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Machine Learning for CAD/EDA

Machine Learning for 
CAD/EDA: The Road 
Ahead

 The road ahead for machine learning (ML) and 
computer-aided design (CAD)/EDA is built from three 
elements—learning, optimization, and CAD itself. 
Learning is the improvement of a computer agent’s 
perception, knowledge, or actions based on experi-
ence or data [1]. Optimization is the universal quest 
to do better: it is a centuries-old discipline that is at 
the heart of leading-edge IC design. CAD is our world: 
a high-stakes use domain for learning and optimiza-
tion that brings staggering scale and complexity along 
with multiple abstractions and objectives. Learning, 
optimization, and CAD are united in service of scal-
ing, which is the realization of more value while con-
suming fewer resources (energy, time, area, and cost). 
Scaling makes the impossible possible: it propels IC 
CAD/EDA, IC design, and the broader semiconductor 
ecosystem forward into the future.

The IC design optimization problem has essentially 
unbounded complexity. As illustrated in Figure 1, 
there is a starting point for design, with inputs such 
as register-transfer level Verilog and constraints. 

Then, there are many 
steps and decision points  
(e.g., test insertion, retim-
ing, and leakage optimi-
zation effort) on the way 
to a complete outcome 
(e.g., postroute layout and 

signoff reports) at a flow end leaf. From start to end is 
expensive, requiring weeks to months of effort. The goal 
is to achieve the best possible outcome, but there is an 
enormous space of trajectories, and the design optimi-
zation must stay within a given “box” of resources: 1) 
servers; 2) licenses; 3) people; and 4) schedule. There 
are never enough resources for optimization.

With the slowdown of device and process scaling, 
more burden is placed on design technology-based 
“equivalent scaling” to improve IC product quality, 
development schedule, and cost. Here, ML offers 
important boosters to CAD/EDA. First, ML enables 
prediction: seeing what lies ahead in the design pro-
cess. ML models provide predictions that can be 
leveraged in design exploration, while also serving 
as objectives for higher-level optimizations. What we 
cannot predict, we must guardband—and what we 
do not have time to explore, we leave on the table.

Second, ML enables optimization, not only help-
ing to solve difficult optimizations, but also giving 
new perspectives on classic optimization formula-
tions. Frameworks such as learning to optimize [2], 
graphical neural network (GNN)-based embedding 
[3], and reinforcement learning (RL) [4] lie on the 
road from today’s ML-assisted CAD (MLCAD) to 
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tomorrow’s ML-based design automation (MLDA): 
intelligent, self-driving CAD/EDA tools and flows.

Third, ML is effectively deployed on modern com-
pute resources such as cloud and GPU. This provides 
new paths to scalable CAD/EDA optimizations that 
can exploit massive data and numbers of threads. 
This is a crucial aspect of what we might think of as 
a future “EDA2.0.” Here, relevant frameworks include 
federated and evolutionary methods, stochastic gradi-
ent descent, sampling, and gradient-free optimization.

ML and prediction
Within the design process, models and predic-

tors are essential for cost and schedule reduction, as 
well as for the quality of results (QoR) improvement. 
ML-based predictions of delay, slew, coupling, and 
other parameters can shift the cost-accuracy tradeoff 
curve for electrical analysis, as illustrated in Figure 2 
[5]. Reducing uncertainty means less guardband-
ing and increased QoR. Analogously, prediction 
of eventual quality metrics or tool failures enables 
early pruning of “doomed runs,” allowing optimiza-
tion resources to be better spent. Predicting farther 
ahead, with greater accuracy, affords more leverage. 
(The flip side of this is the development of more pre-
dictable and modelable heuristics and tools.)

Quality metrics such as clock skew or pin access 
failures in detailed routing become easier to predict 
as a design progresses from RTL to the netlist, floor-
plan, global placement, and onward, that is, as more 
information becomes available. Eventually, such met-
rics become frozen (e.g., after detailed routing) and 
trivial to “predict.” In this light, ML-based predictions 
during design implementation also shift a tradeoff 
curve, namely, one of accuracy versus available infor-
mation. The choice of tradeoff point (i.e., of error or 
risk versus wall time) is an important hyperparameter 
in sampling and distributed learning for optimization.

ML for modeling and prediction in CAD/EDA 
must surmount several basic challenges. First, the 
predictability of today’s metaheuristic optimization 
outcomes decreases as solution quality increases. In 
other words, our heuristics and tools become nois-
ier and “chaotic” when pushed to their limits, which 
unfortunately is the regime in which IC design needs 
the most help. Future mitigations may include more 
predictable heuristics, predictors of distributions and 
order statistics of ensembles of runs, and improved 
sampling methods. Better predictors will also explain 
more of the variability within the design process, just 

as manufacturing variations have moved from “ran-

dom” to “systematic” with improved understanding.

