
Integration, the VLSI Journal 74 (2020) 32–44

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

On the superiority of modularity-based clustering for determining
placement-relevant clusters

Mateus Fogaça a,c,∗, Andrew B. Kahng d,e, Eder Monteiro c, Ricardo Reis a,b,c,
Lutong Wang e, Mingyu Woo e

a PGMicro, Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil
b PPGC, Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil
c Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil
d CSE, University of California at San Diego, La Jolla, CA, USA
e ECE departments, University of California at San Diego, La Jolla, CA, USA

A R T I C L E I N F O

Keywords:
EDA
Physical design
Floorplanning
Placement
Modularity-based clustering

A B S T R A C T

In advanced technology nodes, IC implementation faces increasing design complexity as well as ever-more
demanding design schedule requirements. This raises the need for new decomposition approaches that can help
reduce problem complexity, in conjunction with new predictive methodologies that can help avoid bottlenecks
and loops in the physical implementation flow. Notably, with modern design methodologies it would be very
valuable to better predict final placement of the gate-level netlist: this would enable more accurate early assess-
ment of performance, congestion and floorplan viability in the SOC floorplanning/RTL planning stages of design.
In this work, we study a new criterion for the classic challenge of VLSI netlist clustering: how well netlist clusters
“stay together” through final implementation. We propose the use of several evaluators of this criterion. We also
explore the use of modularity-driven clustering to identify natural clusters in a given graph without the tuning of
parameters and size balance constraints typically required by VLSI CAD partitioning methods. We find that the
netlist hypergraph-to-graph mapping can significantly affect quality of results, and we experimentally identify
an effective recipe for weighting that also comprehends topological proximity to I/Os. Further, we empirically
demonstrate that modularity-based clustering achieves better correlation to actual netlist placements than tradi-
tional VLSI CAD methods (our method is also 2× faster than use of hMetis for our largest testcases). Finally, we
propose a flow with fast “blob placement” of clusters. The “blob placement” is used as a seed for a global place-
ment tool that performs placement of the flat netlist. With this flow we achieve 20% speedup on the placement
of a netlist with 4.9 M instances with less than 3% difference in routed wirelength.

1. Introduction

Modern Systems-on-Chip (SoCs) aggregate billions of transistors
within a single die, and drivers ranging from mobility to deep learning
suggest that the Moore’s-Law scaling of design complexity will continue
[1]. EDA tools are continually challenged to incorporate new strategies
to scale tool capacity without sacrificing quality of results or overall
design schedule. Moreover, despite substantial R&D investments by the
EDA industry, costs of IC design (engineers, tools, schedule) continue
to rise. A recent keynote by Olofsson [2] asks, “Has EDA failed to keep
up with Moore’s Law?”

∗ Corresponding author. PGMicro, Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil.
E-mail addresses: mpfogaca@inf.ufrgs.br (M. Fogaça), abk@ucsd.edu (A.B. Kahng), emrmonteiro@inf.ufrgs.br (E. Monteiro), reis@inf.ufrgs.br (R. Reis),

luw002@eng.ucsd.edu (L. Wang), mwoo@eng.ucsd.edu (M. Woo).

It is well-known that the ability to predict downstream outcomes of
physical implementation algorithms and tools can enable reduction of
loops (iterations) in the design flow, thus saving tool runtime and over-
all design schedule [3]. The paradigm of physical synthesis is still the
major success story along such lines, but this paradigm is now over two
decades old. The recent DARPA Intelligent Design of Electronic Assets
(IDEA) program [4] highlights the cost crisis of modern IC design, and
seeks to develop a framework capable of performing the complete RTL-
to-GDSII flow without human interaction in 24 h [2,4]. New tools that
can help to avoid future failures (congestion, failed timing, etc.) while
still in the early stages of floorplan definition or RTL planning appear

https://doi.org/10.1016/j.vlsi.2020.03.007
Received 17 November 2019; Received in revised form 21 February 2020; Accepted 31 March 2020
Available online 23 April 2020
0167-9260/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.vlsi.2020.03.007
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2020.03.007&domain=pdf
mailto:mpfogaca@inf.ufrgs.br
mailto:abk@ucsd.edu
mailto:emrmonteiro@inf.ufrgs.br
mailto:reis@inf.ufrgs.br
mailto:luw002@eng.ucsd.edu
mailto:mwoo@eng.ucsd.edu
https://doi.org/10.1016/j.vlsi.2020.03.007

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

mandatory to achieve the IDEA program goal.1
In this work, we seek to identify clusters of logic in a given gate-

level netlist that will remain together throughout the physical implementa-
tion flow. (As discussed below, this is a fundamentally different criterion
than the min-cut or Rent-parameter criteria of previous clustering meth-
ods in VLSI CAD.) We envision that such a clustering capability will
help enable new predictors of performance and congestion during early
physical floorplanning and RTL planning. For example, gates within the
same cluster would be known to have spatial locality; this knowledge
would then inform synthesis, budgeting and global interconnect plan-
ning optimizations. And, if combined with “blob placement” of clusters,
fast evaluation of netlist and floorplan viability could be achieved.

Limitations of existing clustering approaches. Clustering is a uni-
versal strategy for problem size reduction and for helping to enforce
“known-correct” structure in solutions. Clustering has been used for
many years in a wide range of EDA applications, including placement
[5], clock tree synthesis [6] and, more recently, grouping of instances
into different power domains [7]. While many clustering methods for
VLSI have been proposed, they have largely focused on net cuts (hyper-
edge min-cut, cluster perimeter, Rent parameter [8], etc.). Further,
existing heuristics typically require design-dependent tuning and sub-
optimal heuristics. For instance, the well-known multilevel Fiduccia-
Mattheyses [9] implementations hMetis [10] and MLPart [11] require
a priori the target number of partitions as an input, and each aims to
balance the number of vertices or total vertex area across the partitions,
which conflicts with the min-cut objective.

Our contributions. Among the contributions of this work, we men-
tion two broad aspects. The first aspect is the evaluation and applica-
tion of community detection algorithms within the VLSI CAD context.
Community detection is a comparatively recent class of graph cluster-
ing methods used to find densely-connected nodes in large networks
such as those arising in social media, telecommunications and bioinfor-
matics [12]. Community detection methods rely on metrics that help
identify natural clusters inside graphs, notably, the modularity crite-
rion [13]. Our study centers on Louvain [14], a well-known fast and
efficient modularity-based graph clustering algorithm with near-linear
runtime in sparse graphs. Louvain can cluster graphs with up to 700 M
edges within 12 min, using a single thread. The second aspect is our
study of new measures of the correlation between a netlist clustering
method and the actual placement of netlists. The absence of previ-
ous work in this vein may be due to the fact that previous clustering
techniques have aimed to drive placement algorithms instead of pre-
dicting them (i.e., the final evaluation of a clustering technique was
the quality of the placement itself). We study three classical concepts
from computational geometry to evaluate this correlation: convex hulls
(CH), alpha shapes (AS), and Delaunay triangulations (DT) [15]. The pri-
mary purpose of these techniques is to retrieve the geometric shape of
a set of scattered points, a goal that correlates very closely to the con-
cept of a cluster. To compare different clustering results, we apply the
Davies–Bouldin index (DBi) [16], Variance Ratio Criterion [17] and Sil-
houette Coefficient [18], which are traditionally used to evaluate how
“well-separated” clusters are. For spatial data, such as placements of
standard-cell instances, our evaluation criteria measure (i) the distances
from instances to the center of gravity of the clusters they belong and
(ii) the distance among the center of gravity of clusters. In a “good”
clustering solution, the ratio between (i) and (ii) is a small numeric
value.

Our contributions are summarized as follows.

1. We employ modularity-based clustering in conjunction with VLSI-
relevant graph edge-weighting to predict groups of logic gates that

1 This is a long-standing challenge to design productivity and the EDA indus-
try. That so many commercial RTL planning and “RTL signoff” efforts have been
made over the past 25 years (Tera Systems, Aristo, Silicon Perspective, Atrenta
SpyGlass-Physical, Oasys, etc.) indicates the difficulty of this challenge.

will remain together through the stages of physical implementation
– without the need for user tuning.

2. We explore the use of convex hulls, alpha shapes, and Delaunay
triangulations to visualize and measure the correlation between the
netlist clustering and the “ground-truth” actual placement.

3. We adopt Davies–Bouldin index [16], Variance Ratio Criterion [17]
and Silhouette Coefficient [18] as criteria to compare clustering
results. These criteria are extensively used for evaluation of spatial
clustering but have not been explored by the EDA community.2

4. We perform experiments showing 50% better clustering quality on
average for Louvain [14] versus the traditional VLSI netlist cluster-
ing tool hMetis [10], with 2× faster runtime than hMetis for our
largest benchmark.

5. We demonstrate an experimental flow that performs fast “blob
placement” of clusters as a potential basis for future early-stage
netlist and floorplan evaluation. Our flow can closely predict
instances that remain together in the actual gate-level placement
with a speed-up of 50% compared to flat placement for a testcase
with 1.2 M instances and 20% speed-up for a testcase with 4.5 M
instances.3

The remainder of this paper is organized as follows. Section 2 gives
an overview of the existing literature on VLSI netlist clustering and
discusses several works on modularity-based clustering. Section 3 for-
mally defines our objective, metrics, and experimental implementation
details, while Section 4 presents our experimental results. Section 5
introduces the idea of quick floorplan and placement evaluation using
(modularity-based) clusters. Finally, Section 6 gives conclusions and
several directions for our ongoing and future work.

