix with Ai j = 1 if
ei j ∈ E and Ai j = 0 otherwise.
• Each node in the graph can be thought of as having an input feature vector of dimension
F , making the feature description X of the graph as a N × F feature matrix. This initial
(extracted from the pre-recovery netlist) representation captures the electrical and physical
attributes of a node (cell in the netlist) using a F -dimensional vector for each node xu for
u ∈ V .
• The goal is to generate meaningful high-dimensional (a vector of F ′ dimensions) node

embeddings that capture the graph structure and the feature information from related
nodes. As shown in Equation (1), the intermediate node embeddings hv for each node v
are generated using the aggregated embeddings hu of the neighboring nodes u. To absorb
the graph structure that is several hops away from the node, feature aggregation (usually
a convolution operator with shared weights) is performed sequentially K times to digest
the K-hop information around each node. The superscript l in the equation refers to the
index of the convolution layer (or the depth of the convolution layer) and captures the
aggregation information l hops away. With this notation, a node’s initial representations is
xu = h

0
u and the node’s representation at layer l = 1, 2, . . .K is represented by hl

u ,

hl+1
v = Conv

(
hl

u | u ∈ Neighbors(v )
)
, l = 1, 2, . . .K . (1)

To get a sense of the convolution operator, let us first look at the multiplication of feature vector
X and A, which is an aggregation (simple summation) of the node’s neighbors and itself. With the
introduction of a shared weight vector W of size F × F ′, the product AXW can be treated as the
weighted aggregation over neighboring nodes and itself. Each column inW indicates the weight
contributed by F dimensions of the feature vector, in generating each of the F ′ dimensions of the
node embedding. The output of such a matrix multiplication is an intermediate N × F ′ vector
representation, which is a linear combination of its neighbors. Typically, such an aggregation
is followed by a nonlinear activation fnon_l inear to extract the power of a universal function
approximator,

hl+1
v = fnon_l inear

(
Conv

(
hl

u | u ∈ Neighbors(v )
))
, l = 1, 2, . . .K . (2)

In traditional GCN-based formulations of various node prediction problems (including optimiza-
tion problems associated with VLSI graphs), the intermediate node embedding (latent representa-
tions) is limited by the multi-hop local neighborhood aggregation and thus restricted by the depth
K of the network. Typically,K > 3 does not show any improvement in accuracy of node prediction
tasks [28, 32, 33]. The implication is that the models proposed in these works fail to capture the
information of the complete timing path. In addition, the directed nature of timing propagation in
estimating the node-level arrival time, required time and timing slack is not naturally captured in
such latent node representations. As an example, Figure 3 captures predicted post-recovery cell-
type distribution of a neighborhood aggregation framework ECO-graph neural network (GNN) [32]
as compared to the cell distribution from the post-recovery netlist of Tempus-ECO. As shown in the
histogram, ECO-GNN fails to produce the correct distribution of classes, confirming our hypothe-
sis about the limitations of local neighborhood-based aggregation methods in complex scenarios
(with eight possible cell types).
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Fig. 3. Predictions from neighborhood-based aggregation (ECO-GNN) as compared to the target response
for the des_perf design.

2.2 Graph Convolution for Directed Acyclic Graphs: An Introduction to DAGSizer

Recall that a VLSI circuit (netlist) can be simplified into a DAG G = (V ,E). The node-ordering
(partial order) of the DAG, characterized by the edge set E has a strong dependency on the timing
propagation of various timing paths in the circuit. For node-level classification tasks such as timing
and power optimization steps of the physical design flow, we need an intermediate representation
of the node that is aware of the topological graph structure. In deriving such an intermediate vector
representation, it is important to embed the complete timing path information of the fanin and
fanout cone of the node (unlike the previous works that use three-hop neighborhood aggregation).
The node-ordering of a DAG allows for updating a node’s latent (intermediate) representations
based on a message-passing process [25, 44, 46, 48] from the predecessor-set (u ∈ Predecessors(v)
if there is a directed path from node u to node v) sequentially, such that nodes without successors
digest the information of the entire graph structure leading to the successor (Equation (3)). We
use depth or depth-index to refer the node ordering-index in the rest of the article. By aggregating
feature information from the direct-predecessor set rather than uniformly sampling (direction-
agnostic) neighborhoods, we embed the complete information of the timing path that leads to a
node. In addition, to embed the timing path information of the successor-set (u ∈ Successors(v)
if there is a directed path from node v to node u), then we use the edge-reversed DAG Gr =

(V r ,Er ) to digest the fanout information (Equation (4)) while making node predictions. In the
context of natural language processing, this would be explicitly called a bidirectional recurrent

model. The bidirectional sequential message passing mechanism ensures that the eventual node-
level prediction task is aware of the fanin and fanout structures of the node.

Pictorial Representation of Node Embedding in DAGSizer: In DAGSizer, one of the core
components in deriving the node embedding hv is the message mvf from its predecessor set
(Predecessors(v )). The information carried by this message is an aggregation of the embeddings
from the parents of the node (hu ). Equations (3) and (4) express such a message aggregation
mvf and mvr , for the forward DAG G = (V ,E) and the edge-reversed graph Gr = (V r ,Er ),
respectively. Here, “Agg” represents the aggregation operation, which will be elaborated in a later
section,

ml+1
vf = Agg

(
hl

u | u ∈ Predecessors(v )
)
∀v ∈ V (3)

ml+1
vr = Agg

(
hl

u | u ∈ Successors(v )
)
∀v ∈ V . (4)
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Fig. 4. The graph on top-right is a graphical representation of the circuit (top-left), with nodes as the cells
and edges as connecting nets. After topological sorting of the nodes, the node embedding in DAGSizer is
generated in an increasing order (from depth 0 to depth 6).

Since the intermediate latent representations of the node should also absorb the feature (self-) in-
formation of the node, Equations (5) and (6) introduce the “Comb” operator that combines the
message from the parents with the previous representation ofv and produces updated representa-
tionshvf andhvr . A notable difference from the standard GCN formulation defined in Equation (2)

is that the information extracted (ml+1
v ) from the parent nodes is from the current layer and not

the previous layer. This becomes possible because of processing the nodes in a sequential manner
as defined by the DAG ordering. The derived forward (hl+1

vf
) and reverse (hl+1

vr ) node embeddings

can be computed independently, and the concatenated node embeddings (Equation (7)) serve as
the starting point for nodewise predictions. The details of translating the node embeddings to the
final nodewise predictions will be explained in Section 4,

hl+1
vf = Comb

{
hl

v , m
l+1
vf

}
∀v ∈ V , (5)

hl+1
vr = Comb

{
hl

v , m
l+1
vr

}
∀v ∈ V , (6)

hl+1
v =

[
hl+1

vf ,h
l+1
vr

]
∀v ∈ V . (7)

To perceive the mechanisms of aggregation (Agg) and combine (Comb) operators in a real circuit,
Figure 4 shows a simple 13-cell netlist (top-left) with four flops {FF1, FF2, FF3, and FF4} and
the combinational logic (consisting of nine cells) between these flops. The corresponding DAG
representation (top-right) contains nodes indicating the cells in the netlist and edges representing
the pin-pin net connectivity. To recap, nodes in the graph have an initial F-dimensional feature
representation that induces XV×F (the number of nodes isV = 13 in this case, and we assume that
the number of features is F = 22); we seek an intermediate 128-dimensional (F ′) representation

HV×F ′ for each node, which embeds the structure of the graph and the feature information from
related nodes in the graph. As a post-processing step, we clone the flop-nodes and disconnect
the graph at the cloned flop-nodes. The cloning and disconnecting step is performed, because the
sequential message passing mechanism of a timing path is required to stop at the endpoints of
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the path. Similarly, the message passing mechanism needs to start at the startpoints of the timing
paths. This cloning of flops and disconnecting flops also facilitates simultaneous processing of
unrelated timing paths. Figure 4 shows cloned and disconnected flop representations of FF1, FF2,
FF3, and FF4. This is done to ensure that the message passing gets reset at the endpoint (D pin) of
the timing path and restarts at the startpoint (Q pin).

After constructing the DAG, the first step is to topologically sort the nodes (from depth 0 to
depth 6). The sequential message passing starts at depth 0 (no parents for FF1 and FF2) and ends
at depth 6 (FF3 has a parent G and FF4 has a parent I). To further understand this mechanism, let
us look at node E at depth 3. As seen in the graph, node B and node C are the immediate parents
of node E. The messagemE that node E gets is an aggregation of hidden representations of node B
and node C. This messagemE is combined with node E’s feature vector xE , to generate the hidden
representation hE of the node E. The message passing then proceeds to depth 4, depth 5, and depth
6 sequentially.

