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Abstract—Productivity of academic research on physical de-
sign, as well as translation of research results into industry
practice, is hampered by lack of a standard backplane for
integration and testing of new methods. Ad-hoc scripting and file-
based communication have been used to stitch together academic
tools, but such approaches are cumbersome and brittle. We
describe RosettaStone, an open and extensible foundation which
leverages a standard physical design data model (LEF/DEF
5.8) and open-source database implementation (OpenDB [12])
to effectively connect the academic physical design field’s past,
present and future. RosettaStone’s shared data model enables
richer integrations, flow contexts, and assessments for research.
We demonstrate the use of OpenDB to make inter-stage data
transformations that improve overall flow outcomes. We also
show how RosettaStone enables integration of closed-source
research tools and non-standard data formats for robust eval-
uation with modern technologies and testcases. RosettaStone has
recently been included in the 2021 release of the IEEE CEDA
DATC Robust Design Flow (RDF [7]).

Index Terms—Physical design, open-source, standard physi-
cal design data model, academic tool, Bookshelf, OpenROAD,
OpenDB

I. INTRODUCTION

Academic research in the physical design (“RTL-to-GDS”)
domain has been largely pursued in separate subfields such
as global placement, detailed placement, clock tree synthesis,
global routing, detailed routing, etc. Each subfield has a
rich literature that includes works developed for influential
academic contests. However, standalone optimizations are
not properly evaluated without adequate flow context. For
example, minimizing an objective function such as “total half-
perimeter wirelength” does not lead to a routable standard-cell
placement. Thus, a standard backplane is required to support
academic EDA research and translation of research results into
industry practice. To this end, the field has pursued two main
approaches: (i) aggregation and chaining of academic research
codes, and (ii) mappings between contest benchmarks and a
standard data model to make research codes more accessible.

The first approach is embodied in the IEEE CEDA DATC’s
Robust Design Flow (RDF [7]), which integrates prominent
academic tools into RTL-to-GDS tool chains. However, con-
necting the steps of such tool chains is challenged by lack of
an underlying physical design data model (e.g., LEF/DEF or
OpenAccess) that is somehow consistent with the various sim-
plifications and obfuscations that are needed when particular
contests are conceived. The three most recent RDF releases [6]
[7] partially address this by incorporating OpenROAD [1], an
RTL-to-GDS tool that supports a modern back-end data model
and standard formats. However, closed-source academic tools
in the RDF, notably those written for contests, are “frozen in
time”: they exist in a parallel universe of non-standard data
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Fig. 1: RosettaStone for physical design. (a) Before: vertical chaining of
tools with file-based communication. (b) Today: tool integration with industry-
standard data model and high-quality OpenDB implementation via RosettaS-
tone.

models, formats and testcases. Such tools are typically unable
to accept real-world designs and enablements. Up to now,
contest format readers/writers and file-based wrapper scripts
have been the thread that connects past academic tools into
the RDF.

The second approach is exemplified by the A2A work of [8].
A2A focuses on the integration of benchmarks, in particular,
mapping academic contest benchmark formats into a standard
(LEF/DEF) data model. This enables contest benchmarks to
be run in commercial tools for “apples-to-apples” assessments
of both commercial and academic tools. (By contrast, RDF fo-
cuses on vertical linkage of flow stages, and on academic tools,
benchmarks and evaluation metrics.) Unfortunately, A2A’s
file-based interfaces and reliance on closed-source commercial
P&R tool scripting make it difficult to update.

In this paper, we present RosettaStone, a permissively
open-sourced project that enables past academic tools and
benchmark suites to be integrated into a complete, modern
RTL-to-GDS foundation for physical design research. Notably,
all Bookshelf [2] based contest formats and benchmark suites
since 2005 are now connected (along with LEF/DEF data)
via RosettaStone. Figure 1 shows the contrast between (a)
the previous partial connectivity of file-based tool chains, and
(b) the flexible tool integration that RosettaStone enables via
consistent data model and database, along with robust format
conversions.

