
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3066528, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

In-Route Pin Access-Driven Placement Refinement
for Improved Detailed Routing Convergence

Andrew B. Kahng, Jian Kuang, Wen-Hao Liu and Bangqi Xu

Abstract—Pin access is increasingly important in advanced
nodes. Neighboring or cell-boundary pins can have degraded
pin accessibility, causing design rule violations (DRCs) during
routing, which are runtime-expensive to resolve. Conventional
physical design tool flow uses pessimistic and/or inaccurate
understanding of pin access during the placement stage and
keeps the location of cells fixed during routing. This can leave
pin access issues unsolvable and block further routing solution
improvement. The timeliness of our present work is confirmed
by the recent ICCAD-2020 CAD Contest, Problem B formula-
tion from Synopsys, Inc. [11]. The organizers give a succinct
motivation for what we study – to eliminate preserved margins
and misalignment issues from conventional placement models.
In this work, we develop an in-route, pin access-driven local
placement refinement. Experiments across industry designs in
a wide range of advanced technology nodes confirm that our
optimization can significantly improve routing convergence (i.e.,
subsequent detailed routing runtime and initial detailed routing
DRCs). Our optimization can reduce congestion and wirelength
without timing degradation.

I. INTRODUCTION

In advanced technology nodes, detailed routing is a critical
challenge. With smaller feature sizes, more and more complex
design rules are introduced with each new technology enable-
ment. Such complex design rules make detailed routing ever-
more challenging. This is especially true with respect to pin
access, where the detailed router aims to achieve DRC-clean
connection to complicated pin shapes with comprehension of
not only design rules, but intra-cell and inter-cell pin shape
interactions as well.

Pin accessibility, which measures ease or difficulty of pin
access, is an important measurement of routability. Pin acces-
sibility assessment and modeling have been widely studied in
recent works. Xu et al. [9] propose a dynamic hit point scoring
strategy to dynamically assess pin accessibility based on the
number of pin access points described in [8]. Seo et al. [6]
propose a metric (i.e., Inaccessibility of Cell) to describe pin
accessibility considering the number of access points and inter-
ference among access points based on a pre-defined threshold.
Ding et al. [2] define a pin access region for each standard
cell pin and propose a pin access penalty function based on
distance and visibility between two pin access regions. Yu et
al. [10] propose a deep learning-based pin pattern recognition
methodology for pin accessibility prediction and optimization.
In this work, we adopt the concept of pin access pattern, i.e.,
combination of pin access points, as in [4].

Many recent works focus on pin access-aware detailed
placement optimizations. [2] proposes a two-phase pin
accessibility-driven detailed placement refinement. The first
phase performs cell flipping and swapping adjacent cells, and
the second stage performs cell movement. Taghavi et al. [7]
propose a local congestion metric considering local pin ac-
cessibility and apply a suite of detailed placement techniques,
MILOR, to mitigate local congestion. Chow et al. [1] propose
a two-step global-local move detailed placement algorithm

to minimize wirelength considering cell density. In summary,
these works attempt to optimize pin accessibility during place-
ment stage with modeled pin accessibility information – in
similar fashion as in a conventional physical design tool flow.1

In a conventional physical design tool flow, the placement
tool uses models including cell density, pin density, etc. to
estimate the pin accessibility. However, such estimation can
be inaccurate, if not misleading. Figure 1(a) and Figure 1(b)
have the same placement solution attributes (i.e., same cell and
pin density) while the relative locations between pin shapes
and track locations differ. The pin accessibility in Figure 1(a)
is better than the pin accessibility in Figure 1(b) because
of more on-grid access points, especially for pin A near
the left cell boundary. A placement solution with poor pin
accessibility, or poor pin accessibility correlation with routing,
can cause a considerable amount of initial detailed routing
design rule violations (DRCs).2 Although detailed routers have
the capability to iteratively fix DRCs, a large number of initial
detailed routing DRCs can lead to (i) many iterations and long
runtimes needed for DRC convergence, if the detailed router
can converge on DRC at all; and (ii) longer routed wirelength
due to detours needed to fix DRCs.

Fig. 1: Pin access points with different routing track-placement site offsets.