3 RELATED WORK

Previous works related to leakage recovery include both continuous and discrete gate sizing op-
timizations. In the category of continuous sizing, the TILOS work of Fishburn and Dunlop [15]
optimizes transistor parameters. The latter perform discrete sizing of standard cells that are char-
acterized by drive strength, input pin capacitance, and other standard library parameters. Typi-
cally, combinatorial and/or metaheuristic global optimization approaches are applied, notably La-
grangian relaxation [6, 9, 21, 31, 43, 47], dynamic programming [20, 30, 39], slew budgeting [17],
network flow [29], sensitivity-based optimization [19, 40, 45], branch and bound [41], linear pro-
gramming [5, 7, 23], parallel and randomized algorithms [51], or simulated annealing [42]. All
the above-mentioned sizing techniques require up to several tens of hours of runtime to perform
leakage recovery for large, complex design blocks; this motivates our quest to find a predictive
model. In the category of non-graph learning-based techniques, Derakhshandeh et al. [11] use
gate count, gate type, and state-dependent power values for leakage power prediction. Nemani
and Najm [36, 37] estimate total power from the RTL netlist, even before gate-level synthesis is
performed. They use entropy as a measure of the average activity to be expected in the actual im-
plementation of a circuit, given only its Boolean functional description. The learning-based work
[3] proposes a regression model to determine change in timing slack with Vth-swap. Bao [3] high-
lights two major drawbacks of the methodology, namely, training error associated with complex
cells, and the lack of a complete timer graph, which cause large error. Isolating the nodes from its
neighborhood does not capture the impact of node-level optimization on timing analysis. Since
VLSI circuits can be represented using graphs, any node-level optimization task of the physical
design flow needs to comprehend the information from various timing paths that pass through
the node, while making these node-level predictions.

GCN algorithms [26] have had proven successes in generalization problems involving arbitrar-
ily structured graphs such as social networks, biological protein structures, and brain structures.
The basic idea in GCN is to aggregate information of the neighbor nodes and a given node’s self
information, while generating a node’s latent representation. The non-spectral GCN works such
as References [12] and [22] make use of convolution over spatially close neighbors. Variants of
non-spectral GCNs such as Graph Attention Networks (GATs) [49] are found to be very useful
in several node classification and regression problems such as citation networks and protein
classification. In GCNs, the aggregation over neighboring nodes is normalized by using the degree
of the node as a metric unlike GraphSage [16], where the aggregation over neighboring nodes is
not normalized. In GATs [49], the aggregation over node features makes use of the self-attention
mechanism (higher attention factor for nodes with similar features).
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Fig. 5. Representation of GCN’s node embedding (here node N) in previous works (a) is restricted by a multi-
hop (usually a three-hop) local neighborhood [28, 32, 33] and undirected edges [28, 32], whereas our work
is not limited by the depth of the GCN, but uses a sequential message-passing (b) scheme that explicitly
exploits the partial ordering of DAG.

Since gate sizing involves node-level optimization (finding an optimal cell type) over timing
graphs, graph-based frameworks [28, 32, 33, 35, 50] emerged as an encouraging approach for the
task of leakage-recovery prediction. Lee et al. [28] use vanilla GCN-based formulation to predict
post-optimization Vth assignment probabilities. Their model’s classification accuracy is at most
83%, meaning the model mispredicted node assignments for at least 17% of the cells in the design.
Similarly, ECO-GNN [32] uses Graph-SAGE inductive learning to formulate the sizing problem as
a classification problem and predict node assignment probabilities. In addition to an assumption of
undirected edges, both of the works [28, 32] limit feature aggregation to three-hop neighborhoods.
To account for directed edges of the timing graphs, GRA-LPO [33] uses GAT-based inductive learn-
ing to predict recoverable slack per node and then translates the predictions to leakage recovery by
appropriate library mapping. Though edges are directed and the feature aggregation is combined
with attention factors, Reference [33] also restricts feature aggregation (with attention factors) to
a three-hop neighborhood. Wang and Cao [50] differentiate incoming, outgoing, and sibling neigh-
borhoods by using three separate models for the aggregation of incoming, outgoing, and sibling
information. However, as with other relevant work, the aggregation remains limited to three-hop
neighborhoods. To embed the complete timing path information into the hidden representation
of the node, our proposed DAGSizer exploits the partial ordering of the nodes in a DAG. Figure 5
illustrates a high-level summary of neighborhood aggregation (a) used in the previous works and
an improved sequential message passing mechanism (b) of DAGSizer.

4 DAGSIZER: FORMULATION

In this section, we state the problem and more formally introduce the conditional directed graph
convolution and sequential message passing operations, the key components of the DAGSizer
model. Our method is primarily inspired by DAGNN [48]. Following the notation introduced in
Section 2 of Thost and Chen [48] and Section 2 of this work, we describe the DAGSizer model from
the message passing perspective. A message passing mechanism is composed of three operations:
(1) an aggregation operation aggregates a set of incoming messages, (2) a combination operation
determines an update applied to a node embedding as a function of the node embedding and
the incoming messages, and (3) a readout operation composes a set of node embeddings into
a subgraph or graph embedding. Note that in this work, we omit (3) due to the fact that gate
resizing is a node-level prediction task and graph/subgraph embeddings are not utilized.
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4.1 Problem Formulation

Given a pre-recovery netlist in the form of a DAGG = (V ,E), where the cells in the netlist are repre-
sented byV , and the pin-pin net connectivity between the cells is represented by E. We denote the
pre-recovery node features by X tr ain , the adjacency matrix by Atr ain , and nodewise delta-delay

values during the optimization by Ỹ tr ain . We train a parametric (parameters denoted by Θ) predic-

tive model (that we call DAGSizer) to generate Ŷ = DAGSizerΘ(X tr ain ,Atr ain , Ỹ tr ain ) such that

the mean squared loss = L (Ŷ , Ỹ tr ain ) is minimal and the model parameters can accurately predict
the post-recovery delta-delay values of an unseen pre-recovery netlist expressed as {X test ,Atest }.
Since nodes in the graph represent cells in the netlist, delta-delay of a node is the change in the
cell propagation-delay (pre-optimization delay − post-optimization delay) during the gate-sizing
optimization task.

4.2 Recurrent Message Passing

Aggregation. Recall that a node’s embedding is updated according to an attention-weighted av-
erage of the messages produced by its predecessor set. More concretely, given a node v and its
associated predecessors u ∈ P (v ), the incoming messages from each u ∈ P (v ) are aggregated. We
denote the aggregated incoming messages for v at the lth layer of a DAGSizer networkml

v .ml
v is

computed via the following expression:

ml
v = Aggl (hl

u |u ∈ P (v )) =
∑

u ∈P (v )

α l
vu (hl−1

v ,h
l
u )hl

u . (8)

To recap,hl
u represents the embedding of nodeu at layer l . Note that αvu is typically parameterized

by a small multi-layer perceptron (mlp); αvu (hv ,hu ) = softmaxuj ∈P (v ) (w
�
1 hv +w

�
2 hu ), where w1

and w2 are weights optimized during backpropagation. As References [48] note, edge attributes
can be trivially integrated within the attention mechanism. We clarify that the major difference
between Equation (8) and the canonical convolutional message passing scheme defined in Equa-
tion (2) is that in DAGNN, the aggregation function for v will be only executed after all of its
predecessors’ latent states have already been computed.