RosettaStone comprises a set of Python and Tcl scripts built
on top of OpenDB. We leverage the OpenDB Python API to
maximize user convenience and ease of maintenance. Source
code is available in GitHub (https://github.com/ABKGroup/
RosettaStone) with more than 30 example benchmarks. Roset-
taStone in theory works with any technology, and we have
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validated RosettaStone using four open-source technologies
(ASAP7, NanGate45 and SkyWater130HS/HD)' as well as
a commercial foundry technology (12nm) with cell libraries
from a leading IP provider.

Figure 2 illustrates the scope of RosettaStone and how it
completes the vision of previous efforts such as RDF and A2A.
RosettaStone goes beyond tool chaining, and enables deeper
integrations whereby (i) flow stages can consider or co-operate
with subsequent stages, or (ii) academic tools can be cross-
evaluated on commercial/academic benchmarks. RosettaStone
not only connects past academic tools to the present and future
of physical design research, but also enables future academic
contests to be framed in a complete flow context with canon-
ical evaluations such as post-route timing or number of DRC
violations. Below, our case studies illustrate the connection of
past contest formulations and formats to newer academic and
commercial technologies, and how additional physical design
considerations (e.g., standard-cell padding during placement)
can be incorporated into testcases or flows.

Our main contributions are described as follows.

e We develop RosettaStone with an industry-standard
LEF/DEF 5.8 data model and open-source database
(OpenDB).

o We describe challenges and solutions seen in mapping
past academic benchmarks to an industry-standard data
model, and we achieve new benchmark integrations of
ISPD-2005, ISPD-2006, ISPD-2011 and DAC-2012 aca-
demic benchmarks. All Bookshelf-based contests since
2005 are now unified with the LEF/DEF data model via
RosettaStone.

e We connect past academic contest frameworks and
contest-winning academic tools to current industry tech-
nologies and testcases, leveraging OpenDB Python APIs.

o We enable two additional physical design features, cell
padding and layer capacity adjustments, to show the
extensibility and flexibility of RosettaStone. Inter-tool
communication with these features is a key to pursue
further design optimization in the physical design flow.

o We present case studies to demonstrate (i) integration of
past tools and benchmarks with current tools and design
enablements, and (ii) use of RosettaStone to extend past
contest frameworks as well as inter-tool communication
for improved flow outcomes.

II. OPENDB: OPEN-SOURCE PHYSICAL DESIGN DATA
MODEL

As observed by [12], a 1980s style file-based EDA flow
does not work very well for inter-stage communications.
OpenAccess is a well-known physical design data model
which provides plentiful APIs for physical design, but is
not open-sourced and cannot freely cross academia-industry
boundaries. OpenDB is a physical design data model with
concrete, industry-strength and open-source realization. The
source code” of OpenDB has been released since 2019 as the
foundation data model and database implementation for the
OpenROAD project [1]. (Over 670 commits to OpenDB have
been made since its open-sourcing.) Due to these reasons, we

IRespective URLs: http://asap.asu.edu/asap,
open-cell-library and https://github.com/google/skywater-pdk.
Zhttps://github.com/The-OpenROAD-Project/OpenROAD/tree/master/src/odb
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Fig. 2: RosettaStone completes the vision of previous research enablements
(RDF [7] and A2A [8]). We demonstrate new cross-comparisons as well as
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Fig. 3: SP&R flow of OpenROAD [1] and physical design (floorplanning
through detailed routing) scope of RosettaStone integrations. Memory-based
communication is enabled by OpenDB. Figure adapted from [9] [12].

use OpenDB as a foundation of RosettaStone for boosting of
physical design research. In this section, we describe the basic
structure and key features of OpenDB.