In this work, we propose an in-route, pin access-driven local
placement refinement using a hybrid wirelength model with
timing awareness (i.e., an objective function with weighted
sum of timing and wirelength components). With application
of our optimization, a leading commercial P&R tool’s detailed
routing runtime can be significantly reduced as we attain
improved initial detailed routing DRCs and final routed wire-
length without timing degradation. To our knowledge, ours is
the first detailed placement framework that comprehends exact
pin access, precisely as the detailed router understands this.
Our main contributions are summarized as follows.
• We propose a dynamic programming (DP) based ap-

proach to minimize a cost function that is aware of pin
accessibility, wirelength and timing while also consider-
ing EEQ cell swapping for advanced technology nodes.

• We propose a pin accessibility model that comprehends
interactions between neighboring standard cell instances.

1We adopt the widely-studied ordered-row placement in this work for
scalability consideration.

2According to [5], the detailed routing can be divided into two steps. The
initial detailed routing step handles the major routing rules; then, the detailed
routing refinement step fixes the remaining complicated DRCs.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 22,2021 at 22:34:23 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3066528, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

• With integration of our optimization, the commercial
P&R tool’s detailed routing runtime can be reduced by
up to 31.82% (avg. 15.06%). Moreover, our optimization
results in up to 10.13% initial detailed routing DRC
reduction, across 19 industry designs using various tech-
nology nodes.

The remainder of this paper is organized as follows. Sec-
tion II describes our problem formulation. Section III details
our pin access-driven detailed placement optimization flow.
Section IV presents our experimental setup and results. Sec-
tion V gives conclusions.

II. PIN ACCESS-DRIVEN PLACEMENT OPTIMIZATION

We now present our problem statement and formulation for
pin access-driven detailed placement optimization.
Pin Access-Driven Optimization Problem. Given an initial
legalized placement with pin access, perturb the placement to
minimize overall cost.
Inputs: A legal initial placement with pin access and a cost
function considering pin accessibility, wirelength and timing.
Output: Optimized detailed placement with minimized overall
cost (including pin accessibility).
Constraints: Maximum displacement range and placement
legality.

We make the following observation and assumption with
respect to this problem statement.
Observation. Each cell row can be separated from each other
from its neighboring cell rows in terms of pin accessibility.

In a technology library that contains only single-height
standard cells, the observation is obvious since the pin access
points are well separated by VDD/VSS power rails inside the
standard cell. For technology libraries that contain multi-height
standard cells, the observation follows from the fact that shapes
of standard cells are usually large. Hence, the pin accessibility
inside the multi-height cell is usually decent, and instances of
multi-height cells are unlikely to have pin access conflicts with
their neighboring cell instances.
Assumption. The locations of multi-height cell and clock-
related instances are fixed.

In advanced technology nodes, there are cells that span more
than one standard cell row. Such multi-height cells usually
are complex functional cells (e.g., flip-flops). Displacement of
flip-flops in a well-optimized placement solution can introduce
dramatic degradation in timing, especially because flip-flops
are on critical timing paths. Similarly, in a well-optimized
design, clock buffers are placed to satisfy various clock-related
constraints (e.g., clock skew).

A. Notations
Table I shows the notations we use in our formulation. For

each cell instance ci, cell instance index i indicates it is the
ith left-to-right cell instance in the cell row from the initial
placement. We use C to denote the set of cell instances in a
row of the initial placement.

In order to honor the initial placement solution, we define
a displacement range with x∆, in units of placement sites,
to limit the amount of placement perturbation. We use xi to
denote the absolute x-coordinate, in units of placement sites, of

TABLE I: Notations.
Notation Meaning
C set of cells in a row of the initial placement
ci ith cell in the left-to-right ordered initial

placement, where i is the cell index
[−x∆, x∆] displacement range

xi absolute x-coordinate of ci in the initial
placement, in units of placement sites

l displacement of a cell from its location in the initial
placement, in units of placement sites

d[i][l] dynamic programming table entry indicating that the ith

cell is placed with displacement l from its initial location

ci in the initial placement. Therefore, the absolute x-coordinate
of ci in the final placement solution must be within [xi −
x∆, xi + x∆]. We use the variable l ∈ [−x∆, x∆] to describe
the displacement of a cell instance from its initial placement.