Combination. Given v’s incoming messageml
v , the embedding associated with v at layer l , hl

v is

updated recurrently using ml
v and the previous representation of node v defined by hl−1

v . Details
about the ŷ term in the below expression will be explained in Section 4.3,

hl
v = Combl (hl−1

v ,m
l
v , ŷ). (9)

The precise implementation we adopt for the Comb operator is the GRU/LSTM cell [8, 18]. GRU-
and LSTM-based networks belong to the family of gated recurrent networks. These methods were
originally designed to alleviate issues associated with long-term, specifically variable-length, de-
pendencies (e.g., due to vanishing/exploding gradients during training) [8]. We describe the modi-

fied gated unit utilized in our framework, characterized by a forget gate f l that governs the tradeoff
between the influence of nodev’s incoming messageml

v and the influence of the hidden state hl−1
v

of node v on hl
v , conditioned on the labels of the predecessor-set:

c̃l−1 = σ (Wcŷ +Ucc
l−1) cl = f l � c̃l−1 + il � c̃l

f l = σ (Wf h
l−1
v +Uf m

l
v ) c̃l = ϕ (Wch

l−1
v +Ucm

l
v )

il = σ (Wih
l−1
v +Uim

l
v ) ol = σ (Woh

l−1
v +Uom

l
v )

hl = ol � ϕ (cl ),
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where σ is a sigmoid function, ϕ is a hyperbolic tangent function, and W and U are parameter
weight matrices (learned during backpropagation). At a high level, c̃l−1 and c̃l respectively cor-
respond to an aggregated embedding of the labels of the parents and previous context and an
embedding of the input message of node v with its own embedding. Together, they are used to
summarize a “contextual” representation of the timing path—i.e., a memory. f l and il correspond
to the input and forget gates. They act as mechanisms that determine how information (derived
from the labels of the parents cl−1 and the embeddings c̃l ) is merged into the updated context-state
cl . ol corresponds to the “updated state” and cl is the updated context.1 A visual depiction of the
minimally gated GRU / LSTM cell is provided in Figure 6. Intuitively, this model sequentially learns
node embeddings in conjunction with a persistent contextual memory that summarizes the tim-
ing path. One comprehensive empirical study in support of GRU-based architectures is conducted
in the seminal work [10] of Chung et al., on “challenging sequence modeling task” involving se-
quences ranging in length from tens (polyphonic music), hundreds (Ubisoft A), and thousands
(Ubisoft B). Given the literature and consensus in the ML and NLP communities regarding the
efficacy of gated units, we hypothesize that GRU-based architectures are an ideal foundation for
timing paths with hundreds of levels. Furthermore, the sequential nature of the model is exploited
through the integration of teacher-sampled labels with the context. For more precise technical de-
tails, we point the reader to the papers that introduce GRU and LSTM-based models and teacher
sampling [4, 8, 18]. Generally, a GRU/LSTM cell has several aspects that differentiate it from a
standard layer in a feedforward or convolutional neural network:

(1) It is looped, allowing information to persist through a path (as subsequent elements of the
path are observed).

(2) It can control when to let an input influence the computation of the output.
(3) It can control when to remember the output of the previous time step.

4.3 Model Training

The key components of our training framework are subgraph batching, topological sorting, learn-
ing intermediate node embeddings, scheduled teacher sampling, and optimization. We present the
detailed algorithm in Algorithm 1 and the visual depiction in Figures 7 and 8.

Subgraph Batching: (Step 1 in Figure 7 and line 1 in Algorithm 1). The aggregation oper-
ation and intermediate node representations require significant memory and compute resources.
Therefore, to account for the limited memory footprint of the GPU while supporting scalability,
batching the input netlist graph is necessary. Due to the large size of netlist graphs, we first per-
form a disjoint cut partitioning. Note that disjointness of each subgraph is a crucial property of
nodes that are in the same batch. Canonical methods for batching undirected graphs typically rely
on variants of neighborhood sampling [16]. To implement subgraph batching, we adopt the k-way
cut clustering implementation of METIS [24] available through PYMETIS [27].

Topological Sorting: (Step 2 in Figure 7 and lines 2 and 3 in Algorithm 1). On each sub-
graph, we impose an ordering on the nodes. We create this order by topologically sorting of the
nodes, done independently for forward and reverse graphs. Formally, given a DAG G = (V ,E), a
topological sorting of the vertices is given by a linear ordering of vertices such that for all edges
(u,v ) ∈ E,u precedesv in the ordering. The topological ordering of the nodes facilitates sequential
prediction of node labels.

1Note that the context at layer l , c l , depends on hidden states of nodes preceding layer l , and the hidden state of node v ,

hl−1
v .
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Fig. 6. A visual diagram of a modified gated GRU cell [8].

Fig. 7. DAGSizer training framework. Sample preprocessing. Step 1: Subgraph batching. The input graph is
decomposed into its independent subgraphs. Step 2: Topological ordering of nodes. Step 3: Network param-
eters Θt−1 are updated using gradient descent. Step 4: Compute predictions y, utilizing the true label of the
parent with probability pt or (self)-predicted label of the parent with probability (1−pt ) (teacher sampling).
pt starts close to 1 and is decayed over the training process.

Node Embeddings: The node embeddings from the forward graph (line 7 in Algorithm 1) and the
reverse graph (line 9 in Algorithm 1) are concatenated to generate node representations (line 10 in
Algorithm 1) that comprehends both the fanin and fanout graph structure. With sufficient memory
and compute resources, both forward and reverse embeddings can be computed concurrently.

Teacher Sampling: (Step 4 in Figure 7, lines 11–14 in Algorithm 1). After generating the
concatenated node representations (line 10 in Algorithm 1), we decode them to generate nodewise
labels (line 14 in Algorithm 1). Due to the partial order (implicit for DAGs) imposed on the vertex
set, DAGSizer predicts labels sequentially over the circuit. When training hierarchical or struc-
tured models such as DAGSizer, an important decision is the granularity of information that is
inherited by child nodes from their predecessors. In the vanilla DAGNN model, child nodes receive
messages composed of the latent embeddings of their parents. We hypothesize that providing
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ALGORITHM 1: 1-layer DAGSizer training

Require: Gi = (Vi ,Ei ) and node feature=label pairs Vi = (Xi ,yi ),
initial parameters (EncodeΘE

,AggΘDAG
,CombΘDAG

,DecodeΘD
).

1: Vi ← batchGraph(Vi ) partition input graph

2: TSf ← topsort (Gi )
ascending order of the forward graph, with key as depth-index and values as nodes

3: TSr ← topsort (Gr
i )

ascending order of the reverse graph, with key as depth-index and values as nodes

4: Xencode ← EncodeΘE
(X̃ ) encode features

5: while Θ not converged do

6: for each index in TSf .keys () do

7: Hvf ← CombΘDAG
(Xv ,AggΘDAG

(Xu |u ∈ P (v ))), ∀v ∈ TSf [index]
node embeddings in the forward graph

8: for each index in TSr .keys () do

9: Hvr ← CombΘDAG
(Xv ,AggΘDAG

(Xu |u ∈ P (v ))), ∀v ∈ TSr [index]
node embeddings in the reverse graph

10: Hv = [Hvf ,Hvr ]
11: for each index in TSf .keys () do

12: Ŷ teach
u ← teacherSampler (Ŷu ) sample parent labels

13: H teach
v ← CombΘDAG

(Hv ,AggΘDAG
(Hu , Ŷ

teach
u |u ∈ P (v ))), ∀v ∈ TSf [index]

conditional node embeddings

14: Decode labels Ŷv ← DecodeΘD
(H teach

v ) node predictions

15: Compute loss l = L (Ŷ , Ỹ )
16: Mask = Ỹ .dont_touch
17: Update Θ; Θt+1 ← Adam(l ,Θt ,Mask)

concrete predictions/labels in addition to the latent embeddings may facilitate superior learning.
However, if the true label is solely used during training, then the adoption of generated labels at
inference time may lead to poor prediction performance as the model’s conditioning context (the
sequence of previously generated predictions) diverges from sequences seen during training and
prediction errors made at early levels in the graph may cascade to later levels and spoil learning.
Scheduled teaching sampling [4] aims to resolve this issue by occasionally (either stochastically or
adaptively) providing the predicted labels of predecessors as input to child nodes during training. It
is important to note that the label of a particular node is not used to make predictions for that node,
but only its children. Typically, the true labels associated with nodes are provided exclusively at
the start of training (in our case, pt = 1 for the first 30% training epochs). As the model gradually
improves its predictive capability, predictions are instead adopted (implemented by decaying of
pt by a factor of 0.9 per epoch). We emphasize that teacher sampling is a train-time augmentation.
True labels are stochastically substituted for predictions and only used during training. At test
time, when labels are unavailable, predictions for upstream nodes are used for making predictions
on downstream nodes. To maintain consistency with prior work, we impose the same availability
of labels as previous work and a similar experimental setup (e.g., ground-truth labels are available
during training, but not at test time). To the best of our knowledge, we are the first to propose
teacher sampling for node prediction task with directed graph convolution networks.