Second, IC design optimizations often bring 

“max” (as opposed to “sum”) objectives and cost 

landscapes in which useful gradient information is 

difficult to discern. It is the longest timing path or 

the worst routing hotspot that must be estimated and 

optimized. Structurally dissimilar solutions can have 

similar quality metrics such as worst timing slack or 

wirelength, but which paths are critical or which lay-

out regions are congested can differ greatly between 

these solutions.

Third, what is predicted—and how predictive 

models will be used—needs careful consideration. 

For example, predicting achievable solution quality 

Figure 1. A huge search space of options is implicit in 
design optimization. The optimization itself must live 
in a “box” of resources.

Figure 2. ML shifts the accuracy-versus-cost tradeoff 
curve in electrical analyses. ML-based predictions 
can similarly shift the tradeoff of accuracy versus 
information regime in design implementation.
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(e.g., maximum clock frequency) is relatively use-
less without a “certificate,” namely, a flow setup and 
runscript that will actually achieve such a solution. 
Even perfect predictions can be difficult or even 
harmful when we try to use them, as noted in [6]. 
This is because when we predict an outcome, such 
as the total area of buffers that will be inserted in a 
netlist or the final placed location of a macro-block, 
acting on the prediction will change the predicted 
outcome. Hence, “Be careful what you ask for from 
ML (and, how you will use it).”

ML and optimization
Recent years have shown that ML can help to 

solve difficult CAD/EDA optimizations via predictive 
modeling, efficient sampling, hyperparameter tun-
ing, RL, and many other means. Conversely, optimi-
zation is a fundamental component of modern ML, 
whether in stochastic gradient descent, sampling, 
or distributed contexts. (At a meta-level, CAD/EDA 
optimizations improve the hardware systems on 
which learning takes place.) The future scaling of 
CAD/EDA technology will build on the close inter-
play between learning and optimization, as well 
as the representations that unite them via domain 
knowledge and mathematical structure. Example 
research foci include: 1) the interaction between 
discrete-combinatorial and continuous methods; 2) 
optimization and sampling on manifolds; 3) sequen-
tial decision-making; 4) nonconvex optimization 
and deep learning; and 5) distributed and federated 
learning and optimization [7]. Observations regard-
ing several near-term prospects are as follows.

Embedding and scaling
First, CAD/EDA has always contended with scale 

through problem size reductions, notably by par-
titioning and clustering of (embedded) graph or 
hypergraph representations. In recent years, large-
scale (message-passing) GNNs have shown promis-
ing applications to combinatorial optimization and 
algorithm alignment [2], [3], [8]. GNN-based meth-
ods, with attention and transformers, offer the prom-
ise of new optimizations and solution quality beyond 
what human experts can achieve [4], as well as clus-
tering and embedding that more naturally discovers 
important problem structures without hand-crafting 
of representations and hyperparameters. Orthogo-
nally (see the upcoming section), several challenges 
posed by sparse and/or confidential data have been 

met by the use of layered model architectures along 
with transfer learning and few-shot learning. There 
are also longer-range challenges, particularly for 
combinatorial optimizations. These include solution 
quality, generalization, and mechanisms for diagno-
sis and debugging of models.

From AI-boosted to AI-based
Second, making tools and flows “smarter” has 

been an active area for ML application, with well-doc-
umented benefits. Supervised learning and intelligent 
sampling of hyperparameter spaces have been used 
to develop smart flows that are inherently tuned to 
task distributions. Autotuning methods use sampling 
and estimation of distributions to perform sequen-
tial black-box hyperparameter optimization. Such 
methods balance exploration and exploitation within 
optimization resource constraints and have important 
adjacencies in stochastic and evolutionary optimiza-
tion. On the other hand, smart flows and autotuning 
still remain at a “knob-twiddling” level, following 
whatever structure happens to be imposed by exist-
ing CAD/EDA optimization tools. This largely ignores 
expert designer knowledge, as well as the stack of 
models and symbolic representations that underlie 
chip design. A longer-range challenge is to marry 
data-centric and knowledge-centric approaches to 
achieve AI-based optimization and intelligent design 
flows, in the sense of “third-wave AI.”

