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Abstract—Clock power, skew and maximum latency are three
key metrics for clock distribution in low-power and high-
performance designs. An H-tree offers minimum clock skew
and good robustness against variations, but at the cost of large
wirelength and clock power. On the other hand, a “fishbone”
clock network with spine-ribs structures has smaller wirelength,
latency and clock power, but larger skew, as compared to an
H-tree. No previous work enables systematic exploration of the
regime between H-tree and spine to achieve an optimal tradeoff
among clock power, skew and latency. In this work, we study the
concept of a generalized H-tree — a topologically balanced tree
with an arbitrary sequence of branching factors — and propose
a dynamic programming-based method to determine optimal
clock power, skew and latency, in the space of generalized H-
tree solutions. Our method co-optimizes clock tree topology and
buffering along branches according to fitted electrical models.
We further propose a balanced K-means clustering and a linear
programming-guided buffer placement approach to embed the
generalized H-tree with respect to a given sink placement.
We validate our solutions in commercial clock tree synthesis
tool flows, in a commercial foundry’s 28LP technology. The
results show up to 30% clock power reduction while achieving
similar skew and maximum latency as CTS solutions from
recent versions of leading commercial place-and-route tools.
Our proposed approach also achieves up to 56% clock power
reduction while achieving similar skew and maximum latency as
compared to CTS solutions from a state-of-the-art academic tool.

I. INTRODUCTION

Physical implementation of clock distribution networks
is increasingly critical to the success of high-performance,
low-power IC product designs. Clock distribution takes up
substantial routing and buffering resources as well as a
significant portion of overall power consumption [25]. Power
dissipation in the clock network has often been estimated to
be one third of total IC power dissipation [21], or even half
the total power in some designs. Further, the quality (skew
and latency) of clock delivery strongly determines achievable
performance of the design, particularly in advanced nodes.
Skew is well known to affect datapath area and power, as well
as the design schedule needed to achieve timing closure [10]
[26] [29] [34] [36] [41]. Maximum clock latency is another
key metric of the clock distribution network in advanced
nodes since skews are magnified by on-chip variation (OCV)
deratings [5].
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Fig. 1: 8-level GH-tree with branching pattern (4, 2, 2, 2, 4,
2,2,2).

As reviewed below, there are several methods of clock
distribution. Tree-based constructions are still dominant, and
remain the default of commercial clock tree synthesis (CTS)
tools. To reduce skew and increase robustness (e.g., in light
of manufacturing variability or reliability mechanisms), mesh
and other non-tree topologies (e.g., trees + cross-link insertion)
have been used. Such non-tree methods typically have large
overheads in terms of power, area, wirelength and signoff
analysis complexity. Thus, clock trees are still of interest
and great practical relevance for reasons of cost efficiency,
flexibility and design flow complexity. Increasingly, structured
approaches to clock tree design are seen in practice, since
these offer benefits of predictability in the resource-versus-
skew tradeoff, particularly in the upper levels of clock trees.

As a special case of structured clock trees, the highly
regular, recursive H-tree embedding of a complete binary tree
[4] offers minimum skew, but at the cost of larger wirelength
and potentially larger clock power and latency. “Fishbone”
clock tree topologies (e.g., [2]) with spines and ribs can be
more cost-efficient in terms of latency, wirelength, area and
clock power — but incur varying propagation delays (that is, of
the clock signal to branching points along a given spine) which
cause skew. To explore the tradeoff among skew, latency and
(clock power, clock buffer area) cost, this work proposes the
concept of a generalized H-tree (GH-tree), which is a balanced
tree topology with arbitrary branching factor at each level.
(Like the H-tree, the GH-tree is a multi-level topology; like
the fishbone, it can have branching factor greater than two.)
Figure 1 shows a GH-tree with depth P = 8 and branching
factors (4, 2, 2, 2, 4, 2, 2, 2) at levels p = 1,2,...,8. In the
example, we assume there are 1024 (=4-2-2-2-4-2.2.2)
nodes (sinks) uniformly placed in the region. If the root of
the tree is at the region center, each root-to-leaf path will
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in that order. The lengths of the successive vertical segments
in each root-leaf path are %, %, % and %. We note that in our
proposed GH-tree, we do not necessarily insert a buffer at each
branching point. Further, we allow buffering that is internal to
a given branch, that is, at any location along wiring of that
given branch.

In this work, we study potential benefits of the generalized
H-tree for low-power, low-skew, and low-latency clock
distribution. We propose a dynamic programming (DP)
algorithm that efficiently finds an optimal' GH-tree with
minimum clock power for given latency and skew targets.
This optimization uses calibrated clock buffer library and
interconnect timing and power models, and co-optimizes
the clock tree topology along with the buffering along
branches. Furthermore, we also propose a clustering and
linear programming-based heuristic to embed the GH-tree
with respect to a given placement of clock sinks. Finally,
our embedding of the GH-tree is blockage-aware. In a 28LP
testbed with multi-corner timing constraints, our embedded
GH-tree solutions provide significant clock power benefits
(iso-skew and -latency) in comparison to commercial CTS
solutions from the place-and-route tools of two leading EDA
vendors as well as a state-of-the-art academic CTS tool. Our
contributions are summarized as follows.

o We propose the concept of a generalized H-tree, which
is a balanced tree topology that can have an arbitrary
sequence of branching factors.