Training and Backpropagation: (Step 3 in Figure 7, lines 15–17 in Algorithm 1). We
formulate the loss function according to standard node-regression principles. Recall that our loss
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Fig. 8. The node embeddings generated from the forward graph (a), Hvf of Algorithm 1, and the reverse

graph (b), Hvr of Algorithm 1 are concatenated to generate the final node embeddings, Hv = [Hvf ,Hvr ]

of Algorithm 1. The resulting node embeddings Hv are used for the teacher-sampled decoding phase (c), to
predict the node labels. During the teacher-sampled sequential message-passing phase, predictions (light
green) from the parents are used in addition to the parent embeddings.

is defined to be the mean-squared-error between the predicted and true delta-delay. Parameters of
our framework (EncodeΘE

,AggΘDAG
,CombΘDAG

,DecodeΘD
) are iteratively refined end-to-end

via stochastic gradient descent, with gradients computed using the standard backpropagation-
through-time algorithm. While updating the model parameters, a key aspect is to ignore the
predictions made on the “don’t touch cells” (cells that are disabled during the reassignment step
of the optimization task).

4.4 Gate Sizing Using DAGSizer

We now extend our training framework to the specific task of Gate Sizing in VLSI netlists. In
particular, we summarize the attributes (or features) of nodes that are extracted from the pre-
recovery netlist. In addition, we also provide an outline of the various configuration details and
the hyperparameters used in our training framework.

4.4.1 Nodewise Features. We evaluate a comprehensive set of 22 node-level features XN×22 (N
is the number of nodes in the graph) that can be extracted from the pre-recovery timing graph.
These features are a superset of the features used in previous works [28, 32, 33]. We start with
the hypothesis that these 22 features along with net connectivity information (in the form of
an edge list) provide sufficient information for the DAGSizer model to learn node-level delay
changes during the discrete gate-sizing optimization task. Figure 9 provides a pictorial illustration
of the node-level features with reference to node E of our representative timing graph, denoted
by xE = ( f E

1 , f
E

2 , . . . , f
E

22). The following list in Table 1 summarizes our 22-dimensional feature
vector (specific to node E). These features are extracted from the pre-recovery netlist, by our
feature extractor. Currently, we do not support MCMM (multi-corner multi-mode) analysis, and
the 22 extracted features correspond to a single timing corner. In Table 1, maximum/minimum
possible power changes (f E

9 and f E
11) of a node (cell) refer to the maximum/minimum leakage-

power change among all possible cell-swaps of the node. Likewise, maximum/minimum delay
changes (f E

10 and f E
12) refer to the maximum/minimum propagation-delay changes among all

possible cell-swaps of the node. To extract f E
10 and f E

12 from the library file, we use the average of
rise and fall delay values, corresponding to the input slew and the output load values from the
pre-recovery netlist. In addition to node-level features, we extract pin-pin connections from
the netlist and construct the DAG, which is the other input to our framework. While extracting the
edge-list, the combinational looping connections are avoided to remove cycles in the generated
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Table 1. Nodewise Features Extracted from the Pre-recovery Netlist

Feature Index Description

f E
1 worst arrival time of output pins (node E’s output pin)

f E
2 worst slew of input pins (node E’s input pins {1,2})

f E
3 total cap of input pins (node E’s input pins {1,2})

f E
4 load cap of output pin (node E’s output net cap and input pin caps of node G

{2} and node H {1})

f E
5 fanout count (number of outgoing edges of node E)

f E
6 fanin count (number of incoming edges of node E)

f E
7 worst slack of output pins (node E’s output pin)

f E
8 pre-recovery propagation delay (delay of node E). We use the worst (largest)

over all input-output timing arcs and the average of rise and fall delay values.

f E
9 maximum possible power change (power change of node E)

f E
10 maximum possible delay change (delay change of node E)

f E
11 minimum possible power change (power change of node E)

f E
12 minimum possible delay change (delay change of node E)

f E
13 sensitivity function

f E
9

f E
10

of node E

f E
14 sensitivity function

f E
9

f E
10 ∗f E

5 ∗f E
6

of node E

f E
15 sensitivity function

f E
11

f E
12

of node E

f E
15 sensitivity function

f E
11

f E
12 ∗f E

5 ∗f E
6

of node E

f E
17 sibling capacitance (input pin cap of node D {2} and node F {1} )

f E
18 sibling slack (input pin slack values of node D {2} and node F {1})

f E
19 pre-recovery leakage power of node E

f E
20 worst slew of output pins (worst slew of node E’s output pin)

f E
21 total fanin net cap (node E’s incoming nets)

f E
22 total fanout slack (slack of node G {2} and node H {1})

Fig. 9. The node feature vector xE is a 22-dimensional vector derived from the pre-recovery timing graph.

graph. To ensure that the graph traversal starts at the Q pin of the flop and ends at the D pin of the
flop, we make a minor modification to our graph (by including disconnected clones of flop nodes).

4.4.2 Model Configuration. We now describe the high-level configuration details of our model.
The DAGSizer framework uses PyTorch library to implement encode, decode, aggregation, and
combine operations.
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Feature Encoder: A linear encoder EncodeΘE
is implemented using torch.Linear (22, 32) to trans-

late the 22-dimensional vector to a 32-dimensional vector. The purpose of the initial encoder layer
is to learn the relative importance of feature dimensions. We use this feature encoder for all pre-
dictive models that we study in Section 5.

Aggregation: A parameterized aggregation operator AggΘDAG
is implemented using the message

passing library torch−дeometric .nn.MessaдePassinд(), that is used to generate the message vector
from the parent nodes. This message vector captures the feature information of the parent nodes
and the labels (predicted or true) of the parents (teacher sampling).

Combine: A parametric combine operator CombΘDAG
is used to combine the message vector

and the node’s feature vector in the forward graph, and generate a 64-dimensional hidden repre-
sentation of each node. Likewise, the combine operator of the reverse graph generates the other
64-dimensions of the hidden node representation. The concatenation of the two 64-dimensional
node representations is used to generate the final 128-dimensional node embedding, i.e.,
CombΘDAG

= {torch.nn.GRUCell (32, 64), torch.nn.GRUCell (32, 64)}. For a fair comparison with
the previous works, we use 128 dimensions for representing the node embeddings (Equation (2))
of the neighborhood-based aggregation schemes.

Decode: A parametric decode operator translates the hidden vectors of each node to a re-
gression label, i.e., DecodeΘD

= {torch.nn.Linear (128, 64), torch.nn.ELU , torch.nn.Linear (64, 1),
torch.nn.ELU }.

Loss Function: The mean-squared loss of node-level delta delay predictions is defined to be

L (Ŷ , Ỹ ) =
N∑

i=1

(ŷi − ỹi )2

N
mi ,

where ŷi ∈ Ŷ and ỹi ∈ Ỹ . For “don’t touch cells” (defined in Section 4.3 as cells that are disabled
during the reassignment), we mask the loss (using the mi flags), implying a masking of the
gradients during back propagation. Flops are an example of “don’t touch cells” in the leakage
optimization step. Because leakage recovery is performed during the signoff stage, the default
settings in modern physical design flows recommend the registers to be untouched during the
leakage optimization step.

Other Hyperparameters: To be consistent across the predictive models, we use a hidden di-
mension of 128 to represent intermediate node embeddings and Adam Optimizer with a decaying
learning rate: initialized at 0.001 and a decay factor of 1e-5 for every 20 epochs. We use a three-
layer convolution for ECO-GNN and GRA-LPO. Since DAGSizer is a sequential message passing
aggregation, we use a single hidden layer. To decompose the initial graph (subgraph batching
step of Figure 7. and line 1 in Algorithm 1), we adopt the k-way cut clustering implementation of
METIS [24] via the convenience wrapper PYMETIS [27]. Following best practices [24], we set the
number of cut attempts to be one, and the number of iterations to be 10 for all testcases. Crucially,
we favor large partitions to avoid unnecessarily splitting timing paths. Since METIS encourages
balanced partitions, we set the batch-size (number of nodes) according to the available GPU
memory and the expected number of nodes in each partition. In general, we select the number of
partitions so that batches (subgraphs) consist of roughly 50K nodes. Furthermore, METIS includes
a variety of options for seeding graph partitions. The initial partitions may significantly affect the
stability of the partitioning procedure. For example, options include spectral cuts, graph growing
and greedy graph growing partitions, or Kernighan-Lin-inspired algorithms. The authors of
METIS note that the spectral partitioners tend to underperform with respect to speed and quality
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Table 2. Criticality of Cut Edges Resulting from Subgraph Batching

Design Number of Critical/Total Cut Edges Number of Subgraphs Number of Nodes

des_perf 0/0 1 61K
b19_fast 42/150 2 89K
vga_lcd 86/5K 2 80K
leon3mp 14/24K 10 503K
netcard 4/28K 11 563K
megaboom 1,576/73K 34 1.7M

compared to graph-growing methods [24]. Of the three graph growing methods, the authors
claim that greedy graph growing and “boundary” Kernighan-Lin perform comparatively well. We
select greedy graph growing to generate initial partitions for all testcases.