A. OpenDB Overview

OpenDB has been implemented in the OpenROAD
project [1] to enable incremental optimizations with tight
coupling between flow stages. Figure 3 shows how OpenDB
and OpenSTA together realize the central physical design data
model (i.e., netlist, layout and timing) in the OpenROAD flow.
OpenDB provides an incremental architecture to realize the
full LEF/DEF 5.8 physical design data model, with support
of physical hierarchy. In OpenDB, a shared netlist adapter
enables netlist updates, such as the addition and deletion
of logical components in the design. A shared physical or
data model adapter enables updates of physical information,
such as locations/orientations of placed instances and loca-
tions/layers of routed nets. The physical data model allows
tools from different flow stages to work together in design
optimization. For example, when the location and size of
a placed instance is changed, the router can rip-up existing
routed nets and reroute them; the timer can update slacks
with new delays obtained with new estimated parasitics. More
details of OpenDB are given in [12].

Main classes in OpenDB map to main keywords of
LEF/DEF, e.g., OpenDB’s dbMaster, dblnst, dbNet and
dbBTerm correspond to LEF/DEF’'s MACRO, COMPONENTS,
NETS and PINS keywords. In addition, OpenDB is tightly
coupled with OpenSTA? for incremental static timing analysis.

3https://github.com/The-OpenROAD-Project/OpenSTA
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B. User Interfaces

There are many academic readers and writers for physical
design data formats that are of low quality (that is to say,
buggy, and with only partial support of LEF/DEF syntax
and versions). Creating a single (and robust) reader/writer for
industry-standard formats for physical design brings a signif-
icant benefit as a foundation for academic research. OpenDB
supports LEF/DEF 5.8 and provides industrial-strength readers
and writers for other physical design-related data formats (.sdc
constraints, .spef parasitics, .lib timing/power models, etc.).
Also, OpenDB can store and load design data in binary format
by using the OpenDB Tcl commands, save_db and load_db.

In addition to C++ APIs, OpenDB also supports scripts
based on high-level programming languages (Tcl and Python)
by using the Simplified Wrapper and Interface Generator
(SWIG). This brings an additional benefit for users in that
they can easily build their own physical design methodology.

III. ROSETTASTONE FOR PHYSICAL DESIGN RESEARCH

Connecting the past, present and future academic physical
design research presents a range of requirements. For example,
RePlAce [3] and FastRoute [11] come from the academic con-
test “universe”, but have been updated to handle the LEF/DEF
data model because they are distributed as open source. On
the other hand, NTUplace3 [5] or NCTU-GR [10], while
being landmark works in the history of physical design and
contests, are not open-sourced and are thus “frozen in time”:
they require RosettaStone in order to robustly interface to
modern LEF/DEF 5.8 testcases and flow. We have developed
RosettaStone to (i) make academic benchmarks available with
the industry-standard data model; (ii) support academic tools
via robust, bidirectional Bookshelf-OpenDB conversion; and
(iii) enable additional physical design features in the flow.
As described below, RosettaStone goes beyond simple file
conversion in ways that include the following.

o We open-source RosettaStone scripts to integrate multiple
Bookshelf-based contest benchmarks.

o Benchmark integration supports any modern technology,
and we have performed validations for four open-source
and one closed-source (12nm) technology.

e Creation of fake macro cell LEF files with on-grid pins
enables academic detailed routers to address benchmarks
with macro cells.

o« We use OpenSTA to break combinational logic loops
caused by cell mapping, to unblock physical design flows.
In A2A [8], this required use of commercial tools and
closed-source scripting.

o We resolve physical information mismatches between
Bookshelf and OpenDB by upscaling and downscaling.
¢ Academic tool limitations such as implicit assumptions
and hardcoded parameters have been worked around,

enabling robust tool integrations.

o Two additional physical design features, cell padding and
layer capacity adjustments, are demonstrated to show the
extensibility and flexibility of RosettaStone.

ermission. See http://www.ieee.or
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Fig. 4: Contest benchmarks converted from Bookshelf by RosettaStone.
(a) NanGate45-bigbluel (ISPD-2005), (b) SkyWater130HD-newblue2 (ISPD-
2006), (c) NanGate45-superbluel8 (ISPD-2011), and (d) ASAP7-superbluel6
(DAC-2012). The standard cells are placed by a commercial P&R tool.