« We propose a DP-based method to co-optimize clock tree
topology and buffering to achieve an optimal GH-tree
solution with respect to the tradeoffs among skew, latency
and clock power.

e We propose a balanced K-means clustering and linear
programming-based buffer placement to embed our GH-
tree solution with respect to any given sink placement.

o We validate our GH-tree optimization based on sink
placements from a leading commercial place-and-route
(P&R) tool, which include testcases with high floorplan
aspect ratio and existence of blockages.

¢ Our methodology and optimizations can easily be
integrated with commercial P&R tools. Our experimental
results in a foundry 28LP technology with multi-corner
testcases show up to 30% clock power reductions
compared to current CTS tool solutions from two leading
EDA vendors and up to 56% clock power reduction
compared to a state-of-the-art academic solution [39].

II. BACKGROUND AND MOTIVATION

In this section, we first review previous works on clock
distribution, categorizing them as: (i) non-tree methods, and
(ii) tree-based methods. We then provide a motivating analysis
of the GH-tree solution space.

Non-tree methods. Mesh topologies are commonly
understood to provide robustness and small skew. Many

'We note that our claim of an optimal clock tree solution is in the regime
of generalized H-tree solutions (i.e., the continuum between H-tree and spine).
We do not claim that our optimal GH-tree is a globally optimal clock tree
solution.

works, such as [14] [15] [30] [31], propose clock mesh
designs for high-performance circuits that require robust
clock networks. To reduce the cost (e.g., wirelength, power),
hybrid clock distribution methods integrating both mesh
and tree topologies have been proposed [29] [36]. Several
works [12] [17] [26] [32] propose to insert cross-links for
minimization of clock skew, based on an initial clock tree
solution, with small power overhead. Rajaram et al. [26]
propose an algorithm to recursively merge subtrees with
backward slew propagation. Ewetz and Koh [12] propose
systematic cross-link insertion methods to improve the
robustness of a clock tree while minimizing its overheads.
They propose a vertex reduction method to reduce the amount
of redundancy in their non-tree structures. Although non-tree
methods reduce clock skew and enhance robustness of clock
networks, their intrinsic redundancy incurs additional cost
(e.g., wirelength, power, effort of verification) as compared to
tree-based methods. Furthermore, non-tree clock distribution
topologies such as meshes lack flexibility and tunability; this
can block, e.g., useful skew optimizations.

Dolev et al. [11] propose a hexagonal grid-based clock
topology (HEX), consisting of a hexagonal grid with
intermediate nodes that control the clock signals in the grid and
supply the clock signals to nearby functional units. Abdelhadi
et al. [1] propose an algorithm to construct a variation-
tolerant hybrid clock network based on a combination of non-
uniform meshes and unbuffered trees. Their method selectively
reduces clock skew variations on critical timing paths. Zhou
et al. [42] propose an algorithm to determine tapping points
for local buffers that drive a clock mesh with non-uniform
load distribution in a tree-driven grid clock network. Their
algorithm first calculates load for each node, then clusters the
nodes. Tapping points are determined for each cluster based
on the minimum and maximum latencies.

Recently, Y. Kim and T. Kim [39] have proposed a synthesis
algorithm for clock spine networks that effectively optimizes
the tradeoff between clock resource and variation tolerance.
The key idea of their algorithm is to treat the clock spine
allocation and placement problem as a slicing floorplan
optimization problem. Clock tree solutions from the CTS
algorithm of [39] are compared to our GH-tree solutions in
Section IV.

Tree-based methods. Due to their cost efficiency, clock
tree-based methods have been commonly used for clock
distribution in low-power designs. Early works [9] [6] [19]
[38] propose clock tree constructions based on linear or
Elmore delay models to minimize wirelength for a given
skew target. However, delay and power impacts of buffers are
ignored in these works. Approaches in [8] [13] [20] [23] [27]
[28] [40] [41] comprehend buffering impact and co-optimize
clock tree construction (i.e., tree topology) with buffering.
Vittal and Marek-Sadowska [41] give an early algorithm that
co-optimizes tree topology and buffer insertion. Mehta et al.
[23] propose a clustering algorithm to obtain approximately
load-balanced clusters and construct clock trees so as to
minimize skew. These previous approaches typically construct
the clock tree in a bottom-up way with a greedy algorithm,
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and do not explore the skew vs. cost tradeoff. Furthermore,
few works adapt their tree construction approaches to, and
validate their solution quality with, commercial P&R tools
and realistic design blocks. Other works [5] [16] are ECO-
based incremental optimizations based on an initial clock tree
solution generated by commercial P&R tools. The objective
functions of these works differ from ours. Chan et al. [5]
minimize skew at the top-level, whereas Han et al. [16]
minimize skew variation across corners.

A Motivating Analysis. To motivate our main studies below,
we briefly illustrate the tradeoffs among clock tree wirelength,
global skew and maximum clock latency seen across GH-tree
topologies with various branching patterns. Before doing so,
we summarize in Table I the terminology and notation used
in the remaining discussion.