To study the effect of modeling accuracy with and without partitioning, we use the des_perf

design with 61K nodes and 117K edges, for which the computational graph of can fit into our
GPU memory without partitioning the graph. We analyze the accuracy loss and the percentage
of cut-edges (w.r.t. the total number of edges in the graph) resulting from partitioning for various
batch sizes. Batch size indicates the number of nodes per partition: 50K, 25K, 12K, 6K, 3K, 1K, and
0.5K. For des_perf, we observe that mean squared error (MSE) stays constant (0.0053) all the way to
0.5K nodes per partition. We believe that there could be three possible reasons for this behavior:
(1) the percentage of disconnected edges as compared to the total number of edges is ≤ 2.8% even
for a batch size of 500 nodes; (2) cut edges might not always correspond to critical (i.e., having
negative slack) timing paths, as suggested by data in 2; and (3) node features (Table 2) such as
arrival time, sibling capacitance and sibling slack embed some neighboring information. For the
six designs used in our experiments, Figure 10 shows the cut-cost percentages on the y-axis (=
percentage of cut-edges w.r.t. the total number of edges in the graph) as a function of the batch
size percentage (x-axis). For a batch size of 50K (that can fit into our GPU memory), the cut-cost
percentage values (red star on the plots) stays within 2% (y-axis) for all of our designs. Because
des_perf did not suffer any accuracy loss up to a cut-cost percentage of 3%, even if we can fit the
entire graph (moving the red star toward the right) of megaboom (or other large graphs) in GPU
memory, we believe that the accuracy improvement could be insignificant.

Translation to Sizing Action: Since DAGSizer predicts nodewise delta-delay labels, these labels
are translated to the sizing action (among all possible swaps) that most closely matches with the
predicted delta-delay value using a simple nearest-neighbor search.

Inference Framework: After learning DAGSizer’s parameters (weights) in the training phase (as
demonstrated in Figure 7), the inference flow is summarized in Figure 11. The inference flow starts
with an input netlist that undergoes DAG translation and feature extraction. We then perform
subgraph batching using PYMETIS to decompose the input graph to multiple smaller graphs. The
sequential message passing mechanism of the pretrained DAGSizer is applied to each of these
subgraphs to predict nodewise delta-delay labels. The generated delta-delay labels are converted
to cell types and the changes are rolled back to generate an ECO netlist that can be used for
downstream tasks.

5 EXPERIMENTS

To validate the results of our predictive model, we use six designs [1] that were part of the
ISPD-13 Gate-sizing contest [38] and the IWLS-05 benchmark suite [2]. The design details such
as cell count, flop count, net count, and depth of the logic-cone are shown in Table 3. Our designs
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Fig. 10. Plots of cut-cost as a function of various batch sizes. The y-axis indicates the cut-cost (percentage)
w.r.t. the total number of edges in a graph and the x-axis represents the nodes per partition (percentage)
w.r.t. the total number of nodes in a graph.

Fig. 11. High-level overview of the DAGSizer inference framework, which uses a pretrained DAGSizer model
to generate the ECO netlist.

are synthesized using Design Compiler and placed & routed using Innovus. The pre-recovery
and post-recovery baseline power and timing data is obtained using Tempus-ECO. We use a
commercial six metal-layer (6lm) BEOL stack 28-nm FDSOI design enablement for the physical
design flow. For footprint compatibility in the leakage recovery flow, we use two Vth variants
(LL, LR) and four channel-length variants (P0, P4, P10, and P16), making a total of eight possible
cell variants. The eventual goal of a predictive model is to accurately estimate the magnitude
of a design’s potential leakage recovery. Therefore, we compare the design’s predicted leakage

recovery ΔPmod = P
pr e
act − P

post

mod
, with the golden tool’s recovery outcome ΔPact = P

pr e
act − P

post
act .

The relative leakage-recovery error (normalized2 by the design’s pre-recovery leakage power

P
pr e
act ) given by ϵmodel (%) is used to measure the model performance across various designs and

2This is in contrast with the normalizing factor ΔPact , used in GRA-LPO.
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Table 3. Design Details from the Post-routed Database
of Our Benchmarks

Design Nodes Edges Flops Logic Depth

des_perf 61K 117K 9K 27
vga_lcd 80K 150K 17K 36
b19_fast 89K 271K 7K 55
netcard 503K 1.4M 97K 43
leon3mp 563K 1.5M 108K 40
megaboom 1.7M 4.7M 350K 107

scenarios,

ϵmodel =
ΔPmod − ΔPact

P
pr e
act

X 100%.

5.1 Design Setup

To generate our training and test data, we perform synthesis, place & route, and power-recovery
steps at two timing corners 1.10v_tt_125C_rcworst and 0.90V_ff_125C_rcworst. For the timing anal-
ysis, we use clock period values ranging from 0.7 ns–1.2 ns, based on the complexity of the logic-
cone for each design. Our post-route standard cell utilization values are in the range of 75–85%. Sim-
ilarly to previous works [32, 38], we synthesize and place & route the designs using the fastest VT1
cells (tightest timing constraint). During the ECO phase, each instance is enabled to be swapped
with one of the seven types (VT2 to VT8) or can remain unchanged as VT1; thus, there are a total
of eight possibilities for each instance reassignment. In reality, the well-bias conflict rule restricts
the abutment of LL and LR cells [14]. However, we do not consider the LL and LR isolation rule
while generating the train and test data. The short-term goal of our work is to investigate if we
can learn the reassignment task in complex scenarios with multiple footprint-compatible sizing
options.

Train and Test Data: After place & route, we use the Tempus timing tool to perform the timing
analysis. This pre-recovery timing graph is used for nodewise feature extraction. As explained
in Section 4.4, we extract various node-level features that are essential to the timing propagation
and that serve as principal constituents while performing the leakage-recovery task. In addition,
we use the pre-recovery database to store the structure of the timing graph as a sparse edge list
representation and also record the pre-recovery propagation delay values for each cell in the design.
We then perform leakage-recovery using Tempus-ECO. While optimizing the design, we provide
eight cell types to the tool and therefore the ECO tool exploits the available positive slack to swap
and re-assign the cells to one of the eight cell types (VT1 to VT8). In addition to not changing
the edge list of the graph, the resulting ECO changes do not lead to any routing disturbances,
since the eight available cell variants are footprint compatible. After leakage-recovery, we record
the nodewise difference of propagation delay values with respect to the pre-recovery propagation
delay values. These nodewise delta-delay values are normalized in the range of [0,1] and then used
as the target regression labels.

5.2 Power Recovery on Unseen Designs

Our first experiment validates the accuracy of our predictive models on unseen designs. To
evaluate our method, we report a set of validation metrics associated with each design using a
one-versus-all strategy (a specific instance of the K-Fold cross validation technique, a standard
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Table 4. Leakage Recovery Comparisons with Previous Works (Cross-design Experiment)

Cross-Design Experiments (Power in mW)

Golden Tool Predictive Model

Design Name CP (ns) Total Power Leakage Power Post-Recovery Leakage Power (ϵmodel )