Lessons of “The Bitter Lesson”
Third, it is timely to revisit “the bitter lesson” [9], 

which is that “general methods that leverage com-
putation are ultimately the most effective, and by a 
large margin.” As witnessed by the histories of chess, 
Go, and speech recognition, the general methods 
that have scaled well with available computation 
are search and learning. Theoretical advances such 
as the double descent risk curve of Belkin et al. [10] 
explain the success of large, overparameterized neu-
ral-network models that operate beyond an “inter-
polation threshold.” Recently, Mirhoseini et al. [4] 
describe a deep RL approach to chip floorplanning 
that yields solutions “superior or comparable to 
those produced by humans in all key metrics”; this 
is potentially another instance of the bitter lesson, 
which CAD/EDA and IC design teams are seeking to 
reproduce and translate across many contexts.

Corollaries of the bitter lesson, while discomfiting, 
might also give us encouragement. In our lifetimes, 

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 06,2023 at 00:44:48 UTC from IEEE Xplore.  Restrictions apply. 



11January/February 2023

available computation via process, circuit, and 
system innovations has scaled by only several tens 
of orders of magnitude, while the state or solution 
spaces for design optimization have grown by much 
larger factors. We might ask whether “the bitter les-
son” means that expert humans are not that hard to 
beat, and/or whether (and why) CAD/EDA problems 
are not so difficult, after all.

Mind the (suboptimality) gap
As noted in [11], the reality of optimization is “bet-

ter, faster, cheaper—pick any two.” Somewhat curi-
ously, in our field, we often insist (as a customer to 
an EDA supplier, or as an academic peer reviewer to 
an author with a new heuristic) on “I want all three.” 
PhD students are trained to formulate and attack dif-
ficult optimizations using integer-linear programs, 
minimum-cost flows, primal-dual methods, dynamic 
programming, satisfiability, and so on. But in prac-
tice, “Our customers need an answer overnight,” 
“The approach is impractical due to its runtime,” or 
“While the method improves wirelength by 1%, this 
is not a fair comparison because runtimes are three 
times longer.” Over the past decades, such messages 
have driven the CAD/EDA field to cut corners and 
add more heuristics on top of existing stacks of heu-
ristics. This has come at a cost. Arguably, we are as 
ill-informed about suboptimality gaps for classical 
EDA optimizations and about the potential benefits 
of the longer running and/or distributed CAD opti-
mizations, as we were 20+ years ago. However, in 
today’s era of optimization, 1% matters.

In Figure 3a, heuristic B clearly dominates heuris-
tic A. Heuristic B also seems to dominate heuristic C 
(e.g., with effort = t1) until the computational resource 
is expanded (effort = t2), and C pulls ahead. Thus, B 
and C together define the quality-effort Pareto. It is 
unfortunate when heuristic C never sees the light of 
day, particularly since we have little idea how close 
any of these heuristics are to reaching optimality.

Note, too, that quality and effort cannot be sepa-
rated from each other in the Pareto frontier of optimi-
zation. Figure 3b and c illustrates aspects of how EDA 
optimization must live with this inseparability. Figure 
3b illustrates the “noise” seen in today’s CAD/EDA 
tools. This highlights the importance of sampling to 
find the good tail of distributions. A key aspect of 
this is that even sampling needs to become much 
smarter, for example, to decide how much sampling 
is needed before giving up on a QoR target as “not 

Figure 3. (a) Multiple approaches together 
define the quality-versus-effort Pareto 
frontier. For many optimizations, the 
suboptimality gap is unknown. In the 
figure, quality = “1.0” denotes optimality (in 
optimization) or accuracy (in analysis). (b) 
At the limits of achievable QoR, heuristic 
behavior becomes less smooth, and the 
density of feasible solutions can decrease 
even while remaining nonzero. (c) ML can 
improve QoR achieved with a given effort 
(resource budget), and/or reduce the effort 
needed to achieve a given QoR. See the 
“Inset” for two case studies.
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possible.” The figure illustrates how aiming for a 
given design QoR target can result in a mix of red 
fails and green successes within the distribution of 
QoR outcomes. Figure 3c shows how rearchitecting 
tools and ML-based optimization methods will “shift 
left and up,” moving the state of CAD/EDA technol-
ogy from B to B’. See the accompanying “Inset” for 
two case studies.

A road starts with a roadbed
At the nexus of learning, optimization, and CAD, 

several foundational elements provide a “roadbed” 
for the road ahead. These include: 1) benchmark-
ing and roadmapping of CAD/EDA optimizations; 
2) data to enable data-driven methods; and 3) “EDA 
2.0” that broadly reinvents core optimization algo-
rithms and tool architectures for scalability on mod-
ern compute substrates.