We use a node array d[i][l] as the underlying structure for
a dynamic programming recurrence. Each node represents a
unique placement location of cell instance ci with displace-
ment l. The information contained in each node is summarized
in Table II. nodeCost indicates the cost of placing the cell
instance at the location implied by the node displacement
index l. pathCost is the lowest accumulated path cost from
the first cell instance of the row to the current node. pattern
contains the information of the pre-selected best pin access
pattern for the current node. Note that although pin access
pattern, in theory, can be one dimension of the dynamic
programming, we pre-select the pin access pattern for a cell
instance at each possible location defined by displacement
range in order to reduce runtime. We detail the pin access
selection procedure in Section III. prevNode points to the
previous cell instance node with the lowest path cost.

TABLE II: Dynamic programming node notations.
Notation Meaning
nodeCost cost of placing the cell instance at the location

indicated by the node
pathCost lowest accumulated path cost to the current node
pattern pre-selected pin access pattern for the current node
prevNode pointer to the previous node with lowest path cost

B. Dynamic Programming (DP) Formulation
In our DP formulation, cell instances of a given cell row

are placed sequentially from left to right in the same order as
in the initial placement. Algorithm 1 describes our DP-based,
pin access-driven detailed placement optimization procedure.
Lines 2–3 populate DP nodes with pre-selected pin access
patterns. Procedure getPattern, as described in Algorithm 2,
pre-selects the pin access pattern for cell instance ci with
displacement l. Lines 4–5 initialize the pathCost of each node.
Lines 6-16 describe the core part of the DP algorithm. Starting
with the first cell instance, the algorithm sequentially places
cell instances based on the recursive relation as described
in Lines 8–14. Lines 9–11 prune placement solutions with
overlapped cells. Procedure cost computes the placement cost
between partial placement solutions described by d[i][l] and
d[i+ 1][l′]. Lines 17–21 find and return the solution with the
lowest overall cost. The overall runtime of Algorithm 1 scales
as O(|C|x2

∆) but is negligible in practice (see Table V below).
The procedure cost(i+1,l′

i,l) calculates the cost of placing
ci+1 with displacement l′ as a weighted sum of (i) wirelength
cost costWL and (ii) pin access cost costPA as shown in
Equation 1. We use a wirelength weighting factor α ∈ [0, 1] to
balance the tradeoff between wirelength and pin accessibility.

cost(i+1,l′

i,l) = α · costWL(i+ 1, l′) + (1− α) · costPA(i+1,l′

i,l) (1)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 22,2021 at 22:34:23 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3066528, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

Algorithm 1 Dynamic programming
1: Inputs: dynamic programming array d, track patterns tps, access patterns array APs
2: Initialize pin access pattern for all nodes (l ∈ [−x∆, x∆])
3: d[i][l].pattern← getPattern(APs[i], tps, d[i][l])(0 < i ≤ |C − 1|)
4: Initialize cost for all nodes
5: d[0][l].pathCost← 0, d[i][l].pathCost← +∞, (0 < i < |C|)
6: for all i = 0 to |C| − 1 do
7: for all d[i][l].pathCost 6= +∞ do
8: for all l′ ∈ [−x∆, x∆] do
9: if isOverlap(d[i][l], d[i+ 1][l′]) then

10: continue
11: end if
12: t← d[i][l].pathCost+ cost(i+1,l′

i,l)

13: d[i+ 1][l′].pathCost← min (d[i+ 1][l′].pathCost, t)
14: end for
15: end for
16: end for
17: finalCost←∞
18: for all d[|C| − 1|][l] do
19: finalCost← min (d[|C − 1|][l].pathCost, finalCost)
20: end for
21: Return finalCost

III. FLOW

We now describe the overall flow of our pin access-driven
placement optimization, along with key elements including pin
access pattern selection and cost function calculations.
A. Pin Access Pattern Selection

In our work, DRC-clean pin access patterns comprehending
all pin shapes are an input from the detailed router’s integrated
pin access analysis engine. In order to enable efficient and
accurate wirelength calculation, we perform pin access selec-
tion prior to our in-route detailed placement optimization. In
advanced, especially sub-7nm, technology nodes, electrically-
equivalent (EEQ) cell swapping is necessary for cell instance
movement in order to ensure alignment between colored
routing tracks and pin shapes. Therefore, for each DP node
with displacement l 6=0, we pre-calculate the best EEQ cell to
use for the given placement site prior to pin access pattern
selection.

For all DP nodes representing cell instances at original
location (i.e., l=0), we preserve the pre-defined access patterns
which are already optimized for wirelength and pin accessi-
bility. For all DP nodes with displacement l 6=0, we perform
the pin access pattern selection as described in Algorithm 2.