Pre-Recovery Pre-Recovery Post-Recovery ECO-GNN [32] GRA-LPO [33] DGLPO [50] DAGSizer

des_perf 1.2 449.4 20.24 9.67 7.61 (−10.1%) 13.83 (20.5%) 8.90 (3.8%) 10.02 (1.7%)

vga_lcd 1.2 144.8 31.99 18.81 17.57 (−3.8%) 26.31 (23.4%) 17.85 (3.0%) 19.26 (1.4%)

b19_fast 0.7 153.8 32.48 13.18 10.07 (−9.5%) 10.92 (−6.9%) 11.24 (5.9%) 12.48 (2.1%)

leon3mp 0.7 1104 220.4 138.4 107.3 (−14.1%) 201.3 (28.5%) 120.2 (8.2%) 145.7 (3.3%)

netcard 0.8 869.4 213.5 132 116.9 (−7.1%) 173.6 (19.5%) 118.2 (6.5%) 140.3 (3.9%)

megaboom 1.2 2802 755 583.9 542.2 (5.5%) 614.2 (3.9%) 551.6 (4.3%) 598.4 (2.0%)

resampling procedure used to evaluate machine learning models). For each design, we train a
DAGSizer model on all other designs (for example, when reporting results for des_perf we con-
sider a training set comprised of all other designs, excluding des_perf ). Therefore, we use batches
of graphs from five designs and test on the unseen sixth design. We measure pre-recovery leak-
age power for each design and record the post-recovery leakage power values from Tempus-ECO.
We compare these actual leakage-recovery values to the model predicted leakage-recovery values.
To recap, the difference between the golden post-recovery and pre-recovery leakage power val-

ues is defined as ΔPact . For example, if the leakage power values P
pr e
act and P

post
act for des_perf are

20.24 and 9.67 mW, respectively, then the actual recovery (reported by the golden tool) ΔPact is
20.24 mW − 9.67 mW = 10.57 mW. For the same design, DAGSizer predicted leakage recovery is
ΔPmod is 20.24 mW − 10.02 mW = 10.22 mW and therefore ϵmodel in this case is −0.35/20.24 =
−1.7%. We compare the prediction results of DAGSizer with those of our prior work GRA-LPO [33]
and a classification-based framework, ECO-GNN [32]. Our implementation of ECO-GNN’s model
training and inference phases uses Algorithm 1 of Lu et al. [32] and the execution details of their
ECO flow are obtained after consultations with the authors. After consulations with the authors of
DGLPO, we use Algorithm 1 of Wang and Cao [50] to implement DGLPO. To conduct a fair com-
parison between the predictive models, we use the same flow (from synthesis to ECO rollback)
for all four models (ECO-GNN, GRA-LPO, DGLPO and DAGSizer) except for the nodewise model
predictions.3

The goal of a predictive model is to make a leakage recovery prediction ΔPmod closer to the
actual leakage recovery ΔPact . Since the magnitude of design-level leakage power values have a
wide spectrum across various designs, it is reasonable to use the relative prediction error ϵmodel

(indicated by the % values in parentheses) to compare model performance across various designs.
As shown in Table 4, the ECO-GNN makes pessimistic predictions with the absolute relative error
ϵmodel as high as 14.1%. In the case of GRA-LPO, the absolute value of prediction error goes up to
28.5%. With our DAGSizer formulation, we ensure an absolute relative error under 4% and make
more accurate leakage recovery predictions compared to the prior works.

Inference Results: Since our previous work GRA-LPO and the new formulation DAGSizer both
use regression formulations to predict the delta-delay values, we compare the MSE during the
inference task. Since the node labels are normalized independently for each design to lie in the
range of [0,1], the DAGSizer’s MSE value of 0.0013 (for netcard) corresponds to a mean absolute

error of
√

0.0013 = 0.036 = 3.6%. For a raw delta-delay spectrum in the range of [0, 250 ps], this
corresponds to an average of 9 ps error in predicting the nodewise delta-delay values. For the same
example, GRA-LPO produces an error of 15%, corresponding to 38 ps mean error in predicting the

3In addition to the pre-recovery netlist not starting with the tightest-timing cell variant, the experimental settings of GRA-

LPO do not enable all the eight cell variants during the leakage optimization process.
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Table 5. Inference Statistics of GRA-LPO and DAGSizer for
the Cross-design Scenario

Design Name MSE GRA-LPO [33] MSE DAGSizer

des_perf 0.0292 0.0090
vga_lcd 0.0410 0.0082
b19_fast 0.0171 0.0031
leon3mp 0.0124 0.0014
netcard 0.0233 0.0013
megaboom 0.0105 0.0044

ALGORITHM 2: ECO Rollback and Timing Analysis

Require: model_eco
dictionary with keys as the depth-index (reverse topological) and values as list of cells

1: Accepted Moves = 0, Total Moves = 0 reset counters

2: TSr = model_eco.keys() get depth indices

3: for each index in TSr .keys () do

4: cell_list ← model_eco[index] cell list at each depth-index

5: batch_mode = true enable batch-eco mode

6: for each cell in cell_list do

7: incr Total Moves
8: if slack[cell] > 0 then

9: change_cell_to[cell] commit the eco change if slack is positive

10: incr Accepted Moves
11: batch_mode = false disable batch-eco mode

12: update_timing update timing before proceeding to the next depth-index

raw node labels. As seen in Table 5, DAGSizer converges to lower MSE values as compared to
GRA-LPO, suggesting the benefits from our new formulation.

Timing Analysis: In addition to making accurate leakage recovery predictions, we also compare
the timing numbers of resulting ECO netlists from the predictive models to the target response.
The WNS, number of Failing Endpoints (FEP) and percentage of successful moves (Accepted Moves)
for the ECO netlist associated with Table 4 are summarized in Table 6. As shown in the Algo-
rithm 2, the predicted ECO changes are loaded depthwise (in reverse topological order). We use
the reverse rollback process (starting from endpoints), since it eats up available positive timing
slack more slowly than if the rollback were done in forward topological order. At each depth-
index, we avoid swapping the cells that are on negative-slack paths (similarly to the approach of
Lu et al. [32]). After rolling back the ECO changes at each depth-index, we perform an “update
timing” step using the golden incremental timer and use the updated timing results to commit cell
changes at the next depth-index. In addition to the timing results, the percentage of accepted moves

(
Accepted Moves

Total Moves ×100%) is also reported in Table 6. These results indicate the superior performance of
the DAGSizer model in terms of the overall timing results (WNS and FEP) and higher percentage of
accepted moves (up to 82.4%) compared to previous works (up to 76.4%). When DAGSizer is com-
pared with the timing values from the golden ECO tool, we observe an increase in FEP and a slight
degradation in the WNS. However, a majority of these FEPs (for example, 30K of 41K in netcard)
are in the range of [-25 ps, -0 ps]. slack and can be fixed by tool optimization knobs. The degra-
dation in WNS (as compared to the golden results) across all of the predicted models is a result of
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Table 6. Timing Results with the ECO Netlist Generated from Various Predictive Models
(Cross-design Experiment)

Cross-design Experiments

Design CP (ns) WNS (ps) / # FEP WNS (ps) / # FEP / Accepted Moves (%)

Golden Pre Golden Post ECO-GNN [32] GRA-LPO [33] DGLPO [50] DAGSizer

des_perf 1.2 −42 / 656 −39 / 647 −96 / 3.4K / 70.2% −95 / 2.9K / 74.0% −76 / 2.1K / 76.8% −45 / 1.2K / 81.5%

vga_lcd 1.2 −38 / 3701 −36 / 3696 −98 / 6.2K / 71.0% −69 / 5.8K / 76.4% −51 / 4.1K / 78.1% −41 / 3.3K / 82.4%

b19_fast 0.7 −41 / 10 −41 / 2496 −86 / 7.4K / 68.6% −62 / 6.5K / 71.2% −54 / 5.3K / 73.2% −45 / 4.2K / 76.1%

leon3mp 0.7 −158 / 4 −158 / 77 −362 / 29K / 71.1% −328 / 21K / 74.8% −295 / 19K / 76.1% −205 / 15K / 78.8%

netcard 0.8 −10 / 1064 −10 / 1221 −365 / 53K / 72.5% −353 / 51K / 75.1% −210 / 46K / 77.6% −96 / 41K / 81.9%

megaboom 1.1 −95 / 115K −100 / 114K −186 / 148K / 75.1% −190 / 150K / 74.5% −174 / 144K / 77.1% −156 / 135K / 79.5%

Fig. 12. Normalized propagation-delay (rise) values for two cells (BUFX7 and NOR2X15) in 28-nm FDSOI
technology, for 56 combinations of input slew and output load values. These delay values are extracted from
7 × 8 (BUFX7) and 8 × 7 (NOR2X15) Liberty NLDM tables, indexed according to row-major order of table
entries.

batched rollback of ECO changes at each depth of the topological ordering. However, the proposed
incremental ECO rollback can be avoided by a more accurate model, improvement of the existing
modeling approach, and inclusion of much inclusion of much larger and more diverse training data.