2. Related works

We now give a brief overview of relevant works in two literatures:
VLSI netlist partitioning, and community detection. Since the modular-
ity criterion is not previously addressed in the VLSI CAD literature, we
present a somewhat expansive review of its development and usage in
the machine learning literature.

2.1. VLSI netlist partitioning

Netlist partitioning is a fundamental step within a broad spectrum
of EDA tools. Alpert and Kahng [19] give a four-way classification of
techniques according to underlying computational approach, as follows.

Move-based approaches aim to improve an initial feasible solution
through iterative local perturbations such as pair-swap or shifting a
single vertex to another partition. The pass-based heuristic structure of
Kernighan-Lin (KL) [20] along with the vertex-shifting move structure
of Fiduccia-Mattheyses (FM) [9] are at the core of such methods. Two
FM tools, hMetis [10] and MLPart [11] are widely used in academic
and commercial flows today.

Geometric representation-based approaches exploit geometric
embeddings of circuits to achieve improved cluster quality and run-
time. Hall [21] gives an early spatial approach, achieving multi-way
partitioning solutions through quadratic placement and vertex order-
ings induced from eigenvectors of a netlist-derived discrete Laplacian
matrix. Barnes [22] extends this strategy to perform k-way partitioning.

2 The silhouette metric has not been widely used in the VLSI CAD clustering
literature, with [61] being the only example of which we are aware.

3 Note that the core motivation and contribution of our current work is to
rapidly predict the placement. If instance placements can be quickly known, an
expert designer is able to tune the flow setup (e.g., with small modifications to
floorplan, density screens, grouping, etc.) to improve the quality of results or to
fix timing and routability issues. In this context, our work provides a method-
ology to improve the outcomes and/or the turnaround time of the netlist-to-
placement phase of the implementation flow.

33

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Ou and Pedram [23] propose a two-phase min-cut strategy that com-
prehends timing constraints. Iterated quadratic programming is used to
find an initial embedding of the design, and gate replication is subse-
quently applied if timing constraints are found to be too strict.

Combinatorial formulations encompass techniques such as net-
work flows and mixed integer-linear programming that can capture
complex objective functions and constraints. E.g., Yang and Wong
[24] propose an iterated max-flow formulation to address the balanced
bipartition problem. More recently, Blutman et al. [7] address netlist
partitioning for stacked-domain designs, also using a flow-based frame-
work.

Clustering approaches are often taxonomized as being either
bottom-up or top-down. Bottom-up methods start with each module
being an individual cluster, with clusters being iteratively merged until
a given condition is satisfied. Top-down methods start with a single
cluster and iteratively split clusters into two or more (smaller) clusters.
Hybrid methods, awareness of timing and other concerns, abound. E.g.,
Hagen and Kahng [25] perform clustering by integrating a random-walk
algorithm with iterative FM. Sze and Wang [26] use a graph contraction
technique to maintain delay information among different lower levels
of a performance-driven clustering flow. Alternatively, Kahng and Xu
[27] extend traditional FM to directly eliminate or minimize “distance-
k V-shaped nodes” in the bipartitioning solution, achieving a tradeoff
between cutsize and path delay. Finally, Jindal et al. [28] propose a
bottom-up clustering technique to find tangled logic using the Rent
parameter, and demonstrate how to alleviate routing hotspots using
their clusters.

2.2. Modularity-driven clustering

Before diving into modularity-driven clustering, we provide some
background on community detection. Community detection is a subset of
the machine learning literature comprising algorithms closely related to
the partitioning methods described in Section 2.1 and hierarchical clus-
tering studied in sociology [13]. Communities (also referred to as clus-
ters) correspond to the division of the vertices of the graph into groups,
where the edges within a given group are denser and between them are
sparser [13]. The algorithms in the community detection field are tax-
onomized into three categories: (i) divisive methods [29,30] find commu-
nities by iteratively removing edges from the graph, (ii) agglomerative
methods [14,31] iteratively merge vertices and communities, and (iii)
optimization methods [32,33,34] maximize an objective function using
heuristic methods (e.g., simulated annealing). Modularity is a criterion
used to evaluate the division of the graph into communities. Modular-
ity is a numeric value ranging from −1 to 1, and higher values indicate
a better division of the graph. Methods that adopt modularity as an
objective function are called modularity-driven clustering.

The modularity criterion is proposed by Newman and Girvan in
Refs. [13]. Newman and Girvan propose three divisive methods for
community detection and evaluate them using artificial and real-world
graphs whose community structure is well-known. However, Newman
and Girvan highlight that in most real-world problems, the ground-truth
communities are not known. To tackle this problem, the authors pro-
pose a numeric criterion, called modularity. The correlation between
modularity and the ground-truth communities for a given graph has
been assessed using artificially-generated testcases. Newman and Gir-
van have noticed peaks of modularity for solutions whose communities
have correlated well with the ground-truth.

Later, Newman finds the answer to the question, “If a high value
of modularity represents a good community division why not simply
optimize modularity over all possible divisions to find the best one?”
[33]. Newman proposes a greedy agglomerative algorithm that starts
with every vertex as a sole member of a community. Then, the algo-
rithm repeatedly merges communities together in pairs. At each step,
the algorithm chooses the pair of communities that represent the best
increase in modularity. Newman’s algorithm has since been improved

by Clauset et al. [32] (also known as the CNM algorithm) and Wakita
and Tsurumi [35].

In [14], Blondel et al. propose an agglomerative modularity-driven
method, called Louvain algorithm. Initially, each vertex is considered a
community. The algorithm is iterative and each iteration is composed of
two phases. The first phase performs swaps of vertices between neigh-
boring communities that produce gains in modularity. The second phase
builds a new graph in which the vertices are the communities found in
the first phase. The edges among the vertices of the new graph are
the sum of the edges between the vertices of the corresponding com-
munities on the old graph. Unlike previous approaches, Louvain is fast
and scalable. Experiments performed in Ref. [14] show linear runtime
complexity with respect to the number of vertices in sparse graphs. For
instance, Louvain is able to perform community detection in a graph
with 118 M vertices in 152 min. Since each pass reduces the size of the
graph, most of the runtime is spent on the first iteration. The Louvain
code is available in Ref. [36].

2.3. Modularity-driven clustering for hypergraphs

In Section 2.2, we have provided an overview about modularity-
driven clustering of graphs. Nevertheless, the data of many practical
applications, such as social networks and VLSI netlists, are described
using hypergraphs. One way to tackle problem instances arising in such
applications is to use a hypergraph-to-graph mapping method [37]. In
doing so, some information in hyperedges with degrees greater than
two may be lost. Some research has intended to enable the modularity
criterion to hypergraphs. Neubauer et al. [38,39] propose a modularity
criterion and optimization method for k-partite k-uniform hypergraphs.
Kumar et al. [40,41] propose a modularity criterion for hypergraphs of
any degree and a method to integrate the proposed criterion into the
Louvain algorithm. Additionally, Kumar et al. devise an incremental
weighting scheme to balance the number of vertices per cluster. Finally,
Kamiński et al. [42] adapt the modularity criterion for hypergraphs
using the Chung-Lu model [43]. Kamiński et al. show that their criterion
correlates well with hyperedge cut and adjust the CNM algorithm to use
the proposed criterion. The CNM code is available as Julia scripts on
GitHub [44].

Despite the above-mentioned efforts to extend modularity-driven
clustering to hypergraphs, to the best of our knowledge there is no avail-
able, open-source and scalable tool that serves the hypergraph clustering
context in the way that Louvain presently serves the modularity-driven
graph clustering context. For instance, we have tried to cluster our test-
cases from Section 4 using the [44]. However, a design with 8 K cells,
which is much smaller than the netlists arising in our present work,
takes an average of 25 min when we sweep the number of iterations of
the algorithm from 500 to 10,000 with step of 500. In contrast, Louvain
can cluster a design with 1.4 M instances in 7 min. On the small testcase
jpeg_encoder_14 with 44 K instances, the scripts from Ref. [44] crash due
to stack overflow.

In our present work, we employ the widely-used VLSI clustering tool
hMetis [10], and we apply the fast and effective modularity-based Lou-
vain algorithm in the EDA context. In applying Louvain, a key issue is
that VLSI netlists are hypergraphs, while community detection meth-
ods have been applied to graphs. As we discuss below, the success
of modularity-based clustering for VLSI strongly depends on (i) the
hypergraph-to-graph mapping used, and (ii) the means of capturing
structural ‘hints’ (I/Os, timing, etc. - cf [45]) from the VLSI netlist struc-
ture.

3. Methodology

In this section, we first describe the problem statement and metrics
for clustering evaluation. We then describe Louvain-based clustering
based on a graph model of the netlist hypergraph.

34

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Table 1
Notations.