The main goal of Algorithm 2 is to preemptively avoid
potential design rule violations between access patterns from
neighboring cell instances.3 Line 3 sorts the access patterns
based on their on-gridness with respect to the routing tracks.
The one with the most on-gridness is less likely to conflict with
its neighboring cells. Line 4 initializes the best access pattern
to the access pattern with the most on-grid access points.
Lines 5–15 iterate through all access patterns. Lines 6–7 check
whether the current DP node (i.e., d[i][l]), which represents the
placement of the current instance, overlaps with the original
placement solution of the next instance (i.e., d[i+1][0]). If the
two nodes overlap, we return the access pattern with the most
on-grid access points. Lines 9–10 check whether the current
access pattern conflicts with the access pattern of the next
instance at its original location. Lines 11–13 return the best
access pattern that does not conflict with the access pattern of
the next instance.

3We only check the right neighbor of an instance as DP propagates from left
to right, since conflicts between neighboring access patterns are symmetric.

Algorithm 2 Pin access pattern selection getPattern
1: Inputs: access patterns aps, track patterns tps, dynamic programming node d[i][l]
2: Output: best access pattern apbest for l 6= 0
3: aps = sort(aps, tps)
4: apbest = aps[0]
5: for all access pattern ap ∈ aps do
6: if isOverlap(d[i][l], d[i+ 1][0]) then
7: break
8: else
9: if isConflict(ap, d[i+ 1][0].pattern) then

10: continue
11: else
12: apbest = ap
13: break
14: end if
15: end if
16: end for
17: return apbest

B. Cost Functions

As mentioned in Section II, we consider two cost compo-
nents in our formulation (i.e., costWL and costPA).
Wirelength cost. The wirelength cost costWL for a node
d[i][l] depends only on the placement of the cell instance ci
itself. The wirelength cost is calculated based on Equation 2.

costWL(i, l) =
∑
pin∈ci

(m(pin, l)−m(pin, 0)) (2)

In order to prevent timing degradation, we use a hybrid
wirelength metric, as shown in Equation 3, with timing aware-
ness where (i) distCG denotes distance to the center of gravity
of pins of the net which the given pin belongs to, and (ii)
distdriver denotes distance to the driver pin of the net which
the given pin belongs to.

m(pin, l) = min(distCG(pin, l), distdriver(pin, l)) (3)

Pin access cost. The pin access cost costPA(
i+1,l′

i,l) is calcu-
lated based on the boundary pin cost costBP between cells
ci and ci+1, having corresponding displacements l and l′, as
shown in Equation 4. For ci and ci+1, pin access conflicts
could occur between the pins near the cell boundaries. We
use a threshold distance distthres to query the boundary pins
and check potential conflicts between boundary pins. Figure 2
illustrates the boundary pins defined by distthres.

costPA(
i+1,l′

i,l) = costBP (
i+1,l′

i,l)− costBP (
i+1,0
i,0) (4)

Fig. 2: Illustration of boundary pins with threshold distance distthres.

We calculate the boundary pin cost using Equation 5 where
BPR(i) (resp. BPL(i+ 1)) indicates the right boundary pins
of ci (resp. left boundary pins of ci+1).

costBP (
i+1,l′

i,l) =
∑

pin1∈BPR(i)
pin2∈BPL(i+1)

costpin(pin1,pin2) (5)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 22,2021 at 22:34:23 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3066528, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

We calculate the pairwise pin access cost for the boundary
pin pairs from ci and ci+1 using Equation 6, where PAP(pin)
represents the set of pin access points of a boundary pin and
dist calculates the distance between two boundary pins.

costpin(pin1, pin2) =
|PAP(pin1)| · |PAP(pin2)|

dist(pin1, pin2)
(6)

C. Overall Flow
Figure 3 illustrates the difference between the conventional

routing flow and the routing flow with our proposed placement
optimization. The red box implements what we refer to as
in-route detailed placement refinement. We take an initial
placement solution and pin access patterns as inputs. We then
select the access pattern for each DP node. Next, based on
the (already well-optimized) placement solution, we use DP
to further optimize pin accessibility and wirelength.

Fig. 3: Illustrations of (a) conventional routing flow, and (b) our proposed
routing flow with in-route pin access-driven detailed placement refinement.