5.3 Power-recovery at Unseen Corners

Since the node embeddings capture the timing structure of the graph, we perform a second exper-
iment in which we train the model using the graph derived from the 0.90V_ff_125C_rworst (fast)
timing corner and test on the same design, but using the timing graph and features at an unseen
corner 1.10V_tt_125C_rworst (typical). To extract the timing graph at a timing corner, we perform
the complete design implementation (synthesis, place & route, and timing analysis) at the second
corner. For 56 (slew, load) combinations of the same timing arc, the plots of rise propagation-
delay values of fast (dashed) and typical (bold) timing corners in 28-nm technology are shown in
Figure 12. Intuitively, length of the black arrow (delay scaling factor) across various (slew, load)
combinations indicates that the relation between these two timing corners is not linear. Further-
more, the variation of the scaling factors across cells (BUFX7 vs. NOR2X15) confirms the non-
obvious nature of this correlation. Therefore, we look to a neural network (DAGSizer) to learn the
complex correlation between these two timing corners. This is the hypothesis that we investigate
in the cross-corner experimental setting. The higher voltage for the typical corner compared to
the fast corner is a standard adaptive voltage scaling technique used in modern chips. This voltage
scaling is performed to handle the process variations while meeting the power and performance re-
quirements of each device. Our results in Table 7 indicate that the DAGSizer achieves better results
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Table 7. Leakage Recovery Comparisons with Previous Works (Cross-corner)

Cross-corner Experiments (Power in mW)

Golden Tool Predictive Model

Design Name CP (ns) Total Power Leakage Power Post-Recovery Leakage Power (ϵmodel )

Pre-Recovery Pre-Recovery Post-Recovery ECO-GNN [32] GRA-LPO [33] DGLPO [50] DAGSizer

des_perf 1.2 412.4 9.63 4.78 3.64 (−11.8%) 5.39 (6.3%) 4.18 (6.2%) 4.32 (−4.7%)

vga_lcd 1.2 114.9 16.82 7.33 6.15 (−7.0%) 9.41 (12.3%) 6.44 (5.3%) 8.15 (4.8%)

b19_fast 0.7 142.1 15.25 9.19 10.98 (11.7%) 11.14 (12.7%) 9.91 (−4.7%) 8.35 (5.4%)

leon3mp 0.7 760.2 109.5 31.41 20.34 (−10.1%) 39.56 (7.4%) 25.12 (5.7%) 26.25 (−4.7%)

netcard 0.8 1885 183.9 31.93 21.45 (−5.6%) 40.52 (4.7%) 23.15 (4.8%) 25.90 (−3.3%)

megaboom 1.1 3724 609.1 375.4 332 (−7.12%) 418.6 (6.9%) 404.2 (−4.7%) 398.5 (3.7%)

Table 8. Inference Statistics for the Cross-corner Scenario

Design Name MSE GRA-LPO [33] MSE DAGSizer

des_perf 0.0098 0.0053
vga_lcd 0.0157 0.0066
b19_fast 0.0080 0.0059
leon3mp 0.0273 0.0052
netcard 0.0209 0.0043
megaboom 0.0087 0.0034

(|ϵmodel | ≤ 5.4%) as compared to ECO-GNN (|ϵmodel | ≤ 11.8%) and GRA-LPO (|ϵmodel | ≤ 12.7%)
predictive models.

Inference Results: For the cross-corner experiments, the inference statistics of DAGSizer as com-
pared to GRA-LPO are summarized in Table 8. Recall that the node labels are normalized in [0,1]
range. Therefore, an MSE value of 0.0043 (netcard) in DAGSizer corresponds to a mean error of√

0.0043 = 6.5%. If the raw delta-delay spectrum is in the range of [0, 180 ps], then this indicates
an average of 11.8 ps error in predicting the delta-delay values of nodes. For the same example,
GRA-LPO has an error of 14.4%, corresponding to 26 ps mean error in predicting the node labels.
Improved MSE values of DAGSizer is a consequence of better interpretation of timing structure
context, in the new formulation.

Timing Analysis: The timing results from the resulting ECO changes associated with Table 7
(cross-corner experiments) are summarized in Table 9. With the help of an incremental timer,
DAGSizer achieves fewer timing violations (FEP) as compared to the previous works (whose
predictions are also applied in tandem with the same incremental timer). Similarly to the cross-
design experiments, we follow Algorithm 2 for the rollback process of predicted ECO changes
and the timing analysis.

6 DISCUSSION ON RESULTS

6.1 Runtime Statistics

For our model training and inference, we use a Tesla V100 GPU with 16 GB memory. The DAG-
Sizer framework is developed using Torch1.10.0 libraries. For the physical design flow, extraction
of the timing graph, and the extraction of nodewise features, we use a Xeon Server running at
2.4 GHz. In Table 10, we include both the feature extraction time, data processing and the model
inference time. The relative percentages of inference and feature extraction runtimes for DAG-
Sizer and neighborhood-aggregation models (ECO-GNN and GRA-LPO) are shown in Figure 13.
Though DAGSizer incurs a sequential overhead in computing the node embeddings, only the nodes
belonging to each depth-index and their parents are required to be stored in the GPU memory. Fur-
thermore, as shown in Figure 13, the bulk of the model runtime is invested in feature extraction
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Table 9. Timing Results with the ECO Netlist Generated from Various Predictive Models (Cross-corner)

Cross-Corner Experiments

Design CP (ns) WNS (ps) / # FEP WNS (ps) / # FEP / Accepted Moves (%)

Golden Pre Golden Post ECO-GNN [32] GRA-LPO [33] DGLPO [50] DAGSizer

des_perf 1.2 −81 / 21 −81 / 917 −148 / 3.1K / 75.3% −142 / 3.2K / 75.1% −115 / 2.6K / 78.2% −92 / 1.8K / 82.0%

vga_lcd 1.2 −45 / 58 −45 / 3K −152 / 5.6K / 76.8% −150 / 5.6K / 77.0% −102 / 4.7K / 79.1% −84 / 3.1K / 81.2%

b19_fast 0.7 −138 / 17 −138 / 3K −241 / 6.3K / 72.5% −232 / 6.1K / 73.4% −195 / 5.2K / 75.4$ −170 / 4.4K / 78.2%

leon3mp 0.7 −577 / 79 −577 / 4K −654 / 30K / 75.2% −664 / 31K / 75.1% −654 / 29K / 75.8% −642 / 19K / 79.0%

netcard 0.8 −5 / 90 −5 / 1979 −152 / 42K / 74.0% −142 / 40K / 76.2% −136 / 38K / 77.0% −84 / 32K / 80.1%

megaboom 1.2 −23 / 4K −23 / 27K −148 / 61K / 73.8% −145 / 62K / 73.2% −128 / 58K / 76.1% −102 / 54K / 78.8%

Table 10. Inference Runtime (Seconds) for Predictive Models as Compared to
Tempus-ECO

Design Tempus-ECO ECO-GNN [32] GRA-LPO [33] DAGSizer

des_perf 3,577 44.5 51.2 57.8
vga_lcd 3,926 48.2 52.3 59.9
b19_fast 5,092 47.8 56.7 63.2
leon3mp 13,007 270.4 297.4 335.7
netcard 12,749 263.6 286.5 349.3
megaboom 26,250 631.5 640.0 795.2

Fig. 13. Average inference and feature extraction percentages (of the total runtime) for DAGSizer and neigh-
borhood aggregation models (ECO-GNN and GRA-LPO).

and therefore the higher model inference time of DAGSizer is not a major concern. In summary,
with smaller runtimes when compared to the golden ECO tool, the predictive models serve as quick
estimators of the golden tool’s leakage recovery.

6.2 Improvement over ECO-GNN

Recall that ECO-GNN is a formulation based on GraphSAGE and predicts probabilities for each
of the eight cell types. The neighborhood aggregation scheme of ECO-GNN may not be able to
fully understand the intricacies of the timing propagation as it is incapable of modeling the di-
rected nature of timing graphs. In addition, the simultaneous predictions of the nodes could lead
to pessimistic predictions. As shown in Figure 14, the resulting cell-variant distributions of the
post-recovery designs of ECO-GNN are dominated by a majority cell variant of the ground-truth
labels. For leon3mp and netcard designs, the model predictions are dominated by a single VT8 vari-
ant. However, DAGSizer makes more realistic predictions that look closer to the target distribution.
A possible explanation for the mismatch of DAGSizer when compared to the target distribution
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Fig. 14. Predictions from neighborhood-based aggregation ECO-GNN (top) and DAGSizer (middle) com-
pared to the target, from the cross-design experiments.

could be its inability to understand the exact heuristics of the golden ECO tool. Understanding
these gaps is part of our ongoing works.