Given layout region area W x H, we analyze the wirelength
of a GH-tree with branching pattern (b1, bs, b3, ..., bp). We
assume that (i) at any level, the region area is uniformly split
into sink regions (i.e., regions that contain downstream sinks)
according to the branching factor; (ii) the root of a sink region
is located at the center of the sink region; (iii) branching factor
by at any level p is always an even number; and (iv) the GH-
tree always starts with a horizontal segment at the top level.
Based on these assumptions, the wirelength of a horizontal
(vertical) wire segment w,, (h,) at level p is calculated as®

by, —1 b, —1
wy, = ——~+— W, h e (1)
' Hl(‘p:tl)mbziq - Hp/2b27,
The total wirelength is calculated as
L- z P = ) w s z B )
bor—1 -7 bor -4
(2)

Assuming a linear wire delay model and ignoring buffering,
we derive the maximum and minimum (linear-delay) clock
latency from clock source to any sink as
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Figures 2(a) and 2(b) respectively show skew-wirelength
and latency-wirelength tradeoffs in GH-trees with various
branching patterns. We calculate skew and latency based on

2Note that (p + 1)/2 in Equation 1 is always an integer since we create
horizontal segments (wp) and vertical segments (hy) in alternation, and always
start with a horizontal segment from the top. Thus, all horizontal segments
are created when p is an odd number.

a linear delay model® according to Equations (3) and (5).
The figures also show the Pareto frontier of non-dominated
points of each tradeoff. Figures 2(c) and 2(d) respectively show
skew-power and latency-power tradeoffs of buffered GH-trees
with various branching patterns, as reported by a commercial
static timing analysis tool with foundry 28LP technology
and library models. The Pareto frontier of each tradeoff is
shown as the black curve. We observe from the figures
that different branching patterns lead to wide-ranging skew-
power and/or latency-power tradeoffs. In this work, we explore
branching patterns via dynamic programming to optimize
tradeoffs among skew, latency and power. Figure 2(c) shows
that with the same branching pattern (e.g., (10, 4, 2, 12)),
different buffering solutions can lead to more than 20% skew
difference with similar clock power. We therefore perform
co-optimization of tree topology (i.e., branching pattern) and
buffering to minimize clock power, skew and latency.
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Fig. 2: Study of motivating tradeoffs. (a) Linear delay skew vs.
wirelength; and (b) linear delay clock latency vs. wirelength
with different branching patterns (256 sinks and region area
= 100pum x 100pm). (c) Skew vs. clock power; and (d)
maximum latency vs. clock power, in buffered GH-trees for a
testcase with 17K sinks and region area = 380um x 380um.
In red are dominated points; in black are Pareto frontiers and
non-dominated points.

III. OUR APPROACH

We now describe our problem formulation and our
approach. Based on the motivating examples shown in
Figure 2, we construct GH-trees to explore the tradeoff among
skew, latency and clock power. Our construction comprehends
the delay and power impact of buffer insertion, sink placement
and multiple constraints (e.g., maximum transition time and

3The linear wire delay model approximates clock latency with relatively
low accuracy. However, we give this motivating analysis using the simple
linear delay model to more intuitively illustrate the tradeoff among clock
power, skew and latency with different GH-tree topologies. Below, we
apply comprehensive buffer and wire delay modeling in our optimization to
demonstrate the benefits of our proposed approach.
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TABLE I: Description of notations used in our work.

Term Meaning
r (R) clock tree (set of clock trees)
w () global clock skew (maximum global skew constraint)
t (T) clock latency (maximum clock latency constraint)
~ () clock slew (maximum clock slew constraint)
C maximum load capacitance constraint
L clock tree wirelength
0] set of placement blockages
w (W) width (width of given layout region)
h (H) height (height of given layout region)
n (N) number of sink regions (required number of sink regions)
p (P) level index [p = 1 for clock source] (depth of clock tree)
bp branching factor at level p in clock tree
B branching patterns (i.e., sequences of branching factors {b1, b2, ..., bp})
ug kR sink cluster (uy, € U)
S; ith sink (s; € S)
di ; Manhattan distance between sink s; and root of cluster wug
Nk, binary indicator of whether sink s; belongs to cluster wy,
wé-l:’”y’“”’wy binary indicator whether j*" buffer is located outside the corresponding boundaries of ¢*” blockage
i clock pin capacitance of sink s;
i (Vi x-coordinate (y-coordinate) of sink s;
((172]7 yL’), (=, ypm) bounding box of sink cluster wug

maximum load capacitance). More specifically, we address the
following GH-tree construction problem:

Given: a placement solution (i.e., a layout region W x H
and placement of sinks), number of sink regions /N such that
each region contains <40 sinks (see Footnote 4 below), timing
library of clock buffers (.lib), maximum clock skew constraint
2, maximum clock latency constraint 7', maximum transition
time constraint I' (i.e., at both sinks and clock buffer input
pins), and maximum load capacitance constraint C.
Perform: GH-tree construction with co-optimization of the
clock tree topology (i.e., branching patterns) and buffering to
minimize clock power, subject to the given constraints.

Figure 3 shows our overall GH-tree construction flow.
An instance consists of a post-placement layout, the
number of sink regions, and constraints, along with pre-
characterized technology- and library-specific lookup tables
(LUTs) containing power and delay information of candidate
buffering solutions (i.e., segment length and buffer sizes).
We perform the GH-tree construction primarily through two
main steps: (i) according to the total sink capacitance and
layout region area and aspect ratio, we first formulate a
dynamic programming problem to co-optimize branching
pattern and buffering; and (ii) we then perform balanced K-
means clustering and formulate an integer linear programming
problem to determine clock buffer placement (i.e., to
embed our generalized GH-tree structure into the given sink
placement). We note that the key step is the first step (i.e.,
DP-based co-optimization of clock topology and buffering)
that systematically explores the continuum between H-tree and
spine to achieve an optimal tradeoff among clock power, skew
and latency (within this regime). Last, we realize our GH-tree
solution in a commercial P&R tool and report metrics (e.g.,
skew, latency, power, etc.) to assess solution quality.