In advanced technology nodes, placement legality con-
straints are much more extensive and complex than cell
non-overlapping (e.g., cell edge spacing constraint). Such
constraints can cause placement violations between non-
neighboring cell instances (e.g., ci−1 and ci+1). Therefore,
although we utilize the placement API from the commercial
tool to check placement legality between neighboring cell
instances, for each cell row, we perform row-based placement
legality check after optimization and revert our changes to the
row placement if any placement violation is observed.

IV. EXPERIMENTS

We integrate our in-route detailed placement optimization
with a commercial tool and perform experiments in foundry
technology nodes from 32nm to sub-5nm. We apply our
detailed placement optimization to 19 industry designs. Design
information is summarized in Table III. We are not able to
provide details of the design12 - design19 benchmarks due to
product confidentiality constraints for these sub-5nm designs.
All experiments are performed on Intel Xeon servers. Note
that the placement solutions of these designs are already well-
optimized by a leading commercial tool that considers pin
accessibility in a node-specific manner during placement. All
results are reported by the commercial tool.

A. Study of Displacement Constraint
To assess the impact of displacement (Disp.) constraint

x∆, we sweep x∆ from 0 to 4 (step size 1) for a sub-5nm

TABLE III: Benchmark information (omitting sub-5nm Design12-19 cases).

Benchmark #stdcell #macro #net Util. (%) Node
design1 119998 0 131514 78.385 7nm
design2 547180 20 566347 39.035 7nm
design3 521409 60 533777 36.371 16nm
design4 100005 0 111392 54.814 16nm
design5 213065 8 233781 38.244 20nm
design6 1790828 192 1811059 35.593 20nm
design7 815974 90 889974 64.043 28nm
design8 159429 0 197441 57.424 28nm
design9 337524 45 394336 65.887 28nm
design10 91667 0 101903 55.064 28nm
design11 43798 0 48171 54.855 32nm

design12-19 – sub-5nm

design. Table IV shows the difference in WNS, initial detailed
routing violation count (#init. DRC), final routed wirelength
(RWL) and percentage over-congested GCells (Overcon). With
x∆ ≥ 2, the timing, RWL and Overcon start to degrade versus
x∆ = 1. This reflects imperfect correlation of DP cost with
routing and timing outcomes: max displacement range x∆ = 1
provides enough solution space for our optimization while
honoring the already well-optimized original placement. We
thus apply x∆ = 1 in all experiments below.

TABLE IV: Experimental results for displacement range constraint.

Disp. WNS (ns) #init. DRC RWL (µm) Overcon (%)
0 -0.10 241373 2952508 3.68
1 -0.10 239828 2950170 3.63
2 -0.12 238523 2954262 3.71
3 -0.11 237391 2953569 3.71
4 -0.11 241209 2957398 3.79

B. Main Results
We apply our pin access-driven dynamic programming-

based optimization to all design blocks in Table III. We use a
WL weighting factor α = 0.01 based on our empirical studies.
Table V and Table VI present experimental results, comparing
the routing solutions based on (i) placement solution optimized
by the commercial tool, and (ii) placement solution after
further optimization by our methodology. Table V gives the
comparison of timing, including worst negative slack (WNS)
and total negative slack (TNS), total power, optimization CPU
time, and subsequent detailed routing CPU time. Table VI
gives the comparison of initial detailed routing violation count
(#init. DRC), final detailed routing violation count (#final
DRC), routed wirelength, via count (#via) and percentage of
over-congested GCell (Overcon) across all metal layers.

Table V confirms that the runtime of our optimization is
negligible as compared to the runtime of detailed routing.
Notably, the subsequent runtime of detailed routing is reduced
by up to 31.82% (avg. 15.06%) with our in-route detailed
placement optimization. With the negligible optimization run-
time, we also reduce WNS by up to 52ps (avg. 10ps), and
reduce TNS by up to 759.13ns (avg. 60.01ns). Moreover, we
reduce total power by up to 0.15% (avg. 0.03%).