A. Academic Benchmark Integration with an Industry-
Standard Data Model

Academic contest benchmarks do not have a complete
set of required inputs for physical design. To overcome
this limitation, A2A [8] proposes a benchmark integration
flow with standard data format for both sizing and place-
ment benchmarks, using ISPD-2011 benchmarks with ISPD-
2012/2013 academic technology. RosettaStone extends this
scope to include ISPD-2005, ISPD-2006, ISPD-2011 and
DAC-2012 academic benchmarks.* Also, while A2A includes
scripts for closed-source commercial tools, RosettaStone is
completely implemented using OpenDB Python APIs, which
enables its open-sourcing. Our benchmark integration over-
comes five main challenges: (i) technology mapping, (ii)
fake LEF generation, (iii) handling of combinational logic
loops, (iv) unrealistic timing paths and (v) different Bookshelf
formats.

First, RosettaStone must support the integration of academic
benchmarks with modern P&R in any technology. The chal-
lenge here is that academic benchmarks may erase functional
information for cells in the netlist. Thus, mapping must be
performed to enable consumption by P&R tools. To do this, we
first classify cells in a netlist as combinational or sequential.
When cells have (i) one input pin, (ii) one output pin and (iii)
width larger than minSeqWidth placement sites, the cells are
assumed to be sequential cells.’ To determine minS eqWidth,
we find all cells which have a single input and a single output
and sort them by width. Then, minSeqWidth is defined as

4In A2A, the benchmark integration flow has two directions: sizing and
placement. In RosettaStone, we focus on enabling placement contest bench-
marks as commercial formats. The gate sizing contest benchmarks are already
based on commercial formats (Verilog, SDC and SPEF).

SWe assume that sequential cells (flip-flops) only have a single output (Q
or Q) because academic technologies might not have multiple output pins
(e.g., ASAP7). For sequential cells with two output pins (both @ and Q), we
connect only one output pin (Q) and leave the other pin (Q)) open.
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the smallest width when at least 9% of cells have a larger
width than minSeqWidth. All other cells are assumed to
be combinational cells.® For each distinct width seen in a
benchmark’s combinational cells, we choose cells with the
same or the closest width from the provided standard-cell
library. If multiple candidates are available (i.e., there are
multiple cells having the same (or, closest) width in the
provided standard-cell library), we randomly assign the cell
to one of the candidates.

Second, RosettaStone supports academic routers for bench-
marks with macros and I/O ports. We create fake LEF files
which contain macro cells. When creating macro LEF files,
we further define macro obstructions (OBS) and I/O ports as
described in contest benchmarks. Importantly, RosettaStone’s
benchmark conversion ensures that all converted macros and
I/O ports are placed to honor manufacturing grids and design
rules.

Third, since the combinational cells are randomly mapped,
the physical design flow might be blocked by combinational
logic loops. We break all the loops, creating new sequential
cells and nets as necessary, using OpenSTA APIs.

Fourth, lengths of critical timing paths can be unrealistic
due to random mapping of logic gates. To address this issue,
we provide tunable logic path cutting. We call OpenSTA APIs
to retrieve the worst timing paths and change 1-output/1-input
combinational logic gates into flip-flops, or insert flip-flops
and create associated output nets, so as to not exceed a user-
defined maximum path length (maxPathLength).

For example, compared to ISPD-2006 benchmarks, ISPD-
2011 benchmarks have an additional terminal_NI attribute for
fixed I/O ports. The terminal_NI attribute allows overlaps of
I/O ports on different layers. Therefore, academic tools cre-
ated for ISPD-2006 benchmarks cannot parse the ISPD-2011
benchmarks. RosettaStone can select whether the terminal NI
attribute is used; when it is used, I/O ports are classified as
terminal_NI. Figure 4 shows converted academic benchmarks
and their placements by a commercial tool.