6.3 Improvement over GRA-LPO, ECO-GNN, and DGLPO

Since both GRA-LPO and DAGSizer adopt regression formulations, we evaluate the histogram den-
sity of delta-delay predictions in addition to the inference statistics (Tables 5 and 8) in Figure 15.
We also include ECO-GNN and DGLPO in the histogram plots, by formulating ECO-GNN and
DGLPO as regression tasks, i.e., by removing the softmax layer and using the mean square error
loss. This is performed only for the purpose of plots in Figure 15. The x-axis of the plots indi-
cates the normalized prediction error in nodewise delta-delay values, and the y-axis indicates the
histogram density (number of nodes). The plots demonstrate that the error region of DAGSizer
(green) exhibits a smaller variance—i.e., it is much narrower compared to GRA-LPO (red), ECO-
GNN (blue), and DGLPO (yellow). In other words, the accuracy of our model can be interpreted
from the narrow error peak of DAGSizer that indicates the zero error region (predicted cell type
same as target cell type). Additionally, for some of the designs we see that the error histograms
associated with previous works are not centered around zero, implying that the predictions are bi-
ased. In contrast, the histograms of DAGSizer exhibit the opposite (desirable, unbiased) behavior.
These observations help explain the improved ϵmodel of DAGSizer compared to previous works.

6.4 Sensitivity to ECO Engine

To evaluate the dependency of the ECO optimization engine on DAGSizer’s predictions, we use a
second ECO engine (PrimeTime-ECO) to generate ground truth labels for model training and to
measure the model’s inference metrics. The scatter plots of Figure 16 show predicted vs. actual
leakage recovery values for the Tempus-ECO and PrimeTime-ECO engines, respectively. Predic-
tions closer to the x = y line suggest our model’s ability to learn the leakage recovery process
using features extracted from the ECO tool’s timing graph and its optimization moves.
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Fig. 15. Histogram plots (scaling factor of 103) of normalized error (Target - Prediction = ỹ − ŷ) for GRA-
LPO, ECO-GNN, DGLPO (neighborhood aggregation) and DAGSizer (Recurrent Message Passing) from the
cross-design experiments.

Fig. 16. Scatter plots (predicted vs. actual recovery) showing DAGSizer’s ability to learn from different ECO
engines. The datapoints on the plot correspond to 12 design-level predictions (six from cross-corner and six for
cross-design). To avoid unintended “benchmarking” of the two EDA tools, the plot on the right (PrimeTime-
ECO) is scaled to arbitrary units (a.u.).

6.5 Sensitivity to ECO Options

We evaluate DAGSizer’s performance with respect to two key knobs of the Tempus-ECO engine.
While performing leakage optimization, “Path Based Analysis (PBA) effort” and the “target slack”
are useful ECO options to balance accuracy and runtime requirements.

PBA vs. GBA: By default, ECO engines perform leakage recovery based on the pessimistic Graph

Based Analysis (GBA) timing instead of the more realistic PBA timing. Since pessimistic transition-
propagation is used for the delay calculations, the GBA mode does not fully utilize the available
timing slack while performing leakage recovery. However, the PBA mode propagates the actual
transitions (instead of the worst transitions) at each node and recovers more leakage power at
the cost of runtime. Figure 17 shows DAGSizer’s relative error for the GBA and PBA modes
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Fig. 17. DAGSizer’s GBA vs. PBA relative error (ϵmodel ) on our designs. The first six indices indicate the
cross-design setting and the next six indices indicate cross-corner experiments.

Table 11. Variation of DAGSizer’s Relative Error ϵmodel for
Cross-design Experiments, with Respect to “Target

Setup-slack” Option of Tempus-ECO

Target Setup-Slack (ps)

Design 0 (baseline) 10 20 30 100

des_perf 1.7% 1.9% 1.9% 2.2% 3.4%
vga_lcd 1.4% 1.4% 1.7% 1.7% 3.2%
b19_fast 2.1% 2.2% 2.1% 2.3% 4.2%
leon3mp 3.3% 3.7% 3.6% 3.4% 5.5%
netcard 3.9% 3.8% 4.1% 3.8% 5.9%
megaboom 2.0% 2.2% 2.2% 2.1% 5.1%

using Tempus-ECO.4 The first six indices on the x-axis represent six designs (Table 7) in cross-
design experimental setting, while indices 7–12 correspond to the cross-corner experimental set-
ting. As seen in the plot, PBA mode incurs more prediction error as compared to the GBA mode.
This is because of model’s inability to comprehend PBA timing propagation purely from GBA-
based node features. This can be mitigated by having another supervised neural network to explic-
itly model the PBA-GBA correlation at the node or path level.

Target Slack: By default, for the leakage recovery task, ECO engines consider all positive-slack
paths and do not impact the negative-slack paths. For cases where the users intend to over-fix the
design during optimization, the ECO tools provide an option to add a margin to an existing slack
target (0 ps by default). By setting the target slack to a certain threshold value, during the recovery,
the tool does not consider paths below this threshold. In Tables 11 and 12, we validate DAGSizer’s
robustness with respect to the variation of the target setup-slack5 option. We use four threshold
values (10, 20, 30, and 100 ps) and measure the model’s relative error for both cross-design (Table 11)
and cross-corner (Table 12) experimental settings. The baseline (0 ps) corresponds to the default
settings of Tables 4 and 7.

6.6 Benefits of Teacher Sampling

Since DAGSizer is a supervised-learning formulation, we use the target label information only
in the training phase. However, our sequential prediction mechanism allows us to condition the

4We use -retime and -max_slack 10 options for set_eco_opt_mode, to run PBA-based optimization.
5We use -setup_target_slack option with the set_eco_opt_mode command.
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Table 12. Variation of DAGSizer’s Relative Error ϵmodel for
Cross-corner Experiments, with Respect to “Target Setup-slack”

Option of Tempus-ECO

Target Setup-Slack (ps)

Design 0 (baseline) 10 20 30 100

des_perf −4.7% −4.7% −5.1% −5.4% −6.5%
vga_lcd 4.8% 5.1% 5.2% 4.9% 6.9%
b19_fast −5.4% −5.5% −5.4% −5.8% −7.4%
leon3mp −4.7% −4.8% −4.9% −4.8% −7.2%
netcard −3.3% −3.4% −3.5% −3.6% −5.8%
megaboom 3.7% 3.7% 3.0% 4.3% 6.1%

Fig. 18. MSE loss of des_perf (cross-design experimental setting) as a function of epochs, for various decay
rates of the teacher sampling mechanism.

downstream predictions (that happen later in the topological order of the graph) on the current
predictions. During the training process, we stochastically provide the predecessor labels as input
to the child nodes; target labels with probability pt and model predicted labels with probability
1 − pt . We use pt = 1 for the first 30% training epochs and then start to decay, to rely more
on the model predicted labels (which are used exclusively during testing) and less on the target
labels. The plots in Figure 18 indicate superior inference performance with teacher sampling (red)
as compared to the blue curve (no label passing from predecessors to child nodes). These plots
also corroborate the importance of determining a good sampling probability. For example, a decay
factor of 0.98 (green curve) results in the model’s over-reliance on the target labels, resulting in
poor inference performance. However, a low decay factor of 0.18 (brown curve) also implies poor
inference performance because of not sufficiently exploiting the availability of target labels during
the training phase. Therefore, we need to balance between overreliance on the training labels (some
form of over-fitting) and not reasonably exploiting the training labels (under-fitting). We follow
the standard practice of using the validation dataset, to determine an optimal decay factor.

7 CONCLUSIONS

In this work, we propose a DAG partial-ordering aware message-passing mechanism for the dis-
crete gate-sizing problem. Using the timing graph and nodewise feature vectors extracted from the
pre-recovery database and the corresponding nodewise delta delay values during leakage optimiza-
tion, the proposed DAGSizer model learns to predict nodewise delay changes during the leakage
recovery optimization for unseen scenarios (designs and corners). Crucially, we demonstrate the
necessity of models that are aware of the directed nature of timing graphs. Extensive experiments
clearly indicate superior relative recovery prediction error (ϵmodel ) with lower bias as compared
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to the previous predictive models, and under 5.4% absolute relative error for both cross-design and
cross-corner experiments. As part of our future work, we seek to explore alternatives that are well
suited for scaling sequential message passing to larger graphs, such as the SAR strategy [34].
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