Although our approach systematically optimizes the tradeoff
among clock power, latency and skew in the GH-tree regime,
our method has two limitations that we highlight. First, we
do not co-optimize tree topology and buffering together with
sink placement, due to large runtime complexity. Second, our
approach does not consider clock gating cells in a clock tree.
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Therefore, an improved resolution of the “chicken-and-egg”
loop between (i) placement of roots of sink regions and (ii)
top-level tree topology optimization, as well as consideration
of clock gating cells during the optimization, remain as open
research directions.

|:]Our optimizer

[ ]commercial P&R tools

Post-placement
layout

of clock topology

| Clock tree construction

]

Extract clock power, skew,
buffer area, wirelength etc.

Fig. 3: Overall flow of GH-tree construction.

A. LUT Characterization

We characterize LUTs based on simulations using
Synopsys PrimeTime [49] as inputs for our DP-based
optimization. These LUTs contain power, input capacitance,
slew propagation, and delay information of buffered and
unbuffered wire segments. We use four types of buffers (X50,
X67, X100, X134 from the 28LP libraries). In this technology,
the gate area of a X134 buffer is ~7x the gate area of
a minimum-size (X2) buffer. We also use “ganged buffers”
(i.e., two, four or six X134 buffers with shorted inputs and
shorted outputs) to achieve higher driving strengths. We create
wire segments of lengths 15um, 30um, 45um, 60um, 75um,
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and 90um.* Along these wire segments, we enumerate all
possible buffering solutions with the minimum granularity
of 15um (i.e., the minimum distance between two buffers
is 15pum). The granularity of LUTs (e.g., number of buffer
candidates, minimum wire segment length) will determine the
tradeoff between optimization runtime and solution quality.
In this work, we empirically select the granularity of our
LUTs to achieve improved solution quality compared to
two commercial tools, while using comparable runtime. For
example, with a 45um segment length, a minimum buffering
distance of 15um and seven buffer sizes, there are 83 (ie.,
no buffer or exactly one of the seven buffer sizes, at each
of the three buffering locations) distinct buffering solutions.
Note that our LUTs include unbuffered solutions, i.e., pure-
wire solutions. We consider both 1W1S (single-width, single-
spacing) and 2W2S (double-width, double-spacing — which we
understand to be the common non-default routing rule (NDR)
for clock distribution) wire segments in our characterization.
We vary the input slew from 5ps to 60ps in steps of Sps
and we vary output load from 1fF to 150fF in steps of
I1fF from 1fF to 5fF, and in steps of SfF from 5fF to
150f F. For each 3-tuple of (distance, input slew, output load)
we obtain the buffering solution (including input capacitance)
and the output slew. From the large number of possible
solutions, we prune solutions as follows. For each (distance,
input capacitance, output slew, output load) 4-tuple, we select
three delay values at the 10*”, 50®* and 90" percentiles of the
delay range, and then select the minimum-power solution for
each of these three delay values. Figure 4 shows an example
of our pruning on LUTs, in which we select minimum-power
solutions with different output load values. Red (resp. blue)
dots are the buffering solutions with output load = 75 f F' (resp.
35fF). Cross (x) points are the selected buffering solutions.

0] ssss sasssseaas
----------- *  Load I5(F

* Load 75F

gosl 00 sssssesesaas

Power [mwW)

0.04 0.06 o.o08 010 0.12 0.14 0.16
Delay (ns)

Fig. 4: Example of pruning for buffering solutions; distance
= 45um, output slew = 35ps.

In practice, we have found that this pruning reduces the
number of buffering solutions by ~94% at the cost of only
~5% solution quality (i.e., in terms of skew or latency) loss.

4We use LUTs based on multiple short wire segments to estimate the
delay and slew propagation of a long wire segment. Since we match the
output load, input capacitance as well as output and input slew values of two
consecutive short segments to form a long segment, the estimation error is
negligible. The small estimation error comes from discreteness of capacitance
and slew values.

B. DP-Based Co-optimization of Clock Topology and
Buffering

Based on the characterized LUTs, we determine the optimal
branching pattern along with the buffering solution for GH-
tree using dynamic programming (DP). Other inputs to our
optimization are layout region, placement of sinks, the number
of sink regions, and the maximum skew and maximum latency
constraints. A sink region typically contains <40 sinks in our
optimization. Our objective is to minimize the clock power
while satisfying the given maximum skew and maximum
latency constraints. As discussed, in this step, we assume that
the sink regions are induced from a uniform placement of
sinks, and that branching points are always located at the
center of the corresponding sink region. We understand that
the sink regions are typically not uniform for a real placement
solution. However, due to high runtime complexity, it is
practically infeasible for our current approach to consider sink
placement during our DP-based optimization. We therefore
assume uniform sink regions during our DP-based GH-
tree construction. We then embed our DP-based solution
(without solution quality degradation) into the given (real)
sink placement based on sink clustering and branching point
displacement. We formulate our DP in a high-dimensional
solution space with seven dimensions (i.e., with respect
to seven essential parameters of a clock tree optimization)
and construct our GH-tree in a bottom-up way. The seven
dimensions are {clock tree depth (P), region area (width
(w) and height (h)), number of sink regions (n), maximum
and minimum clock latencies (t,,q,; and t,,;,), and input
capacitance (i.e., the load capacitance seen from the root)}.