Term Meaning

DBi Davis-Bouldin index
VRC Variance ratio criterion
SC Silhouette coefficient
N Total number of elements being clustered
n Number of clusters
ni Number of elements in cluster i
𝜎 i Average distance from the cluster elements to the centroid of cluster i
𝜌 Centroid of all elements being clustered
𝜌i Centroid of cluster i
l(𝜌i, 𝜌j) Distance between the centroids of two clusters i and j
Q Modularity value
Aij Sum of weights of inter-cluster edges between clusters i and j
ki Sum of all weights of edges connected to cluster i
ci ith cluster
𝛿(ci, cj) Function that receives two clusters as input and returns 1 if they are connected, and 0 otherwise
ph Number of pins of net h
wh Weight of net h
wh,1 Clique weight of net h
wh,2 Topological depth weight of net h
d(I) Topological distance to the closest input
d(O) Topological distance to the closest output
B Between-clusters dispersion
W Within-clusters dispersion
x Coordinate (x, y) of an element of a cluster
ai Average pairwise distance over all elements of a given cluster ci
bi Average pairwise distance of an element given cluster ci and all other elements of the nearest cluster
ΔDBi/VRC/ΔSC Normalized variations of DBi, VRC and SC
DBitech/VRCtech/SCtech Value of DBi, VRC and SC for the technology node “tech”

3.1. Problem definition

In this work, we use the term cluster to refer to a group of densely-
connected instances such that the number of the interconnections
among elements inside the group is much higher than the number of
connections spanning different groups. The process of finding the clus-
ters of a netlist is called clustering. Our goal may be stated as follows:
Given (i) a mapped netlist and (ii) information about the standard cell
library, find clusters containing instances that are expected to remain
close to each other along the stages of the implementation flow. Since
there is no formal definition of what is the nature of a good cluster-
ing to predict placement, we propose and discuss metrics below. The
notations used in this section are summarized in Table 1.

3.2. Metrics for clustering evaluation

In this subsection, we describe approaches to define cluster shapes,
as well as clustering evaluation metrics.

Cluster shapes. One intuitive approach to measure the correlation
between the clusters and their actual placement is to retrieve their
shapes for visualization and density measurement. In computational
geometry, many applications need to restore the geometry from a set
of scattered points. If we consider each cell as a singular point, the
problems become very similar. We can represent the geometry of a
given cluster using its convex hull [15], i.e., the minimum convex poly-
gon that contains the center of all cells. Once the convex hull is com-
puted, we calculate its utilization as the total cell area divided by the
hull area. If the utilization is lower than a threshold, we remove the
points comprising the hull and recompute the hull. In our work, we
define a threshold of 64% utilization and set the maximum number of
times the process can repeat as 25. We call this process “shelling” and
depict an example in Fig. 1. Fig. 2(a) depicts a “ground-truth” place-
ment along with a cluster, with cells colored according to their clusters.
Fig. 2(b) draws the corresponding convex hulls. However, if we exam-
ine the highlighted blue cluster in Fig. 2(b), we see that convex hulls
do not offer a compelling prospect. The hull fails to convey the bad
clustering outcome and has a low utilization of 38%.

Alpha shapes [47,48], examples of which are shown in Fig. 2(c),
are a type of “shape formed by a pointset” wherein a parameter alpha
defines the squared radius of a circle that is used to carve away space
around the given points. The remaining space comprises the alpha
shape of the pointset.4 Alpha shapes are appealing in that – for appro-
priately chosen alpha – they provide more accurate representations of
pointsets than do convex hulls. In the following, for the testcases we
study where dimensions of layout regions are in the 150 μm–500 μm
range, we empirically use alpha = 2500 μm2. In Fig. 2(c), we see
that the alpha shape reveals how the blue cluster discussed earlier is
clearly divided into two pieces, each of which is dense with utilization
of %66%.

Our last approach to retrieve cluster shapes is derived from the
Delaunay triangulation (DT), depicted in Fig. 2(d). The DT is the geo-
metric dual of the Voronoi diagram over a given pointset. One can infer
the cluster shape and outliers by analyzing the sizes and density of DT
edges of a given cluster. Statistical data may also be extracted from the
distribution of edge lengths to assess the clustering solution.

Solution Evaluation. Convex hulls, alpha shapes and DT are useful
for visual and manual debugging. For solution evaluation, we propose
three criteria. Recall that the main goal of our work is to predict groups
of logic gates that will remain together through the stages of physical
implementation. This goal correlates well with the goal of spatial clus-
tering techniques. For our experiments, we adopt the Davies–Bouldin
index (DBi) [16], Variance Ratio Criterion (VRC) [17] and Silhouette
Coefficient (SC) [18], traditionally used for spatial clustering evalua-
tion, as indicators of cluster quality.5 The DBi is defined as:

DBi = 1
n

n∑
i=1

maxi≠j

(
𝜎i + 𝜎j
l(𝜌i, 𝜌j)

)
(1)

4 When alpha = ∞, the alpha shape is the convex hull of the pointset (i.e.,
the convex hull is a special case of alpha shape). When alpha = 0, the alpha
shape is the set of points of the pointset.

5 To ensure a correct comparison, we implemented DBi, VRC and SC in the
same way as in Ref. [62].

35

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Fig. 1. The process of “shelling” the cluster shape.
Figure (a) shows a cluster with total cell area
equal to 4.6 × 103𝜇m2 and shape area equal to
23.0 × 103𝜇m2. Thus, the utilization of the cluster is
equal to 20.2%. The cluster’s “shell” is the set of red
instances that are on the boundary of the shape. In
(b), the cluster shape is recomputed after removing
the shell from (a). The final shape has area equal to
11.6 × 103𝜇m2 and utilization equal to 40.1%. (For
interpretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)

Fig. 2. Different approaches to correlate clusters with the placement for the circuit ispd18_test2 [46]: (a) the placement with each instance colored according to its
cluster, followed by (b) the convex hulls; (c) the alpha shapes; and (d) the Delaunay triangulations of the clusters.

where n is the number of clusters, 𝜎i is the average distance from the
cluster elements to the centroid of cluster i, 𝜌i is the centroid of cluster
i and l(𝜌i, 𝜌j) is the distance between centroids 𝜌i and 𝜌j. In DBi, smaller
values of 𝜎i(𝜎j) indicate more denser clusters and higher values of l(𝜌i,
𝜌j) indicate well-separated clusters. Therefore, smaller values of DBi
indicate a better clustering solution. VRC is defined as:

VRC = Tr(B)
Tr(W) ×

N − n
n − 1

(2)

where Tr(B) is the trace of matrix B, and N is the total number of ele-
ments being clustered. The between-clusters dispersion (B) and within-
clusters dispersion (W) are computed as

B =
n∑
i

ni(𝜌i − 𝜌)(𝜌i − 𝜌)T (3)

W =
n∑
i

∑
x∈ci

(x − 𝜌i)(x − 𝜌i)T (4)

where ni is the number of elements in cluster i, 𝜌 is the centroid of all
elements being clustered and x is the coordinate (x, y) of an element
in cluster ci. Higher values of B indicate well-separated clusters and
smaller values of W indicate denser clusters. Therefore, higher values
of VRC indicate a better clustering solution. Additionally, the VCR cri-
terion tends to be higher in solutions with smaller number of clusters.
Finally, SC is defined as:

SC =
n∑

i=1

bi − ai
max(ai, bi)

(5)

where ai is the average pairwise distance over all elements of a given

36

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Fig. 3. Representation of the Louvain algorithm
steps. Figure (a) depicts a graph with 12 vertices
and 19 edges. For simplicity, we assume unitary edge
weights. Figure (b) depicts the result of the first step,
called modularity optimization, which moves vertices
among clusters trying to optimize modularity. Ver-
tices are colored according to their cluster. Figure (c)
illustrates the second step, called community aggrega-
tion, in which vertices belonging to the same cluster
are merged into a single vertex. Edges connecting the
same pair of clusters are merged and their weights
are summed.

cluster i and bi is the average pairwise distance of an element of a given
cluster i and all elements of the nearest cluster. SC is a numeric value
ranging from −1 to 1. In SC, smaller values of ai indicate denser clusters
and higher values of bi indicate well-separated clusters. Values of SC
closer to 1 indicate a better clustering solution.

3.3. Modularity-based clustering

The modularity criterion [13] measures the quality of a clustering
solution given a network graph and the set of clusters. It consists of a
scalar value ranging from −1 to 1; higher values imply better clustering
quality. The modularity criterion is formally expressed as

Q = 1
2m

∑
i,j

[Aij −
kikj
2m

]𝛿(ci, cj) (6)

where the value of m is computed as m = 1
2
∑

ijAij.
Many methods, such as the Louvain algorithm, apply modularity

as an objective function. As previously mentioned, our present work
applies Louvain to perform modularity-based clustering of netlists.6
This is in contrast to the existing VLSI clustering literature essentially
because of two features:

• The user does not need to calibrate the number of clusters, nor
define any stopping criteria for clustering, since these are automati-
cally captured by the modularity criterion; and

• The Louvain algorithm does not impose, nor does it require, any
area/edge balancing constraints.