Based on Table VI, we observe that, for #init. DRC, we
achieve improvement in 14 out of 19 testcases. We reduce
#init. DRC up to 10.13% (avg. 1.28%), with similar #final
DRC. For routed wirelength and via count, we achieve im-
provement in most testcases. We reduce routed wirelength by
up to 0.20% (avg. 0.04%), and reduce via count by up to
0.42% (avg. 0.09%). For congestion, we reduce the percent-
age of over-congested GCell by up to 0.35% (avg. 0.06%).
Note that these improvements are achieved over final, well-
optimized placement solutions from a leading commercial tool.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 22,2021 at 22:34:23 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3066528, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

TABLE V: Comparison of worst negative slack (WNS), total negative slack (TNS), total power, optimization CPU time (Runtime) and detailed routing CPU
time (DR runtime) between commercial tool (Comm.) and our work (Ours). Positive reduction values = improvements.

Benchmark
Metrics

WNS (ns) TNS (ns) Total power (mW) Runtime (s) DR Runtime (s)
Comm. Ours Comm. Ours Comm. Ours Comm. Ours Comm. Ours

design1 -0.161 -0.174 -28.62 -28.48 20.56 20.53 – 13 10456 7717
design2 -0.201 -0.197 -14.45 -13.34 85.00 84.97 – 40 27609 21833
design3 -0.563 -0.511 -904.25 -856.72 188.50 188.40 – 91 34934 23817
design4 -0.122 -0.087 -3.68 -5.39 18.27 18.27 – 13 7590 5696
design5 -0.092 -0.088 -35.63 -29.75 288.40 288.30 – 16 8561 6611
design6 -0.478 -0.487 -1665.20 -1367.50 957.50 957.60 – 226 88134 81295
design7 -0.221 -0.172 -1405.20 -646.07 439.10 438.90 – 103 33822 25147
design8 -0.077 -0.063 -48.92 -41.53 45.39 45.37 – 14 8191 6893
design9 -0.083 -0.090 -65.97 -65.31 95.76 95.74 – 34 16969 14436
design10 -0.133 -0.119 -44.76 -40.34 28.17 28.17 – 5 4120 3474
design11 -0.085 -0.080 -17.54 -15.71 15.09 15.08 – 2 2014 1499

sub-5nm
design12 -0.007 -0.007 -0.043 -0.035 84.2 84.2 – 35 1127 1003
design13 -0.063 -0.054 -18.1 -16.934 180.4 180.4 – 348 12556 11417
design14 -0.1 -0.1 -69.151 -57.525 198.1 198.0 – 245 9898 9596
design15 -0.048 -0.042 -50.496 -50.828 265.0 265.0 – 346 8768 8395
design16 -0.103 -0.077 -55.018 -51.064 294.0 294.0 – 372 11055 9825
design17 -0.033 -0.036 -9.567 -8.192 87.1 87.1 – 200 47758 47153
design18 -0.025 -0.025 -1.973 -1.747 89.5 89.5 – 178 17627 16922
design19 -0.038 -0.033 -13.684 -15.549 121.5 121.5 – 196 15960 14332

Avg. reduction (units) 0.01 60.01 – – –
Avg. reduction (%) – – 0.03% – 15.06%

TABLE VI: Comparison of initial detailed routing violation count (#init. DRC), final detailed routing violation count (#final DRC), wirelength, via count
(#via) and over-congested GCell (Overcon) between commercial tool (Comm.) and our work (Ours). Positive reduction values = improvements.

Benchmark
Metrics

#init. DRC #final DRC Wirelength (µm) #via Overcon (%)
Comm. Ours Comm. Ours Comm. Ours Comm. Ours Comm. Ours

design1 2098 2087 7 4 1245216 1242721 1073763 1069850 0.07 0.06
design2 4212 4398 1 4 7059722 7054360 4765333 4762265 0.39 0.39
design3 9265 9243 27 31 9611743 9605399 5377754 5377121 0.19 0.19
design4 1019 1094 4 1 1231962 1231019 995369 994380 0.96 0.96
design5 123 116 18 17 5451472 5446375 1736060 1733824 0.06 0.06
design6 7122 6838 60 65 93548447 93584424 20093121 20099553 0.43 0.41
design7 10592 10270 63 71 16514279 16503297 6774719 6747758 0.01 0.01
design8 3714 3660 7 3 3416199 3413156 1546361 1544693 0.09 0.09
design9 1692 1658 32 27 9703209 9697284 3063067 3063454 0.01 0.01
design10 185 171 48 42 1775344 1775584 702774 703469 0.69 0.66
design11 79 71 2 3 656508 655495 341956 340532 0.42 0.39