Algorithm 1 describes our optimization procedure; see also
the illustration in Figure 5. We first construct GH-trees for
the base case, that is, trees with depth = 1 over all different
region areas (i.e., w X h) and numbers of sink regions (i.e., n)
(Line 1). As an example, Figure 5 shows the solutions at level
p (i.e., subtree with depth = 1) with different region areas (i.e.,
5 x 5 (red), 10 x 10 (green) and 15 x 15 (purple)). Procedure
build_base_trees(w, h,n, ) constructs GH-trees with depths
of one (i.e., spines with different buffering solutions) within a
w x h region and with a branching factor of b,,. Following [37],
we use the term spine to denote one horizontal or vertical
wire segment in the clock tree. Note that at the bottom
level, b, = n. As illustrated in Figure 5, we optimize the
buffering solution along the spine based on characterized
LUTs. Optimization of each tree segment along the spine
generates a minimum-power Pareto surface in the high-
dimensional space indexed by the LUT input parameters (e.g.,
maximum and minimum latencies, and input capacitance). The
optimization eventually results in multiple subtree solutions.
We store these subtree solutions in a set R indexed by tree
depths, region area, number of sink regions, maximum and
minimum clock latencies, and input capacitance. In other
words, R is a set of subtree solutions along with their
depth, region area, number of sink regions, clock latency,
input capacitance and power information corresponding to the
minimum-power Pareto surface.

Next, we recursively search for the optimal (i.e., minimum-
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Fig. 5: Co-optimization of GH-tree topology and buffering.
The example illustrates construction of trees with depth = 2
and eight sink regions, based on subtrees with depth = 1 and
two sink regions.

Algorithm 1 DP-based GH-tree construction.

1: R « build_base_trees(w, h,n,0), Y w,h,n
st. 0<w< W, 0<h<H, 2<n< N, nisan even number
2: for P :=21t0 Ppax do
3 for w := 0 to W do
4 for h := 0 to H do
5 forn:=2to (N-w-h)/(W-H)do
6: R « retrieve_subtrees(P;, w;, hi,n;)
7 for all (r;) € R do
8 r «— build_tree(w, h,n,r;)
9 r’ — retrieve_tree(R, P, w, h,n, ".tmaz, T tmin)

10: if 7/ = null then

11 Re— RU{r}
12: else if r.power < r’.power then
13: remove 7’ from R
14: R — RU({r}
15: end if

16: end for

17: end for

18: end for

19:  end for

20: end for

21: ropt.power — oo

22: forall v’ € Rst. v’ .w=W, r".h=H, r.n> N do

230 if P tmar — T tmin < Q && T tmae < T && 1’ .power <
Topt.power then

24: Topt «— T’
25:  end if
26: end for

27: return rop¢

power) GH-tree solutions with depth P > 1, region area w X h,
and number of sink regions n. We increase P by one per
iteration during the optimization, until P = P,,,, (Lines 2—
20). The maximum depth P,,,, for a given NN is estimated
based on the conventional H-tree (which has branching factor
of two for all levels), i.e., Ppqar = [logy N. For each depth
P, we perform buffering optimization along the tree segments
at the topmost level, based on the stored subtree solutions
at depth (P — 1). In other words, we use existing solutions
(i.e., subtree solutions from R) and add one more (topmost)
level with optimized buffering to construct a new tree with
depth increased by one. Figure 5 illustrates how our optimizer
constructs solutions at level (p — 1) (i.e., subtrees with depth
= 2) based on the solutions at level p (i.e., subtrees with
depth = 1). In this example, solutions for region area 20 x 5
(resp. 40 x 10) at level (p — 1) are constructed based on four
instantiated solutions for region area 5 x 5 (resp. 10 x 10) at
level p.

For each (P, w, h, n) tuple, we construct our optimization

solutions based on the set of all stored subtrees (r;) (from R)
that satisfy

P =P —1; wy=h; hy =w/b; ny =n/b (6)

where P, is the depth of r;; wx h is the dimension of the layout
region; w; X h; is the dimension of a sink region (i.e., layout
region for subtree r;); b, is the branching factor at the topmost
level of the current tree; and n; is the number of sink regions
of r;. Lines 3-4 and Line 5 respectively enumerate possible
dimensions and numbers of sink regions for subtree solutions.
In Line 6 of Algorithm 1, we find all subtree solutions, which
we have optimized in previous iterations, with branching factor
b; such that 2 < b, < n/2.

Procedure build_tree(w, h,n,r;) then builds trees r with
depth = P, using copies of the collected subtrees r, € R
(which have depth = (P — 1)) as its lower-level subtrees
(Line 8). In other words, we build the tree segment with
optimized buffering at the topmost level, and at each sink
of the topmost segment, we use (i.e., instantiate) the same
subtree r; to build lower levels of the tree r. To reduce the
runtime complexity, our current approach assumes that at any
level, the subtrees are identical. As shown in Section IV
below, this does not preclude strong final solution quality.
Among all the constructed trees with depth = P and the same
maximum and minimum latency, we select the solution with
minimum power and add it to the solution set R (Lines 7—
16). Procedure retrieve_tree(R, P,w, h,n, r.itmaz, Ttmin) in
Line 9 retrieves a previously stored solution 7’ from the set
R that satisfies the conditions depth = P, width = w, height
= h and number of sink regions = n, and has maximum and
minimum latencies equal to specified ¢,,4, and t,,;,, where ¢
is clock latency. Finally, we select the solution with minimum
power that satisfies the maximum skew constraint (£2) and the
maximum latency constraint (1) from set R with number of
sinks NV and region area W x H (Lines 21-27).