Louvain is a bottom-up modularity-based clustering algorithm. In
the initial solution, each vertex of the input graph is considered as a
cluster. The main loop of Louvain tries to merge clusters aiming to opti-
mize modularity. The main loop is composed of two phases: modularity
optimization and community aggregation. In the modularity optimization,
Louvain traverses all vertices of the graph and computes the modular-
ity delta of moving the vertex from the current cluster to all topological
neighbor clusters. The vertex is moved to the neighbor that produces
the largest increase in modularity. If no movement provides an increase
in modularity, the vertex remains in its current cluster. In the commu-
nity aggregation, all vertices belonging to the same cluster are merged
into a single vertex. The edges connecting the same pair of vertices are
merged into a single edge and their weights are summed. Edges con-
necting vertices that belong to the cluster create a self-loop edge. We
depict the two phases of Louvain in Fig. 3. Each iteration of the loop
is called a pass. The loop is repeated until no increase in modularity is
observed.

6 We note that applying the modularity criterion within classic VLSI parti-
tioning methods would lose the “automatic” qualities inherent in the Louvain
algorithm. In this sense, our work separately benefits from use of the modularity
criterion and use of the Louvain algorithm.

3.4. Graph model of netlist

In most of the optimization steps, the netlist is expressed as a direct
hypergraph G = (V,E), where V is the set of vertices that represent the
instances and E is the set of the direct hyperedges that represent the
nets. Some techniques, such as Louvain, cannot handle the notion of
hyperedges. Consequently, a translation method to represent a hyper-
graph by a weighted graph is needed. The clique and star decompositions
are often used in a variety of applications. The clique decomposition
replaces the hyperedge by a complete graph, i.e., every pair of ver-
tices is connected by a single edge. To “correctly represent” nets of
different sizes, edge weighting techniques are required. Ihler et al. [49]
prove that there is no perfect weighting for the clique decomposition.
In this work, we evaluate the five different edge weighting schemes for
the clique decomposition presented in Table 2. The star decomposition
replaces the hyperedges with edges connected to a virtual node. In this
work, the edges created by the star decomposition have weight equal
to 1.

The traditional clique or star decompositions are usually not enough
to capture all the nuances necessary to match the clustering with actual
placement. Our experiments show that giving higher weights to edges
closer to I/O pins improves the quality of the clustering in a subset
of testcases.7 Therefore, we also add a weighting scheme based on
topological depth aiming to keep cells closer to I/Os in the same cluster.
Specifically, we define the edge weights as:

wh,2 = argmin((d(I)), (d(O))) (7)

wh = wh,1
1

(wh,2 + 1) (8)

Fig. 4(a) depicts a netlist with two input ports, four instances,
and one output port. The number above each instance represents the
topological distance to the closest I/O. Fig. 4(b) shows the equivalent
graph using the traditional clique decomposition, in which the number
related to each edge represents its weight using the Lengauer weighting
scheme. Fig. 4(c) shows the equivalent graph using the star decomposi-
tion (virtual nodes are drawn as circles with a dashed outline). Finally,
Fig. 4(d) integrates the notion of I/O proximity according to Equation
(8). In Subsection 4.1 we present experiments discussing the impact of
adding netlist information. We note in Section 6 that incorporation of
timing information (slack, etc.) in the graph modeling remains an open
issue for future work.

7 In the experiments of Fogaça et al. [63], the addition of I/O proximity
weights improves the quality of results in terms of DBi by 28%, on average.
In Section 4.1, we extend the experiments of [63] and observe that I/O proxim-
ity weights only improve DBi in when combined with Tsay-Kuh-2 edge weights
and the Star decomposition.

37

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Table 2
Description of net weighting alternatives.

Name Weight per edge Rationale

Lengauer [50] 1∕(ph − 1) Set the total weight of the net cut to be at least one.
Huang [51] 4∕(ph(ph − 1)) Set the expected weight of a net cut to be one.
Tsay-Kuh [52] 2∕ph Minimize the squared wirelength of the net.
Tsay-Kuh-2 [52] (2∕ph)3 Minimize the Manhattan wirelength of the net.
Frankle-Karp [53] 2∕p1.5

h Minimize the worst deviation from the square of the spanning tree.

Fig. 4. Netlist decomposition.

4. Experimental results

We implement our modularity-based clustering approach using Rsyn
[54,55] and run all experiments on an Intel Xeon E5-2695 dual-CPU
server at 2.1 GHz with 256 GB RAM. Our analyses are performed in
a set of open design blocks [56]. We use a commercial synthesis tool
to generate our gate-level netlists. We run synthesis to reach the small-
est clock period that does not generate timing violation based on TT
corner on each PDK. Our testcases are synthesized in three industrial
technologies: 14 nm, 28 nm and 65 nm. We then perform I/O place-
ment and remove all buffers using a commercial place-and-route tool.
The placement we use in our experiments is generated by the academic
global placement tool RePlAce v1.1.1 [57,58] and the legalization tool
OpenDP v0.1.0 [59,60].

Table 3 presents the number of instances, nets, and I/Os of each test-
case. The number after each testcase name indicates the testcase enable-
ment, i.e., technology node. We conduct four experiments. Our first
experiment evaluates the results of Louvain using different graph mod-
els of the netlist. Our second experiment compares the efficiency of our
methodology to an existing VLSI clustering technique. Our third exper-
iment studies the robustness of our formulation for different design
floorplans. Finally, our forth experiment compares the performance of
Louvain clustering across all the enablements.

Table 3
Benchmarks and attributes.

Benchmark Insts Nets I/Os

jpeg_encoder_14 44,083 45,018 49
ldpc_decoder_14 38,559 40,610 4100
netcard_14 272,865 274,704 1849
leon3mp_14 316,537 316,791 333
MegaBoom_14 1,249,594 1,254,352 945
MegaBoom_X2_14 2,492,643 2,502,392 1888
MegaBoom_X3_14 3,734,334 3,749,542 2831
MegaBoom_X4_14 4,979,581 4,999,882 3774
jpeg_encoder_28 46,962 47,775 49
ldpc_decoder_28 40,402 42,506 4100
netcard_28 235,277 237,122 1849
leon3mp_28 400,836 401,091 333
MegaBoom_28 1,419,923 1,425,174 945
netcard_65 239,901 241,740 1849
leon3mp_65 325,041 325,295 333
MegaBoom_65 1,169,564 1,174,669 945

4.1. Experiment 1: evaluation of different graph models

In our first experiment, we compare the clique decomposition using
different weighting schemes and the star decomposition. Table 4 shows
the values of DBi, VRC and SC for each approach alone and with

38

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

I/O proximity information of Equation (8). To compare the weight-
ing schemes in the “Average” row, we first normalize DBi, VRC and
SC per benchmark using the values of Lengauer without I/O proxim-
ity weights as the reference for normalization. We then compute the
average of the normalized values for each column.8 We find that the
addition of I/O proximity weights significantly improves DBi and VRC
for Huang and Tsay-Kuh-2 weighting schemes and improves DBi for the
Star decomposition. Lengauer, Tsay-Kuh and Frank-Karp show better
DBi, VRC and SC without I/O proximity weights. Lengauer without I/O
proximity weights presents the best results in terms of DBi, VRC and
SC. Therefore, all of our following experiments are performed using
Lengauer without I/O proximity weights.

4.2. Experiment 2: comparison with traditional VLSI clustering methods

We now discuss the correlation between our clustering formulation
and the actual cell placement as compared with the traditional min-
cut clustering tool hMetis. As mentioned, one of the key advantages of
modularity-based clustering is its absence of input parameters; this itself
presents a challenge when we seek a fair comparison versus hMetis.
hMetis requires two parameters: (i) the number of clusters and (ii) the
unbalance factor.9 Additionally, hMetis performs 2-way partitioning if
the target number of clusters is a power of 2 and k-way partitioning
otherwise. In our experiments, we first run hMetis in 2-way partitioning
mode targeting the nearest power of 2 to the number of clusters found
by Louvain. We run hMetis in k-way partitioning mode targeting the
same number of clusters found by Louvain. We execute each mode with
three settings of unbalance factor: 10%, 20% and 40%, and report the
best of the three.

Table 5 compares Louvain and hMetis using DBi, VRC, SC and run-
time. Our criteria are normalized using Louvain values as the reference
before computing the average numbers. The normalization follows the
same procedure adopted in Table 4. For each criterion, we show the
best value among the runs with 10%, 20% and 40% unbalance fac-
tor. Louvain outperforms hMetis for our largest testcases, leon3mp and
MegaBoom, in terms of DBi, VRC and SC. In ldpc_decoder, Louvain out-
performs hMetis in terms of DBi. The results of hMetis vary consider-
ably depending on the input configuration. In jpeg_encoder, there is a
1.4× DBi gap and a 2.2× SC gap between hMetis in 2-way and k-way
partitioning modes. On average, Louvain shows 6.7× and 5.2× better
DBi than hMetis in 2-way and k-way partitioning modes, respectively.
hMetis shows better VRC results by 1.6× and 1.7× in 2-way and k-way
partitioning modes. Similarly, hMetis shows better SC by 1.2× com-
pared to Louvain in both 2-way and k-way partitioning modes. How-
ever, Louvain outperforms hMetis for our largest testcases. For instance,
in MegaBoom, Louvain shows 9.7× and 11.4× better VRC than hMetis
in 2-way and k-way partitioning modes, respectively.