sub-5nm
design12 8721 8829 58 55 612379 612304 672426 673215 0.15 0.15
design13 204963 203199 21 21 2799052 2798876 3979621 3982364 8.78 8.67
design14 241373 239828 15 27 2952508 2950170 3934269 3929686 3.68 3.63
design15 176544 176019 12 12 2972888 2973352 4099268 4099386 7.82 7.61
design16 235245 235487 22 22 3181943 3180857 4176552 4175833 4.45 4.42
design17 194647 192867 1001 908 894068 895508 1999585 1992910 12.23 11.88
design18 158588 158639 158 127 896906 896627 1917938 1917663 3.79 3.66
design19 150608 150389 101 90 943526 944317 2021737 2022820 8.97 8.76

Avg. reduction (units) – 6.68 – – 0.06
Avg. reduction (%) 1.28% – 0.04% 0.09% –

V. CONCLUSIONS

In this work, we present an in-route dynamic programming-
based pin access-driven detailed placement optimization
methodology to significantly reduce the detailed routing run-
time, with noticeable benefits in initial detailed routing DRC
count, timing, and routed wirelength. We show that with
integration of our in-route placement optimization, the detailed
routing runtime can be reduced by up to 31.82% (avg. 15.06%)
with up to 10.1% (avg. 1.28%) reduction in initial detailed
routing DRCs across a wide spectrum of industry designs and
technology nodes. Our ongoing research directions include (i)
DRC-driven detailed placement refinement; and (ii) a more
comprehensive timing-aware optimization flow considering
different cell timing criticality characteristics.

REFERENCES

[1] W.-K. Chow, J. Kuang, X. He, W. Cai and E. F. Y. Young, “Cell Density-
Driven Detailed Placement with Displacement Constraint”, Proc. ISPD,
2014, pp. 3-10.

[2] Y. Ding, C. Chu and W.-K. Mak, “Pin Accessibility-Driven Detailed
Placement Refinement”, Proc. ISPD, 2017, pp. 133-140.

[3] C. Han, A. B. Kahng, L. Wang and B. Xu, “Enhanced Optimal Multi-
Row Detailed Placement for Neighbor Diffusion Effect Mitigation in
Sub-10nm VLSI”, IEEE Trans. on CAD 38(9) (2019), pp. 1703-1716.

[4] A. B. Kahng, L. Wang and B. Xu, “The Tao of PAO: Anatomy of a Pin
Access Oracle for Detailed Routing”, Proc. DAC, 2020, to appear.

[5] S. Mantik, G. Posser, W.-K. Chow, Y. Ding and W.-H. Liu, “ISPD2018
Initial Detailed Routing Contest and Benchmarks”, Proc. ISPD, 2018,
pp. 140-143.

[6] J. Seo, J. Jung, S. Kim and Y. Shin, “Pin Accessibility-Driven Cell
Layout Redesign and Placement Optimization”, Proc. DAC, 2017, pp.
54:1-54:6.

[7] T. Taghavi, C. Alpert, A. Huber, Z. Li, G.-J. Nam and S. Ramji, “New
Placement Prediction and Mitigation Techniques for Local Routing
Congestion”, Proc. ICCAD, 2010, pp. 621-624.

[8] X. Xu, B. Cline, G. Yeric, B. Yu and D. Z. Pan, “Self-Aligned Double
Pattering Aware Pin Access and Standard Cell Layout Co-Optimization”,
IEEE Trans. on CAD 34(5) (2015), pp. 699-712.

[9] X. Xu, B. Yu, J.-R. Gao, C.-L. Hsu and D. Z. Pan, “PARR: Pin Access
Planning and Regular Routing for Self-Aligned Double Patterning”,
ACM Trans. on DAES 21(3) (2016), pp. 42:1-42:21.

[10] T.-C. Yu, S.-Y. Fang, H.-S. Chiu, K.-S. Hu, P. H.-Y. Tai, C. C.-F. Shen
and H. Sheng, “Pin Accessibility Prediction and Optimization with Deep
Learning-based Pin Pattern Recognition”, Proc. DAC, 2019, pp. 220:1-
220:6.

[11] K.-S. Hu and M.-J. Yang, “Problem B: Routing with Cell Movement”,
ICCAD-2020 CAD Contest, http://iccad-contest.org/2020/

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 22,2021 at 22:34:23 UTC from IEEE Xplore. Restrictions apply.