We note that the slews are propagated from top to bottom in
a tree. However, our optimization performs bottom-to-top GH-
tree construction. We propagate slew bottom-up to accurately
capture the slew degradation and avoid maximum transition
violations. We first assume several slew values (e.g., 25ps,
30ps, 35ps, 40ps) at the root of each sink region. For each
of the assumed slew values, we propagate slew bottom-up,
based on LUTs (note that our LUTSs contain output and input
slews for each buffering and/or wiring solution). During the
DP-based optimization, we only select solutions which ensure
that slew values throughout the slew propagation are always
within the range of [5ps, 60ps], where 60ps is the maximum
slew constraint in our experiments, and 5ps is the minimum
achievable slew in practice in our experiments. We also note
that buffer locations are determined by the selected LUT
solution with bottom-up slew propagation. Thus, buffers are
not necessarily inserted in all branching points.

The runtime complexity of proposed algorithm is O(P"™% .
H maz
bl . N? . Xmes) where Wing, hine and ing are
respectively the minimum distance and timing intervals for
discretization of the original continuous solution space to

formulate the dynamic programming; .. is the specified
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maximum clock latency constraint. We set wipn¢, hing < Spum
and v;,+ = 1ps in our experiments. To reduce the runtime, we
apply the following pruning techniques.

o Pruning with number of leaf regions. For a given sub-
region of size w X h we prune solutions with number of
leaf regions greater than ]\Vfl}‘f’ﬁh.

o Pruning with skew/latency constraints. We prune
solutions that have skew larger than the maximum skew
constraint or maximum latency larger than the latency
upper bound.

e Pruning with maximum fanout constraint. We prune
solutions that have branching factor larger than the

maximum fanout constraint.’

1000
=
§ 100
=1
2
< 10
z
2
£ 1
£
"g 01 ——w/ pruning
o ====-w/0 pruning
0.01
0 1000 2000 3000 4000

#Sink regions

Fig. 6: Runtime of our DP-based optimization method with
and without pruning techniques across different numbers of
sink regions.

Figure 6 shows DP-based optimization runtime with the
number of sink regions ranging from 200 to 4000, where
each sink region contains ~25 flops. The maximum skew
constraint used in the experiment is 30ps. Results show that
with pruning, the DP-based optimization can optimize a design
with more than 4K sink regions (or 100K flops) within six
hours. Assuming that the flop count to total instance count
ratio is typically 10% to 25%, our approach can optimize
a design with 1M instances within six hours. Our studies
show that runtime and memory usage increase significantly
if we do not apply the proposed pruning techniques, due to
the large number of intermediate solutions (such that we are
not able to optimize beyond a design with 1K sink regions
due to excessive memory usage). Moreover, we observe same
solution quality between the runs with and without pruning.

C. Embedding of GH-Tree Into a Sink Placement

The clock tree topology and buffering solution from our
DP-based optimization assumes a uniform sink (region)
distribution (whereby branching points are at the centers of
regions). However, given a (realistic) non-uniform sink (flip-
flop) placement, we must cluster flip-flops with balanced load
across different clusters to avoid skew and latency increase.
In other words, we should assign clusters of flip-flops to
sinks of the GH-tree, based on the actual sink flip-flop
placement. To adapt our optimized GH-tree to the given
sink (i.e., flip-flop) placement, we perform a balanced K-
means clustering of sinks and adapt buffer placements based

5In our experiments, we set the maximum fanout constraint to 40 based
on guidance from an industrial collaborator [18].

on the clustering solution.® We note that our approach is
different from conventional top-down clock tree construction
methods (e.g., Planar-DME [19]), in that (i) we embed an
optimized clock tree topology with buffering solutions to a
layout region with given sink placements, and (ii) we balance
load capacitance among sink regions. By maintaining the
distances between consecutive branching points and buffers
at each clock level as well as balancing the load capacitance
among sink regions, we preserve the solution quality (i.e.,
skew and latency) of the GH-tree solution obtained by the
DP-based optimization. Furthermore, we understand that the
optimal GH-tree topology and buffering solution can vary
across different sink placements. With this in mind, we keep
the best M solutions from our DP-based optimization and
select the minimum-power solution for the given (actual) sink
placement as our final solution. Based on our preliminary
experiments, we empirically use M = 5 to generate the
results reported below, where increasing M beyond 5 will not
improve the solution quality significantly.

o.i ;: b, ’ o r: :E,,.

ILP-based global clustering  LP-guided clock buffer placement

DP-based solution by assuming
uniform sink regions.

Sink b
4 Clock buffer ?

w Root of clock tree

» Branching point A L]

» Root of sink region

+ Weighted center of cluster . +
Bounding box of cluster

LP-guided clock buffer placement  ILP-based local clustering

Fig. 7: Example of sink clustering and clock buffer placement.
In this example, we only show the local clustering for the
leftmost branch of the first-level clock tree.