One of the key advantages of Louvain is its almost linear runtime
in sparse graphs. Louvain is 6× faster than the fastest hMetis run for
the smallest benchmark, ldpc_decoder (18s). In the largest benchmark,
MegaBoom, Louvain is 1.8× faster than the fastest hMetis run (826s).
On average, Louvain is 4.5× faster than hMetis.

4.3. Experiment 3: robustness with respect to design floorplan

In this subsection, we show the robustness of Louvain using differ-
ent floorplan configurations. We run the placement tool with 1:1, 1.5:1,
2:1, 2.5:1 and 3:1 floorplan aspect ratios and measure the difference
in DBi, VRC and SC. Table 6 shows the delta from the floorplan with

8 Since SC are values in the range −1 to 1, we add 1 to the values of SC before
normalization.

9 In hMetis, the unbalance factor is an integer value ranging from 1 to 49 and
represents the percentage of difference allowed among its partitions in terms of
number of vertices.

Ta
bl

e
4

N
et

lis
tt

un
in

g.

D
es

ig
n

Le
ng

au
er

H
ua

ng
Ts

ay
-K

uh
Ts

ay
-K

uh
-2

Fr
an

kl
e-

Ka
rp

St
ar

de
co

m
po

si
tio

n

D
Bi

VR
C

SC
D

Bi
VR

C
SC

D
Bi

VR
C

SC
D

Bi
VR

C
SC

D
Bi

VR
C

SC
D

Bi
VR

C
SC

w
/o

I/
O

w
ei

gh
ts

jp
eg

_e
nc

od
er

_2
8_

55
3.

5
54

95
−

0.
05

7
4.

9
36

22
−

0.
14

4
5.

0
27

34
−

0.
16

8
5.

8
35

22
−

0.
19

2
3.

9
36

68
−

0.
09

9
3.

6
19

01
−

0.
16

4
jp

eg
_e

nc
od

er
_2

8_
70

3.
6

49
88

−
0.

09
6

4.
7

30
80

−
0.

17
1

4.
0

41
22

−
0.

10
6

3.
7

34
76

−
0.

18
8

4.
1

36
35

−
0.

10
1

3.
1

25
48

−
0.

15
1

ld
pc

_d
ec

od
er

_2
8_

55
38

.3
8

−
0.

61
4

63
.2

9
−

0.
70

1
41

.9
8

−
0.

61
8

56
.5

11
−

0.
75

6
32

.4
8

−
0.

61
8

76
.6

10
−

0.
34

3
ld

pc
_d

ec
od

er
_2

8_
70

40
.1

9
−

0.
61

6
42

.0
8

−
0.

71
0

42
.5

8
−

0.
60

9
39

.0
11

−
0.

75
3

38
.6

8
−

0.
62

2
49

.6
17

−
0.

33
0

ne
tc

ar
d_

28
_5

5
3.

2
24

,7
45

0.
00

6
22

.1
25

74
−

0.
28

3
15

.6
83

96
−

0.
21

1
19

.0
28

21
−

0.
28

3
23

.3
53

22
−

0.
19

0
8.

9
69

69
−

0.
23

1
ne

tc
ar

d_
28

_7
0

3.
7

24
,9

21
−

0.
01

3
23

.7
25

96
−

0.
28

2
11

.2
80

66
−

0.
24

6
16

.8
26

20
−

0.
26

7
13

.3
51

13
−

0.
20

7
7.

2
66

57
−

0.
21

3
le

on
3m

p_
28

_5
5

1.
7

12
0,

48
3

0.
07

4
8.

0
31

,2
47

−
0.

24
5

4.
0

78
,6

63
−

0.
02

9
53

.0
95

92
−

0.
30

8
3.

5
73

,8
84

−
0.

05
4

3.
9

73
,3

11
−

0.
09

1
le

on
3m

p_
28

_7
0

1.
6

12
2,

89
9

0.
06

6
11

.6
29

,1
56

−
0.

24
8

3.
2

74
,7

76
−

0.
02

7
55

.2
89

76
−

0.
34

2
1.

9
81

,2
24

−
0.

02
5

2.
3

76
,2

94
−

0.
10

1
M

eg
aB

oo
m

_2
8_

55
2.

1
37

5,
12

6
0.

06
5

21
.0

21
,9

45
−

0.
35

2
2.

2
40

4,
67

8
0.

03
1

30
.7

13
,4

96
−

0.
35

8
2.

1
37

0,
85

3
−

0.
01

7
2.

9
47

6,
91

1
0.

11
8

M
eg

aB
oo

m
_2

8_
70

1.
5

32
9,

23
1

0.
04

3
21

.6
11

,9
39

−
0.

43
4

3.
1

36
5,

29
9

0.
05

6
33

.2
10

,7
59

−
0.

38
7

2.
1

35
4,

27
4

0.
01

6
3.

1
21

0,
47

3
0.

01
5

A
ve

ra
ge

1.
0

1.
0

1.
0

5.
5

0.
4

0.
7

2.
0

0.
7

0.
9

11
.7

0.
4

0.
7

2.
0

0.
7

0.
9

1.
7

0.
8

1.
1

w
/I

/O
w

ei
gh

ts
jp

eg
_e

nc
od

er
_2

8_
55

4.
4

19
22

−
0.

26
6

4.
1

15
29

−
0.

35
0

7.
6

15
93

−
0.

28
2

4.
2

13
00

−
0.

34
5

3.
8

21
48

−
0.

25
2

5.
0

12
94

−
0.

38
7

jp
eg

_e
nc

od
er

_2
8_

70
4.

7
18

59
−

0.
24

8
5.

1
15

98
−

0.
35

8
5.

3
14

93
−

0.
28

9
5.

4
12

38
−

0.
34

0
3.

4
18

82
−

0.
24

1
5.

2
13

55
−

0.
37

4
ld

pc
_d

ec
od

er
_2

8_
55

40
.7

8
−

0.
66

0
48

.3
8

−
0.

73
8

53
.1

7
−

0.
63

9
52

.8
10

−
0.

74
7

36
.6

8
−

0.
66

1
29

.8
9

−
0.

60
8

ld
pc

_d
ec

od
er

_2
8_

70
38

.7
8

−
0.

66
1

38
.6

8
−

0.
73

8
37

.0
8

−
0.

65
4

48
.7

11
−

0.
74

7
41

.0
7

−
0.

64
2

62
.0

8
−

0.
63

7
ne

tc
ar

d_
28

_5
5

17
.4

22
66

−
0.

41
7

29
.2

19
59

−
0.

44
9

11
.1

34
23

−
0.

39
2

21
.2

14
75

−
0.

55
2

32
.7

18
60

−
0.

47
7

7.
6

91
35

−
0.

17
6

ne
tc

ar
d_

28
_7

0
18

.5
21

14
−

0.
41

3
15

.0
20

61
−

0.
43

7
10

.7
33

94
−

0.
38

8
13

.6
13

70
−

0.
57

9
22

.9
20

79
−

0.
46

7
8.

4
96

80
−

0.
15

6
le

on
3m

p_
28

_5
5

3.
7

69
,9

23
−

0.
07

9
5.

4
20

,8
91

−
0.

27
3

3.
4

60
,3

02
−

0.
10

9
8.

9
97

24
−

0.
41

5
4.

6
58

,4
82

−
0.

08
7

2.
0

97
,3

02
−

0.
07

3
le

on
3m

p_
28

_7
0

2.
5

81
,6

49
−

0.
03

9
5.

0
21

,0
97

−
0.

25
9

3.
1

62
,4

39
−

0.
09

3
10

.4
95

76
−

0.
40

8
5.

0
59

,6
40

−
0.

08
5

2.
6

94
,1

11
−

0.
03

9
M

eg
aB

oo
m

_2
8_

55
1.

7
30

7,
56

9
−

0.
03

6
5.

3
96

,1
28

−
0.

22
4

2.
0

29
0,

63
8

−
0.

09
0

5.
0

63
,9

40
−

0.
23

7
2.

7
19

8,
45

4
−

0.
19

2
1.

7
39

7,
83

8
0.

00
5

M
eg

aB
oo

m
_2

8_
70

1.
8

28
7,

49
4

−
0.

00
1

14
.2

73
,2

02
−

0.
23

8
1.

9
23

2,
26

0
−

0.
09

3
8.

2
45

,1
59

−
0.

29
7

2.
3

20
6,

75
8

−
0.

17
8

2.
9

17
1,

72
4

−
0.

06
1

A
ve

ra
ge

2.
1

0.
6

0.
8

3.
6

0.
3

0.
7

1.
8

0.
5

0.
8

3.
5

0.
4

0.
6

2.
9

0.
5

0.
8

1.
5

0.
6

0.
9

39

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Table 5
Comparison among number of clusters (CL) and values of DBi, VRC, SC and runtime (CPU) for Louvain and hMetis. We highlight the best result for each
evaluation criterion in each design.