B. Robust Conversion for Academic Tools

Since we use OpenDB as the central database in Rosetta-
Stone, we must have robust bidirectional conversion between
Bookshelf and OpenDB for better academic tool support. We
achieve this by solving five problems: (i) infeasibility of off-
grid routing; (ii) resolution mismatches; (iii) implicit assump-
tions and hardcoded parameters that create silent limitations
in academic tools; (iv) defining appropriate tile (gcell) sizes
for global and detailed routing; and (v) handling fragmented
rows.

The first problem is that some academic detailed routers
only support on-grid routing. In RosettaStone, during the fake
LEF generation flow, we define grids having 2 x M3 pitch and
2 x M4 pitch for vertical and horizontal grids, respectively.
The macro pins are aligned to these grids so that detailed
routing can be accomplished with academic routers. The macro
pin snapping makes the designs routable with the academic
detailed routers.

The second problem is mismatches between Bookshelf and
OpenDB. We find that academic tools can have overflows

%In the benchmarks, cells with zero input pins and/or multiple output pins
are removed.
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when we integrate contest benchmarks to new technologies.
The enlarged values of coordinates of die and/or nodes cause
an overflow error in academic tools that only support ‘int’
data type, whereas OpenDB and LEF/DEF support ‘float’
data type. To use such academic tools, we cannot simply
scale down by dividing values by specific integers, due to the
remainder of site width and height. Therefore, we scale down
by dividing the coordinates by the greatest common divisor of
site width and height. Scaling by using the greatest common
divisor avoids distortion of the aspect ratios of die area and
core area for integer type values. Due to the mismatches
between Bookshelf and OpenDB, OpenDB must retain the
original information to recover from any corruption induced
by upscaling and downscaling.

The third problem is that academic tools have their own
assumptions and/or hardcoded parameters to obtain proper out-
puts based on contest requirements. For example, Bookshelf
has three node types: movable nodes, fixed nodes (terminal)
and fixed nodes with overlap (terminal_NI). The academic
tools only support movable nodes and ferminal nodes with
the prefix ‘o’, terminal_NI nodes with the prefix ‘p’, and nets
with the prefix ‘n’. To address these limitations, we change
instance and net names to have proper naming conventions for
the tools. We proceed to inverse-mapping the changed names
when uploading data from Bookshelf to OpenDB.

The fourth problem is to define the appropriate tile size
for global and detailed routing. Given a tile size, the die
area is divided into tiles to perform global routing, and the
global router generates routing guides for detailed routing.
The tile size has significant impact on routing congestion and
router runtime. Crucially, some academic detailed routers only
accept a specific tile size, with tile width/height defined as
multiples of routing track pitches. With these tools, the global
router must generate routing guides based on a tile size that
is acceptable to the detailed router. Therefore, the predefined
tile size in past contest benchmarks does not work in certain
technology configurations within the academic tool chain.
Even worse, the appropriate tile size cannot be calculated with
Bookshelf format alone, due to lack of technology information.
To address this problem, we define the tile size in the .route
file as nx the p'” routing layer track pitch, by referring to the
technology information in OpenDB. In our present work, we
use n = 15 and p = 3 by default.

The last problem is enabling academic placers to handle
fragmented rows. Fragmented rows result from undefined or
empty placement sites between defined rows in DEF; they are
created when commercial tools’ macro placement flows inten-
tionally leave spaces between placed macros and standard-cell
placement sites. The row fragmentation enhances routability
around placed macros, thus increasing chances of DRC-free
routing. Since previous Bookshelf benchmarks do not contain
any fragmented rows, most Bookshelf-based academic tools
do not support fragmented rows. To resolve this problem,
we extract undefined or empty placement sites from DEF
and add fixed dummy cells to the .pl file and .node files
in our DEF to Bookshelf conversion. The fixed dummy cells
function identically as macro halos in preventing standard-cell
placements around macros.
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(@
Fig. 5: Screenshots of routed designs.
SkyWater130HD-adaptecl with Flow3, (d) 12nm-swerv_wrapper with Flowl, (e) 12nm-swerv_wrapper with Flow2 and (f) 12nm-swerv_wrapper with
Flow3.