The remainder of this subsection describes two
mathematical programs (ILPs) that perform sink clustering
(i.e., to assign flip-flops to sinks of the constructed GH-tree)
and place buffers of our GH-tree (one example is shown in
Figure 7). The two ILPs respectively act at global and local
clustering, as we describe below. We perform the clustering
and branching point placement top-down, level-by-level.
Our clustering optimization balances the load capacitance
across different clusters (each cluster is assigned to a sink of
our GH-tree) to minimize the discrepancy between our DP
solution (which assumes a uniform sink placement) and the
final solution (with the given actual sink placement). Note
that this implies that we must consider wire capacitance at
the bottom-most level, where the routing is achieved by a
commercial P&R tool.” However, any constructive approach

6Conventional K-means clock tree synthesis [10] cannot be applied to our
problem as it does not comprehend the load capacitance balancing criterion.

7Different routing tools can have different clock routing solutions for the
bottom-level clock tree. However, the difference is very small. Based on our
experimental results, skew from bottom-level clock routing is <l1ps.
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Algorithm 2 Embedding of GH-Tree into a sink placement.

for p :=1to P do
if |S|/|U| < Q¢p, then
global_clustering()
else if r.power < r’.power then
local_clustering()
end if
branching_point_and_buf fer_placement()
end for

IR

to this wire capacitance estimation is inaccurate and can
dramatically increase runtime complexity during top-level
optimization where each branching point can have many sink
flip-flops. We therefore divide the GH-tree into global and
local clustering, based on the total number of downstream
sinks (i.e., flip-flops), and only consider wire capacitance
during local clustering.

Algorithm 2 describes our clustering procedure. For each
level p, we iteratively apply either global or local clustering
followed by LP-based branching point and clock buffer
placement. Starting from level 1 (the topmost level) of the tree,
we cluster sinks based on initial locations of the branching
points (i.e., the light blue dots in the top-left figure of Figure 7,
which are at the centers of uniform sink regions) of the DP-
based GH-tree solution (Algorithm 1). The number of global
clusters is the same as the number of branching points. For
an example in Figure 7, since p = 1 and b; = 4, our
ILP will generate four global clusters that have similar load
capacitance. We then formulate an LP to determine the exact
branching point locations as well as buffer locations in each
global cluster. When the number of sinks in each cluster is
smaller than a threshold value (i.e., |S|/|U| < Q:), we apply
our ILP-based local clustering, and refine the branching point
locations in each local cluster using our LP. Note that the
“K” in the K-means clustering is determined by the number
of branching points in the GH-tree.

ILP formulation for global clustering. We pre-calculate
distance dj ; between the branching point of cluster u; and
the sink s; within the bounding box of the region that will be
clustered. The initial locations of branching points are assumed
to be at the centers of uniformly-sized regions corresponding
to the branching factor. The blue dots in the top-left figure of
Figure 7 show an example of initial branching point locations
when the branching factor b; = 4.

Minimize: Z d; + o - d™"
Sies
Subject to:
> mki=1 Vs;ieS (1)
ur €U
d; = Z ii Mk Vs; €8 (8)
upelU
dmer > . Vs, €5 (9)
CPm (1=A)< > ¢iompi CP™ (14 A)
s, €S
Yu, € U (10)

We define d; as the distance between the sink s; and the
branching point of the cluster that includes the sink s;; d™**
denotes the maximum distance among the distances d;; and
« is a weighting factor.® Our objective is to minimize the
sum of all distances d; and weighted d™*. Constraint (7)
ensures that each sink can only belong to exactly one cluster.
In Constraints (8) and (9), we obtain d; for each sink and
dm*®, respectively. Constraint (10) ensures that the total
pin capacitance of each cluster satisfies specified lower and
upper bounds. The lower and upper bound capacitances are
determined by CP™  which is estimated as the total pin
capacitance covered by the current region divided by the
number of clusters, along with the margin A. Since the
capacitance cannot be always balanced between clusters, we
add margin A to ensure that there is a feasible solution of the
ILP.

ILP formulation for local clustering. Although the ILP
for global clustering finds a balanced pin capacitance solution
over all sink regions, it ignores wire capacitance. Therefore,
we formulate a second ILP and apply it to local clusters that
have smaller regions.

RS

$; €S ur €U

Minimize: % (g =l oy -yl

Subject to:

" > X M Vs; €8, up €U (11)
Y = Yi Mk Vsi €85, up €U (12)
ol <z X (1 —mes) Vs; €8, up €U (13)
y <yi A (1—nk) Vsi €S, up, €U (14)
Cpinerire . (1 _ A) S

S (et O et @ —al +ym—yl) a5

s, €S
Cpin-i—wire . (1 + A) 2

S e+ Q) i+ 8- (@ — ol by — ) 16

s; €S
+ Constraints (7) and (8)

The objective of this second ILP is to minimize the sum of
all distances d;, of which the definition is the same as above,
plus the weighted sum of half-perimeter wirelength (HPWL)
of all clusters’ bounding boxes. We use HPWL and the number
of sinks within a cluster to model the wire capacitance of the
sink region. In Constraints (11)—(14), we obtain the lower-left
and upper-right corner locations of each cluster’s bounding
box. A is a large positive integer. Constraints (15) and (16)
ensure that total (i.e., pin and wire) capacitance of each cluster
satisfy given lower and upper bounds. ¢ and ( are respectively
coefficients for the number of sinks and the cluster’s bounding

8Based on our preliminary studies, we empirically use a = 8 in our
experiments.
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box HPWL in our linear wire capacitance estimation model.’