Benchmarking and roadmapping
First, CAD/EDA optimization is a technology, and 

as with any technology, its progress must be meas-
ured, benchmarked, and roadmapped. Indeed, 
DA has always been included as a key supplier of 
technology in the semiconductor industry’s tech-
nology roadmap. At the same time, benchmarking 
has long been a fraught topic in CAD/EDA. Public 
benchmarks, even when “real,” are obfuscated (e.g., 
module hierarchy stripped), incomplete (no clock), 
nonvertical (usable only for a specific academic 
contest), and past any competitive relevance (old). 
Moreover, no independent, trusted entity exists to 
assess EDA capability. An “Underwriters Laboratories 
for EDA” that can measure and benchmark IC design 
tools and flows would be a welcome development.

Benchmarking is naturally complemented by the 
roadmapping of CAD/EDA optimizations accord-
ing to metrics such as the solution quality achieved 
within a given resource bound, or the resource 
needed to achieve a given solution quality. A strong 
culture of benchmarking, calibration, and “measure 
to improve” goes hand in hand with instrumentation 
and data collection, transparency, and reproduci-
bility. This is reflected in recent (robust design flow, 
calibrations, and Metrics4ML) activities of the IEEE 
CEDA DA Technical Committee [12].

With real benchmarks, optimal solution costs, and 
remaining suboptimality gaps are unknown. Thus, 
artificial benchmarks are needed that can balance 
realism, known optimal solution quality, scalability, 

and other desiderata. Real designs can be perturbed 
into artificial test cases with known achievable solu-
tion costs or scaled to yield bootstrapped lower 
bounds on heuristic suboptimality. Alternatively, 
optimal solutions can be “planted” in artificial test 
cases, enabling suboptimality to be exactly meas-
ured. Several approaches produce artificial netlists 
that try to match prescribed degree distributions, 
I/O counts, path depths, sequential/combinational 
instance counts, and other criteria, which is in itself 
a difficult optimization.

Data
Second, data is essential to ML for CAD/EDA. 

That is, ML enables optimization methods to be 
conceived from a data-driven, rather than a CS-the-
oretical, perspective [2]. Unfortunately, in our field 
data is sparse, closely guarded, and in constant flux 
with the evolution of architectures, standards, and 
technologies. When paths to real data are infeasible, 
research enablement requires “data virtual reality”: 
data that is artificial yet scalable, free from biases, 
and indistinguishable from real data from the perspec-
tive of optimization. This brings numerous research 
challenges such as matching the behavior of real 
circuits through multistage optimizations (e.g., logic 
transforms, physical embedding, timing closure, and 
sizing) that span multiple abstractions. Jumping-off 
points include (graphical) generative adversarial 
network models and (federated) differential privacy 
techniques, in conjunction with obfuscation and 
noising—as well as the finding of relevant topolog-
ical and other motifs that characterize real designs. 
Data augmentation, along with transfer learning and 
low-shot learning, can further mitigate the unavaila-
bility of proprietary data. New techniques will also 
be needed to project data—from process design kits 
(PDKs) and libraries to system designs—forward 
into future technologies. This is because optimiza-
tions that meet the leading edge of practice cannot 
be driven only by the rearview mirror.

Computing platforms
Third, reinventing CAD/EDA to leverage modern 

computational resources is also a mandatory aspect 
of closing the suboptimality gap. Since the 1980s, 
CAD/EDA research and development has focused 
on single-threaded or single-server turnaround 
times. However, future solution quality and turna-
round time gains must leverage the hyperscaling 
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Figure 4. Road ahead for ML and CAD/EDA is a 
highway with many lanes and many travelers.

of available compute on platforms that span cloud, 
GPU, and accelerator hardware. Core EDA algo-
rithms and architectures will need to be reinvented 
accordingly.

As researchers make foundational advances in 
(sum-of-squares, manifold, nonconvex, min–max, 
etc.) optimization, distributable algorithm realiza-
tions and distributed-federated learning and opti-
mization will also be needed. Basic open questions 
surround the tension between exploration and 
exploitation, and the need to deliver “anytime” 
solution quality that improves monotonically with 
the given footprint (threads × runtime) of the com-
putational resource. For example, what new princi-
ples will improve our understanding of how much 
additional compute is needed to achieve a pre-
scribed wall time reduction, iso-QoR? Or, how much 
additional compute and/or wall time is needed to 
achieve a prescribed increase in QoR? From particle 
swarm optimization to differential evolution and the 
class of EDAs for EDA!, there is a rich body of work 
on metaheuristics and “parallel problem-solving 
from nature” that can potentially contribute to 
the development of future cloud-scalable (and 
learning-enabled) CAD/EDA.