C. Additional Physical Design Features

In the modern physical design flow, inter-stage communi-
cations are important to further design optimization. However,
with a vertical tool chain such as RDF, where communication
is by files, inter-stage communications require upstream infor-
mation to be transferred along with the flow. In RosettaStone,
we enable two additional physical design features for inter-
stage optimizations: (i) cell padding and (ii) layer capacity
adjustments. Both features are widely used in modern physical
design methodology to reduce routing congestion arising in
early flow stages, and thus improve routability. RosettaStone’s
use of OpenDB inherently shares such physical design feature
information for inter-stage optimizations.

First, adding cell padding is a methodology that is used
to temporarily inflate the size of cells during the global and
detailed placement stages to improve routability. This adds
additional whitespace at placement to ensure additional space
for routers. To support cell padding in Bookshelf, we modify
.nodes and .pl files. We increase standard-cell widths by the
user-defined padding width in the .nodes file. We also modify
the lower-left coordinates in the .pl file on each node to match
the added padding value. We add padding with the same width
on both sides of the cell, so that there is no need to modify the
.nets file representing the relative coordinates of pins from the
center of the node. An experimental case study is described
in Section IV-B to demonstrate that cell padding reduces post-
route DRC counts.

Second, layer capacity adjustments (i.e., artificial reductions
of track supply) are used to prevent the global router from
creating routing congestion on lower routing layers. To support
layer capacity adjustments, we modify the .route file. The
.route file includes vertical and horizontal routing capacity per
tile edge on each layer. We revise the .route file by multiplying
original capacity by the user-defined percentage reduction of
per-layer capacity.

IV. EXPERIMENTAL RESULTS

Our RosettaStone GitHub repository shows integration of 35
open academic benchmarks with four real open-source tech-
nologies, demonstrating a range of case studies and academic
tools supported by RosettaStone. We have also experimentally
confirmed applicability of RosettaStone to closed-source com-
mercial technology.

In this section, we present a sampling of confirming exper-
imental setups and results. We verify our RosettaStone with
an open-source technology (SkyWater130HD) and a closed-
source commercial technology (12nm). The selected academic
tools are contest winners and have good performances using
Bookshelf or LEF/DEF. We perform placement to routing to
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(a) SkyWater130HD-adaptecl with Flowl (routing failed), (b) SkyWaterl30HD-adaptecl with Flow2, (c)

show routed designs with various combinations of academic
tools. Also, we demonstrate the use of RosettaStone to extend
past contest frameworks as well as inter-tool communications
for improved flow outcomes.

A. Demonstration of Physical Design Flow with Academic
Tools

We first demonstrate integration of past tools and bench-
marks with current tools and design enablements via Rosetta-
Stone. As shown in Table I, we define three flows with a mix of
academic tools. We use two designs, adaptecl from the ISPD-
2005 contest and the RISC-V swerv_wrapper core,” with two
technologies (SkyWater130HD and foundry 12nm). We report
results for two technology-design pairs (SkyWater130HD-
adaptecl and 12nm-swerv_wrapper).

Flowl contains a Bookshelf-based academic tool (NTU-
place3) that does not understand terminal_NI (pre ISPD-
2011 contest format). Flow2 contains a Bookshelf-based
academic tool (NTUplace4h [4]) that does understand
terminal_NT (post ISPD-2011 contest format,?) and Flow3
contains LEF/DEF-based tools in the OpenROAD flow. Fig-
ures 5(a)-(f) show routed designs using the three flows; Fig-
ure 5(a) shows only a post-placement result since the design is
unroutable. In the next subsection, we illustrate how inter-stage
communication (use of cell padding) can improve routability.

TABLE I: Academic tools in three flows in the experiments.