Design Louvain hMetis 2-way hMetis k-way

#CL DBi VRC SC CPU(s) #CL DBi VRC SC CPU(s) #CL DBi VRC SC CPU(s)

jpeg_encoder_28 84 3.6 4987.89 −0.096 2 64 3.1 10,171 0.042 13 84 2.2 12,987 0.096 14
ldpc_decoder_28 73 40.1 8.67188 −0.616 3 64 72.8 26 −0.210 18 73 95.3 28 −0.264 19
netcard_28 72 3.7 24920.5 −0.013 25 64 3.5 67,680 0.122 145 72 3.6 55,675 0.101 138
leon3mp_28 70 1.6 122,899 0.066 75 64 10.2 33,347 −0.053 191 70 21.4 28,753 −0.088 179
MegaBoom_28 40 1.5 329,231 0.043 448 70 35.1 33,897 −0.119 826 40 13.0 28,793 −0.137 912
Average 1 1 1 1 6.7 1.6 1.2 4.5 5.2 1.7 1.2 4.6

Table 6
Variation of DBi, SC and VRC with aspect ratios 1.5:1, 2:1, 2.5:1 and 3:1 compared to their implementation with aspect
ratio 1:1. Values are normalized according to Equations (9)-(11).

Design 1.5:1 2.0:1 2.5:1 3.0:1

DBi VRC SC DBi VRC SC DBi VRC SC DBi VRC SC

jpeg_encoder_14 0.20 −0.03 −0.25 −0.02 0.17 −0.50 0.06 0.17 −0.18 −0.09 0.60 0.25
ldpc_decoder_14 −0.20 −0.12 0.02 0.16 0.22 −0.13 −0.13 0.22 −0.01 0.18 0.13 −0.24
netcard_14 −0.13 −0.32 −0.35 0.02 −0.18 −0.26 −0.61 −0.18 0.19 −0.06 0.52 0.41
leon3mp_14 −0.31 −0.04 −0.38 −0.32 0.10 0.02 −0.01 0.10 −0.62 0.10 0.12 −1.41
MegaBoom_14 0.22 −0.01 −0.45 0.22 0.93 −0.22 0.19 0.93 −0.22 0.02 2.03 −0.13
Average −0.04 −0.10 −0.28 0.01 0.25 −0.22 −0.10 0.25 −0.17 0.03 0.68 −0.22
Std. dev. 0.24 0.13 0.19 0.21 0.41 0.19 0.31 0.41 0.30 0.11 0.79 0.71

aspect ratio 1:1 to aspect ratios 1.5:1, 2:1, 2.5:1 and 3:1. The values
of our evaluation criteria are normalized using Equations (9)-(11), so
that 0 means no change with respect to 14 nm, positive values mean
improvement and negative values mean degradation. We observe a sig-
nificant variation in every criterion when we change the floorplan. For
instance, we see a 93% improvement in VRC for MegaBoom considering
the aspect ratio 2:0 and 61% degradation of DBi in netcard considering
aspect ratio 2.5:1. The numbers do not follow any trend and the stan-
dard deviation can be as large as 79%. The reason for this behavior can
be seen in Fig. 5. The significant variation in our evaluation criterion
comes from the chaotic behavior of the placement tool. The neighbor-
hood and shape of the clusters determine our evaluation criteria. We
highlight four clusters to compare the different placement solutions.
Clusters 1 and 2 are placed next to each other in all the five solutions.
However, in aspect ratio 1:1, cluster 1 is at the core boundary, while in
aspect ratio 2.5:1 both clusters are not in the core boundary. We observe
similar behavior in clusters 3 and 4. Clusters 3 and 4 are placed next
to clusters 1 and 2 in aspect ratio 1.5:1 and 2.5:1, but are placed far
apart in the other aspect ratios. We may conclude that DBi, VRC and
SC are good metrics by which to compare clustering solutions for the
same ground-truth placement, but not by which to compare the same
clustering for different placements.

ΔDBi = 1 − DBitech
DBi14

(9)

ΔVRC = VRCtech
VRC14

− 1 (10)

ΔSC = SCtech − SC14|SC14| (11)

4.4. Experiment 4: validation across technologies

Ideally, Louvain would find a similar number of clusters for different
gate-level netlists originated from the same RTL (e.g., two netlists, one
synthesized in a 14 nm enablement and the other in a 28 nm enable-
ment.) However, the features of the netlist graph (e.g., average cardinal-
ity of the vertices) may vary depending on the enablement used in the
synthesis. The difference happens due to the number and types of logic

functions available in the standard cell library and their implementation
(e.g., number of available VTs and drive strengths.) In this experiment,
we assess the robustness of Louvain by comparing leon3mp, MegaBoom
and netcard synthesized using three enablements: 14 nm, 28 nm and
65 nm. From Table 3, the reader can see the impact of these details
in synthesis – e.g., MegaBoom_14 has 6.8% more instances than Mega-
Boom_65 and 13% fewer instances than MegaBoom_28. netcard_14 has
12% more instances than netcard_28 and netcard_65. The difference is
more significant between leon3mp_14 and leon3mp_28 (27%). The dif-
ference in synthesis affects the values of DBi, VRC and SC, as shown in
Table 7. For example, MegaBoom_28 presents 3× better VRC and 1.48×
better SC than MegaBoom_14, and MegaBoom_65 has 1.19× better
VRC than MegaBoom_14. However, netcard_65 presents 2.35× worse
SC than netcard_14. Fig. 6 shows the instances of MegaBoom_28 and
MegaBoom_65, colored according to Louvain clustering. The visualiza-
tion for MegaBoom_14 can be seen in Fig. 5(a). The number of clusters
found by Louvain also changes significantly. MegaBoom_28 and Mega-
Boom_65 have 40 and 37 clusters, respectively, in contrast to 27 clus-
ters of MegaBoom_14. The numerical and visual results of Louvain for
a given RTL synthesized in 14 nm, 28 nm and 65 nm technology nodes
vary significantly. Therefore, we conclude that the current implemen-
tation of Louvain is not “robust” with respect to changes of technology
nodes. As a possible extension of this work, we believe the “robustness”
of Louvain could be improved using hints from the RTL hierarchy. For
instance, Louvain could assign higher weights to edges that connect
instances belonging to the same RTL hierarchy.

5. Closing the loop: integration with ‘blob placement’ and
‘seeded placement’

The results of the previous section suggest that modularity-based
clustering can achieve stronger correlation with the eventual netlist
placement when compared to a traditional VLSI netlist clustering
approach. In this section, we “close the loop” with placement: we
demonstrate how the modularity-based clustering is a promising foun-
dation for extremely fast placement and potential assessment of netlist
and floorplan early in the physical implementation flow.

We have developed a simple experimental flow to predict final
placement using (i) modularity-based clustering without any user con-

40

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Fig. 5. Visual comparison of MegaBoom_14 with different aspect ratios and same utilization. The images have been scaled for a better visualization.

figuration or tuning, (ii) a “blob placement” step that performs cluster
placement and shaping, and (iii) a fast placement of the flat netlist using
a “seeded placement” originated from the “blob placement”. The flow
is depicted in Fig. 7.

The initial step of our flow maps the flat gate-level netlist to a graph
representation as described above, and then feeds this graph to Louvain.
The output of Louvain is an initial set of clusters determined naturally
according to the modularity criterion; we call these initial clusters root
blobs.

The next step of our flow is to hierarchically break down the
root blobs into smaller blobs (i.e., clusters), also using Louvain for
modularity-based clustering. In our experiments, a single iteration of
hierarchical clustering is sufficient to produce small blobs. Then, we
create a new netlist, consisting of the current set of blobs, which we
refer to as leaf blobs. The nets of the new netlist are induced based on the
cell instances that belong to each leaf blob. We assign higher weights to
intra-root blob nets, i.e., nets that connect leaf blobs that originate from

41

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Fig. 6. Clustering results for (a) MegaBoom_28 and (b) MegaBoom_65. Compare with MegaBoom_14 from Fig. 5(a).

Table 7
Variation of DBi, VRC and SC for leon3mp and
MegaBoom when compared to their implementation in
14 nm. Values are normalized according to Equations
(9)-(11).

Design DBi VRC SC

netcard_28 −0.03 −0.07 0.82
netcard_65 −1.87 −0.71 −2.35
leon3mp_28 0.32 0.30 0.48
leon3mp_65 0.28 −0.01 0.64
MegaBoom_28 0.55 3.23 1.48
MegaBoom_65 0.39 1.19 0.25

the same root blob. We also assign higher weights to nets that connect
leaf blobs to I/Os. In our experiments, nets connecting inter-root blobs
have weight = 1, nets connecting intra-root blobs have weight = 4,
and nets that connect to I/Os have weight = 400. These values have
been empirically determined. Furthermore, we note that our clusters
are not loosely-connected. In MegaBoom_14, MegaBoom_28 and Mega-
Boom_65, we observe 21 K, 12 K and 19 K clusters, and 72 K, 59 K and
74 K inter-cluster nets, respectively. The same behavior is observed in
other testcases, such as netcard_14 and leon3mp_14 that have 2.8 K and
2.6 K clusters, and 27 K and 37 K nets, respectively.