We build roads as infrastructure so that we can 
go farther and go faster. How far and how fast we 
can travel along the road ahead for ML and CAD/
EDA is yet to be seen. There are difficult technical 
challenges, such as debugging of models, marrying 
of data- and knowledge-driven AI, end-to-end direct 
inference of design solutions, and comprehension 
of security as an optimization objective. Progress 
will also depend on business models, investments 
in basic research, minimization of redundant efforts, 
and other nontechnical factors. And, without a road-
bed, there can be no road: benchmarking, roadmap-
ping, data, and the use of modern compute platforms 
are all essential to the scaling of ML-enabled EDA 
optimization. Last, if there are too many toll booths 
and speed bumps (closed ecosystems, absence of 
standards, assertions of IP, etc.), then there will be 
fewer travelers on the road ahead.

At the same time, as shown in Figure 4, the road 
ahead for ML and CAD/EDA is a highway with many 
lanes [13]. It leads to self-driving IC design tools 
and flows that make design innovation and solu-
tion space exploration more effective, efficient, and 
accessible. It also takes us from today’s ML-assisted 
CAD (MLCAD) to tomorrow’s intelligent MLDA. At 

every step of the way, ML will help EDA tools and 
flows extract more from optimization resources, 
enabling more iterations, and exploration within 
the design schedule. Building this road and driv-
ing along it will unite learning, optimization, and 
CAD—and stakeholders across the design and EDA 
ecosystem as well—to bring future scaling benefits 
to the industry and society at large.
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Inset
The challenges illustrated in Figure 3b can 

be seen in the following case study using a lead-
ing commercial place-and-route tool. Figure 5 
contrasts what is requested from the tool, versus 
what is delivered. The x-axis gives the target clock 
period (CP) of the design, while the y-axis gives 
the effective, that is, actual, CP of the place-and-
route outcome.

The x-axis has 23 target CP values, spaced 50 ps 
apart. For each, 101 distinct tool runs are made, all 
aiming within half a picosecond of that target; this is 
achieved by stepping the CP target by 0.01 ps within 
a 1 ps range. How to obtain the best-possible (e.g., 
minimum-CP) outcome within a given budget of 
samples is an open challenge for MLCAD. Methods 
are needed to characterize and sample from the 
transition between easy CP targets on the left, and 
impossible targets on the right—comprehending 

the probability of functional failures (red points) 
and the mapping between target and effective CP 
values.

Next, note that the “shift left and up” illustrated 
in Figure 3c has significant potential value in, for 
example, the detailed routing stage of physical 
design. The challenge is to identify “doomed runs” 
and to intelligently reassign or repurpose their CPU 
resources, such that overall success is more likely, 
and overall turnaround time is reduced.

Here, a second illuminating case study involves 
detailed routing. Modern detailed routing tools 
partition the routing task into disjoint “tiles” or 
“switchboxes,” assigning a worker thread to each 
tile. After all tiles have been processed, those that 
do not yet have a clean routing solution are repro-
cessed—for example, with using a variant costing 
or connection ordering strategy—in the next itera-
tion of the router. Ideally, the number of unsolved 

Figure 5. Mapping between desired (target) CP and actual (effective) CP achieved 
by a commercial place-and-route tool. At each x-axis value, results are obtained 
for 101 target CP values within a 1 ps range of the given target CP. The highest 
blue data point in the plot corresponds to the minimum CP achieved, that is, the 
maximum-frequency result.
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design rule check violations (DRCs) and remain-
ing tiles will decrease with each iteration of the 
router.

Figure 6 shows the location of tiles that have 
remaining DRC violations, as well as runtimes per 
worker, at two iterations of a leading academic 
routing tool. (Note the logarithmic scale used for 
runtimes.) In early iterations, average runtimes 

per worker are a fraction of a second, but in later 
iterations some workers can run for hundreds of 
seconds. This offers high-value opportunities for 
learning (e.g., predicting “doomed” runs or where 
stubborn DRC violations will occur) as well as 
optimization (e.g., adaptive strategies to resolve 
DRCs in a given tile, and budgeting of available 
worker threads to remaining tiles).

Figure 6. Locations of detailed routing tiles (workers) with DRC violations seen at 
two iterations (7 and 54) of a leading academic routing tool (left). Distribution of 
runtimes, shown in seconds on a logarithmic scale, for the workers (right). Stubborn 
routing tiles could receive more attention (more assigned workers, executing 
variant solution strategies) if identified earlier in the routing process.
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