Stage Flowl Flow2 Flow3
Global Placement NTUplace3 | NTUplace4h RePlAce
Detailed Placement NTUplace3 | NTUplace4h OpenDP
Clock Tree Synthesis TritonCTS TritonCTS TritonCTS
Global Routing FastRoute FastRoute FastRoute
Detailed Routing TritonRoute | TritonRoute | TritonRoute

B. Placement with Padding Awareness

We now show routed results when cell padding is applied
at placement to reduce post-route DRC counts. We use the
same technology-design pairs (SkyWater130HD-adaptecl and
12nm-swerv_wrapper) with Flowl and Flow2. The tools in
Flow3 are in OpenROAD and support cell padding without
RosettaStone. We enable two Bookshelf-based placers (NTU-
place3 and NTUplace4h) to support cell padding through
RosettaStone. Also, we apply cell padding widths from zero
to four with a step size of one. Table II gives post-route DRC

7https://github.com/westerndigitalcorporation/swerv_eh1

80BS in .shape causes problems with the academic placer, so we do not
use a .shape file for our experiments. Instead, we define the OBS as a fixed
dummy cell in the .pl/ file.
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TABLE II: Post-route DRC counts and wirelength (WL) with cell padding.

SkyWater130HD-adaptec1 12nm-swerv_wrapper
Padding FlowT Flow?2 FlowT Flow2

#DRC WL (um) #DRC WL (um) | #DRC | WL (um) | #DRC [ WL (um)
0 Unroutable N/A 4259 31056820 | 10158 1467403 | 60100 | 1653790
1 Unroutable N/A 1552 33133707 39 1461999 3961 1649501
2 Unroutable N/A Unroutable N/A 17 1543437 14 1597491
3 6054 32375129 | Unroutable N/A 6 1601777 4 2025791
4 3490 31411154 112 33104601 3 1676066 1 2067074

c) (d
Fig. 6: Screenshot(s of routed designs with DRC markers. (a))SkyWaterl?aOHD-
adaptecl with Flow2 (0-site padding, 4259 DRCs), (b) SkyWater130HD-
adaptec] with Flow2 (4-site padding, 112 DRCs), (c) 12nm-swerv_wrapper
with Flow2 (0-site padding, 60100 DRCs) and (d) 12nm-swerv_wrapper with
Flow2 (4-site padding, 1 DRC).

results with various cell padding widths.” We see that post-
route DRC counts decrease when larger cell paddings are
added at placement stages in Flowl and Flow2. For Flow?2
and the 12nm-swerv_wrapper, the DRC counts with 0- and
2-site padding are 60100 and 14, respectively; 2-site padding
yields 3.4% wirelength reduction compared to 0-site padding.
Figures 6(a)-(d) show routed designs with use of cell padding,
and white markers that indicate post-route DRC locations. We
observe that cell padding significantly reduces DRC markers
in Figures 6(b) and 6(d).

C. Timing-aware Integration

We demonstrate timing-aware integration by applying logic
path cutting during the benchmark integration, and by apply-
ing timing- and electrical rules-driven resizing and buffering
during the pre-CTS and post-CTS steps of the OpenROAD
flow!® [1], [9]. We choose SkyWater130HD-adaptec] design
from Table II with Flowl-2 and 4-site padding. We assign
the target clock period as 20ns and maxPathLength as 25 for
the logic path cutting. Our timing-aware integration results
show zero Worst Negative Slack (WNS) after routing, with

9The two unroutable results in Flow2 are caused by segmentation fault in
the global routing tool.
10https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts

worst slack values of +5.99ns (Flowl) and +4.25ns (Flow2).
Without the resizing/buffering and logic path cutting, less
sensible WNS values of -187.01ns (Flowl) and -183.38ns
(Flow2) would result.

V. CONCLUSION

We have described a new, open-source framework called
RosettaStone that uses OpenDB to unify academic physical
design research and modern industry practice. Our work
supports the integration of past academic tools and bench-
marks with industry-standard formats and modern testcases
for physical design research. RosettaStone enables past and
future academic research and contests to have complete flow
context and canonical evaluations. In addition, RosettaStone’s
codes are opened at our GitHub repository, and we share
35 benchmarks integrated into four open-source technologies
(ASAP7, NanGate45 and SkyWater130HS/HD).
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