Fig. 8 depicts the outcome of “blob placement” for the Mega-
Boom_14 that has 27 root blobs and 21 K leaf blobs. The root blobs con-
tain an average of 46 K instances and leaf blobs contain an average of 59
instances. We adapt the open-source academic tool RePlAce to perform
the blob placement. In doing so, we inflate the blob dimensions by 20%,
to simulate the utilization settings from the original placement. The
total runtime for the hierarchical breakdown of the gate-level netlist
into leaf blobs, plus RePlAce placement, is 12min for MegaBoom_14
(1.2 M instances), using a single thread of a 2.1 GHz Xeon server.10

Next, we create a “seeded placement” based on the blob locations.
In the “seeded placements”, we restore the initial flat netlist and place
each instance in the center coordinate of the blob that represents the
instance cluster. Finally, we feed the “seeded placement” to RePlAce
which spreads the instances while minimizing the wirelength. Fig. 8(a)
shows the blob placement and Fig. 8(b) shows the final flat placement
for MegaBoom_14.

10 The hierarchical use of Louvain could be modified to trivially exploit avail-
ability of multiple threads.

Fig. 7. Experimental fast placement flow.

Table 8 shows the routed wirelength and runtime of the flat place-
ment and fast placement to our six largest testcases in 14 nm.11 The

11 We use a commercial tool to perform global routing and extract routed
estimated wirelength information.

42

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Fig. 8. MegaBoom_14: (a) “blob placement” and (b) “seeded placement”. Compare to the flat placement of Fig. 5(a).

Table 8
Results of fast placement using “seeded placement.” The runtime of fast placement is broken into Louvain clustering (LC),
hierarchical Louvain clustering (HLC), “blob placement” (BP) and “seeded placement” (SP.) Refer back to Table 3 for the
instance complexities.

Design Flat placement Fast “seeded” placement

WL(m) CPU(s) WL(m) LCCPU(s) HLCCPU(s) BPCPU(s) SPCPU(s) TotalCPU(s)

MegaBoom_14 21.0 1941 21.3 268 266 184 437 1156
MegaBoom_28 36.0 1623 36.2 335 108 116 408 967
MegaBoom_65 57.5 1613 57.0 164 100 104 432 800
MegaBoom_14_X2 41.6 3214 41.8 705 271 440 1299 2714
MegaBoom_14_X3 62.3 5211 64.1 1020 415 943 1933 4311
MegaBoom_14_X4 83.4 8642 85.6 1418 572 1400 3492 6882

total runtime of fast placement is broken into Louvain clustering, hier-
archical Louvain clustering, “blob placement” and “seeded placement”.
Our experimental flow presents runtime speed-ups that range from 20%
(MegaBoom_X4_14) to 50% (MegaBoom_14 and MegaBoom_65). The
largest chunk of runtime in our experimental flow comes from the
“seeded placement” itself, followed by Louvain clustering. The hier-
archical Louvain clustering is the step that scales best. We also note
that hierarchical Louvain clustering is parallelizable because the step
consists of applying clustering hierarchically in the root blobs – for an
8-thread CPU, the runtime can be potentially reduced between 6× and
8×. The use of “seeded placement” causes a minimal degradation in
wirelength that ranges from 0.4% (MegaBoom_X2_14) to 2.8% (Mega-
Boom_X3_14). We observe a slight improvement of 0.9% in the wire-
length of MegaBoom_65.

6. Conclusions and ongoing work

In this paper, we study netlist clustering in the context of enabling
early feedback at physical floorplanning and RTL planning stages of
design. Our new criterion for clustering assesses whether netlist clus-
ters “stay together” through final physical implementation. We support
evaluation of this criterion via several methods, including the use of
(i) alpha shapes and Delaunay triangulation of a cluster’s placed loca-
tions for manual debug and visualization and (ii) the Davies-Bouldin
index, Variance Ratio Criterion and Silhouette Coefficient as numerical
criteria.

For the purpose of predicting cohesion in final layouts, we find that
modularity-driven clustering, as exemplified by the Louvain [14] algo-
rithm, is clearly superior to mincut- or Rent parameter-driven meth-
ods [11,8,10] that have dominated the VLSI CAD literature. Impor-
tantly, the modularity criterion allows identification of “natural” clus-

ters in a given graph without parameter tuning, and without imposition
of balancing constraints; yet, it may also be applied hierarchically as
needed. We also show that the hypergraph-to-graph mapping is crit-
ical to successful application of modularity-based clustering: our ini-
tial study of mapping techniques suggests that a weighting approach
of Lengauer [50] is effective in conjunction with Louvain. Comparisons
with traditional hMetis-based clustering [10] show that our Louvain-
based approach achieves on average 50% better correlation to actual
netlist placements, as well as 2× faster runtimes for our largest test-
cases. Last, we demonstrate the potential of using modularity-based
clustering with fast “blob placement” of clusters to efficiently evaluate
netlist and floorplan viability in early stages of design.

Our work leaves a number of open directions for future research.
First, we believe that much richer tuning of the hypergraph-to-
graph mapping is possible according to additional instance and netlist
attributes (stage within logic cone, special status of buffer/inverter
instances, etc.). Second, static timing analysis can be used to inject tim-
ing information into the net weighting, likely improving the clustering
results. Third, design hierarchy and structure may also help clustering
to “avoid mistakes”, i.e., by providing name or clock contexts to addi-
tionally guide the graph construction and hence the clustering. Finally,
we believe that parallelism can be exploited to speed up our prototype
“seeded placement” flow.

CRediT authorship contribution statement

Mateus Fogaça: Software, Investigation, Writing - original draft.
Andrew B. Kahng: Conceptualization, Writing - review & editing,
Supervision. Eder Monteiro: Investigation, Writing - original draft.
Ricardo Reis: Writing - review & editing, Supervision. Lutong Wang:
Software, Writing - review & editing. Mingyu Woo: Software, Investi-
gation, Writing - original draft.

43

M. Fogaça et al. Integration, the VLSI Journal 74 (2020) 32–44

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001,
CNPq and FAPERGS. Research at UCSD is supported by Qualcomm,
Samsung, NXP Semiconductors, Mentor Graphics, DARPA (HR0011-18-
2-0032), NSF (CCF-1564302) and the C-DEN center.

References

[1] International technology roadmap for Semiconductors. http://www.itrs2.net/itrs-
reports.html.

[2] A. Olofsson, Silicon compilers - version 2.0, keynote, in: Proc. ISPD, 2018, http://
www.ispd.cc/slides/2018/k2.pdf.

[3] A.B. Kahng, Reducing time and effort in IC implementation: a roadmap of
challenges and solutions, in: Proc. DAC, 2018, pp. 1–6.

[4] DARPA rolls out electronics resurgence initiative. https://www.darpa.mil/news-
events/2017-09-13.

[5] J.A. Roy, S.N. Adya, D.A. Papa, I.L. Markov, Min-cut floorplacement, IEEE Trans.
CAD 25 (7) (2006) 1313–1326.

[6] R.S. Shelar, An efficent clustering algorithm for low power clock tree synthesis, in:
Proc. ISPD, 2007, pp. 181–188.

[7] K. Blutman, H. Fatemi, A.B. Kahng, A. Kapoor, J. Li, J.P. de Gyvez, Floorplan and
placement methodology for improved energy reduction in stacked power-domain
design, in: Proc. ASP-DAC, 2017, pp. 444–449.

[8] K. Jeong, A. B. Kahng and H. Yao, RentCon: Rent Parameter Evaluation Using
Different Methods. https://vlsicad.ucsd.edu/WLD/index.html.

[9] C.M. Fiduccia, R.M. Mattheyses, A linear-time heuristic for improving network
partitions, Proc. DAC (1982) 175–181.

[10] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph
partitioning: applications in VLSI domain, in: Proc. DAC, 1997, pp. 526–529.

[11] A.E. Caldwell, A.B. Kahng, I.L. Markov, Improved algorithms for hypergraph
bipartitioning, in: Proc. ASP-DAC, 2000, pp. 661–666.

[12] S. Fortunato, D. Hric, Community detection in networks: a user guide, Phys. Rep.
659 (2016) 1–44.

[13] M.E.J. Newman, M. Girvan, Finding and evaluating community structure in
networks, Phys. Rev. E 69 (2004) 1–15.

[14] V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, J. Stat. Mech. Theor. Exp. 10 (2008) 1–12.

[15] D.B. Mark, M. Overmars, O. Cheong, Computational Geometry: Algorithms and
Applications, Springer, New York, 1997.

[16] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans. PAMI 1 (2)
(1979) 224–227.

[17] T. Caliski, J. Harabasz, A dendrite method for cluster Analysis, J. Commun. Stat. 3
(1974) 1–27.

[18] P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of
cluster Analysis, J. Comput. Appl. Math. 20 (1987) 53–65.

[19] C.J. Alpert, A.B. Kahng, Recent directions in netlist partitioning: a survey, Integrat.
VLSI J. 19 (12) (1995) 1–81.

[20] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs,
Bell Syst. Tech. J. 49 (1970) 291–307.

[21] K.M. Hall, An r-dimensional quadratic placement algorithm, Manag. Sci. 17 (1970)
219–229.

[22] E.R. Barnes, An algorithm for partitioning the nodes of a graph, in: Proc. CDC,
1981, pp. 303–304.

[23] S. Ou, M. Pedram, Timing-driven bipartitioning with replication using iterative
quadratic programming, in: Proc. ASP-DAC, 1999, pp. 105–108.

[24] H. Yang, D.F. Wong, Efficient network flow based min-cut balanced partitioning,
in: Proc. ICCAD, 1994, pp. 50–55.

[25] L. Hagen, A.B. Kahng, A new approach to effective circuit clustering, in: Proc.
ICCAD, 1992, pp. 422–427.

[26] C.N. Sze, T.-C. Wang, Performance-driven multi-level clustering for combinational
circuits, in: Proc. ASP-DAC, 2003, pp. 729–734.

[27] A.B. Kahng, X. Xu, Local unidirectional bias for smooth cutsize-delay tradeoff in
performance-driven bipartitioning, in: Proc. ISPD, 2003, pp. 81–86.

[28] T. Jindal, C.J. Alpert, J. Hu, Z. Li, G.-J. Nam, C.B. Winn, Detecting tangled logic
structures in VLSI netlists, in: Proc. DAC, 2010, pp. 603–608.

[29] M. Girvan, M.E.J. Newman, Community structure in social and biological
networks, in: Proc. Natl. Acad. Sci., vol. 99, 2002, pp. 7821–7826.

[30] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Defining and identifying
communities in networks, in: Proc. Natl. Acad. Sci., vol. 101, 2004, pp.
2658–2663. 9.

[31] P. Pons, M. Latapy, Computing communities in large networks using random
walks, JGAA 10 (2) (2006) 191–218.

[32] A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in very large
networks, Phys. Rev. E 70 (2004) 66111–66116.

[33] M.E.J. Newman, Finding community structure in networks using the eigenvectors
of matrices, Phys. Rev. E 74 (3) (2006) 36104–36122.

[34] F. Wu, B.A. Huberman, Finding communities in linear time: a physics approach,
Eur. Phys. J. B. 38 (2) (2004) 331–338.

[35] K. Wakita, T. Tsurumi, Finding community structure in mega-scale social
networks, in: Proc. WWW, 2007, pp. 1275–1276.

[36] Louvain. https://sites.google.com/site/findcommunities/.
[37] T. Heuer, S. Schlag, Improving coarsening schemes for hypergraph partitioning by

exploiting community structure, in: Proc. SEA, 2017, pp. 21:121:19.
[38] N. Neubauer, K. Obermayer, Towards community detection in k-partite k-uniform

hypergraphs, in: Proc. NIPS, 2009, pp. 1–9.
[39] N. Neubauer, K. Obermayer, Community detection in tagging-induced

hypergraphs, in: Proc. WIN, 2010, pp. 24–25.
[40] T. Kumar, S. Vaidyanathan, H. Ananthapadmanabhan, S. Parthasarathy, B.

Ravindran, Hypergraph Clustering: A Modularity Maximization Approach. arXiv
https://arxiv.org/abs/1812.10869, 2018.

[41] T. Kumar, S. Vaidyanathan, H. Ananthapadmanabhan, S. Parthasarathy, B.
Ravindran, A new measure of modularity in hypergraphs: theoretical insights and
implications for effective clustering, in: Proc. Complex Networks, 2019, pp.
286–297.

[42] B. Kamiski, V. Poulin, P. Praat, P. Szufel, F. Thberge, Clustering via hypergraph
modularity, PloS One 14 (11) (2019) 1–15.

[43] F. Chung, L. Lu, Connected components in random graphs with given expected
degree sequences, Ann. Combinator. 6 (2) (2002) 125–145.

[44] Clustering via hypergraph modularity. https://gist.github.com/pszufe/.
[45] B. Chen, M. Marek-Sadowska, Timing-driven placement of pads and latches, in:

Proc. IEEE ASIC Conf., 1992, pp. 30–33.
[46] S. Mantik, G. Posser, W. Chow, Y. Ding, W.H. Liu, ISPD 2018 initial detailed

routing contest and benchmarks, in: Proc. ISPD, 2018, pp. 140–143.
[47] H. Edelsbrunner, D.G. Kirkpatrick, R. Seidel, On the shape of a set of points in the

plane, IEEE Trans. Inf. Theor. 29 (4) (1983) 551–559.
[48] Alpha shape. https://en.wikipedia.org/wiki/Alpha_shape.
[49] E. Ihler, A.D. Wagner, F. Wagner, Modeling hypergraphs by graphs with the same

mincut properties, Inf. Process. Lett. 45 (1993) 171–175.
[50] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,

Wiley-Teubner, New York, 1990.
[51] D.J.H. Huang, A.B. Kahng, When clusters meet partitions: new density-based

methods for circuit decomposition, in: Proc. European Design and Test Conf.,
1995, pp. 60–64.

[52] R.-S. Tsay, E.S. Kuh, A unified approach to partitioning and placement, IEEE
Trans. Circ. Syst. 38 (1991) 521–533.

[53] J. Frankle, R.M. Karp, Circuit placement and cost bounds by eigenvector
decomposition, in: Proc. ICCAD, 1986, pp. 414–417.

[54] G. Flach, M. Fogaa, J. Monteiro, M. Johann, R. Reis, Rsyn an extensible physical
synthesis framework, in: Proc. ISPD, 2017, pp. 33–40.

[55] Rsyn. https://github.com/RsynTeam/rsyn-x.
[56] OpenCores: open source IP-cores. http://www.opencores.org.
[57] C.-K. Cheng, A.B. Kahng, I. Kang, L. Wang, RePlAce: advancing solution quality

and routability validation in global placement, IEEE Trans. CAD (2018), https://
doi.org/10.1109/TCAD.2018.2859220.

[58] RePlAce version 1.1.1. https://github.com/The-OpenROAD-Project/RePlAce/tree/
1.1.1.

[59] S. Do, M. Woo, S. Kang, Fence-region-aware mixed-height standard cell
legalization, Proc. GLSVLSI (2019) 259–262.

[60] OpenDP version 0.1.0. https://github.com/The-OpenROAD-Project/OpenDP/tree/
0.1.0.

[61] A.B. Kahng, J. Li, L. Wang, Improved flop tray-based design implementation for
power reduction, in: Proc. ICCAD, 2016, pp. 20:1-20:8.

[62] scikit-learn. https://scikit-learn.org/stable/modules/clustering.html.
[63] M. Fogaa, A.B. Kahng, R. Reis, L. Wang, Finding placement-relevant clusters with

fast modularity-based clustering, Proc. ASPDAC (2019) 569–576.

44

http://www.itrs2.net/itrs-reports.html
http://www.itrs2.net/itrs-reports.html
http://www.ispd.cc/slides/2018/k2.pdf
http://www.ispd.cc/slides/2018/k2.pdf
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref29
https://www.darpa.mil/news-events/2017-09-13
https://www.darpa.mil/news-events/2017-09-13
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref48
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref49
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref4
https://vlsicad.ucsd.edu/WLD/index.html
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref14
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref32
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref5
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref18
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref41
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref3
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref38
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref11
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref6
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref47
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref1
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref33
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref22
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref2
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref44
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref58
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref21
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref53
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref28
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref27
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref20
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref46
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref45
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref10
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref42
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref56
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref55
https://sites.google.com/site/findcommunities/
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref24
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref39
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref40
https://arxiv.org/abs/1812.10869
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref35
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref31
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref9
https://gist.github.com/pszufe/
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref7
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref37
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref13
https://en.wikipedia.org/wiki/Alpha_shape
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref25
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref36
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref23
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref54
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref19
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref15
https://github.com/RsynTeam/rsyn-x
http://www.opencores.org
https://doi.org/10.1109/TCAD.2018.2859220
https://doi.org/10.1109/TCAD.2018.2859220
https://github.com/The-OpenROAD-Project/RePlAce/tree/1.1.1
https://github.com/The-OpenROAD-Project/RePlAce/tree/1.1.1
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref12
https://github.com/The-OpenROAD-Project/OpenDP/tree/0.1.0
https://github.com/The-OpenROAD-Project/OpenDP/tree/0.1.0
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref30
https://scikit-learn.org/stable/modules/clustering.html
http://refhub.elsevier.com/S0167-9260(19)30571-1/sref16

	On the superiority of modularity-based clustering for determining placement-relevant clusters
	1. Introduction
	2. Related works
	2.1. VLSI netlist partitioning
	2.2. Modularity-driven clustering
	2.3. Modularity-driven clustering for hypergraphs

	3. Methodology
	3.1. Problem definition
	3.2. Metrics for clustering evaluation
	3.3. Modularity-based clustering
	3.4. Graph model of netlist

	4. Experimental results
	4.1. Experiment 1: evaluation of different graph models
	4.2. Experiment 2: comparison with traditional VLSI clustering methods
	4.3. Experiment 3: robustness with respect to design floorplan
	4.4. Experiment 4: validation across technologies

	5. Closing the loop: integration with `blob placement' and `seeded placement'
	6. Conclusions and ongoing work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