LP formulation for branching point location. Based on the
two ILPs described above, we obtain the clustering solution
at a given clock level. However, the initial assumption of
branching locations to be at the center of a region may
cause large skew if the sinks within a cluster are placed non-
uniformly. To address this issue, we formulate a linear program
(LP) to place each branching point close to the weighted center
of each cluster, as follows.

Minimize: d5 .
Subject to:

—yil=d (17)
o —ab + 2 >0 (18)

b b b
|21 — 2kl + Wi
o +ah — ¥ >0,

Yoty =yl >0, ye —yh+yl >0 (19
T8 = TR, Yo > YR (20)
Aoz = Tovaz T Ymaz Q1)

Here, xz and yz denote the x-/y-coordinates of the kth

branching point, and z}/ and y;’ denote the x-/y-coordinates
of the weighted center of the k*" cluster.!” The objective is to
minimize the sum of the maximum x- and y-distances between
any branching point and its corresponding weighted center.
Constraint (17) ensures a fixed distance d® between any two
consecutive branching points. In Constraints (18) and (19),
variables xkA and ykA respectively denote the x- and y-distances
between the branching point and the weighted center of the
kth cluster. We then obtain the sum of the maximum x- and
y-distances from Constraints (20) and (21).
Placement blockage. We further show a simple extension
of our LP formulation to an ILP formulation to comprehend
blockage-aware buffer placement. In this extension, we adjust
buffer placement to address the existence of blockages. A
caveat is that this method may not work well for designs with a
large number of blockages and/or a complex floorplan, since
our DP-based tree topology and buffering solutions are not
aware of blockages. We assume that there are O rectangular
blockages. The index of a blockage is denoted by ¢. Each
blockage is defined by its lower-left corner (z!/, y!') and upper-
right corner (xy", y,"). When there are placement blockages
in the floorplan, we define the following constraints.

fi=1eraf <
;Lff = xf > x
Vg =1% yJ <y (22)
Vi =1yl >y
;lfl ure | d)lly 4 ¢ury >1

9We determine ¢ and [ by fitting a linear model to wire capacitances
extracted for all our testcases. We perform least-squares regression as follows:
wire capacitance = (- #sinks + 8- HPWL. In our 28nm foundry enablement,
¢ =0.28 and 5 = 2.93.

10We calculate the x- and y-coordinates of each weighted center as
the respective means of all x- and y-coordinates of placed sinks in the
corresponding cluster.

Here, (:c]f , yf ) is the location of the j** buffer at a given

clock level. 1;, la llyure,ury}l re binary indicator variables
which mdlcate whether the ;" buffer is located outside the
corresponding boundaries of the blockages. The last inequality
in (22) defines the constraint that at least one of the indicator
variables must be true. Satisfying this constraint implies that
the jt" buffer is not in the bounding box of the ¢*" blockage.
Note that with the Constraints (22), the problem becomes an
integer linear program (ILP).

IV. EXPERIMENTAL SETUP AND RESULTS

We conduct our experiments in a commercial foundry’s
28nm LP technology, with a dual-Vt, 12-track standard-
cell library. The input placement solutions (including clock
sink placements) are generated using Cadence Innovus
Implementation System v15.2 [44]. Our optimization flow is
implemented using C++ and Tcl scripts. We use CPLEX
v12.6 [45] as both ILP solver and LP solver, along with
OpenMP [48] to enable multi-threaded execution. We execute
all our experiments by using up to 40 threads on a 2.6GHz
Intel Xeon E5-2690 server. We construct reference clock tree
solutions using the latest releases available to us of two
leading-edge commercial P&R tools (i.e., Tooll and Tool2)
as well as a state-of-the-art academic tool [39], and report
attributes of solutions from these tools along with those of
our GH-tree solutions.!!

TABLE II: Description of our testcases.

. Max tran.Max cap.
Testcases |#Insts.| #FFs (Util. (%) (ps) (fF)

B19 39788 | 3086 73 60 80
JPEG 46937 | 4712 73 60 80
VGA 66226 | 17057 76 60 80
LEON3MP [463104/108817| 74 60 80
VGA_blockage| 65891 | 17057 61 60 80
VGV_high_AR| 65124 | 17057 75 60 80

TABLE III: MCMM settings and clock periods (ns) for our
testcases.

Cl = {ss, 0.9V, -40C} | C2 = {ff, 1.1V, -40C}
B19 1.5 1.0
JPEG 1.2 1.0
VGA 1.4 1.0
LEON3MP 1.6 1.0
VGA _blockage 1.4 1.0
VGA_high_AR 1.4 1.0

We evaluate our optimizer using four designs: JPEG
from OpenCores [47], and BI9, VGA and LEON3MP
from the ISPD-2012 contest [24]. We use the real design
(JPEG) and the testcases from the ISPD-2012 contest (B19,
VGA, LEON3MP) since they contain datapaths (in contrast
to testcases from the ISPD-2010 contest, which do not
contain datapath information), thus enabling comparison
versus commercial tools. We synthesize these testcases using

""The tool flows used in our work are based on latest versions of leading
commercial EDA tools available through the respective vendors’ university
programs. More specific identification of tools and vendors is not permitted
by the vendors.
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Synopsys Design Compiler H-2013.03-SP3 [51]. Table II
summarizes the instance count, number of clock sinks,
placement utilization and timing constraints for our testcases.
To study the impact of maximum skew and latency constraints
on power, we run our optimizer with different maximum
skew and latency constraints and collect discrete solution
points showing skew-power and latency-power tradeoff. We
obtain reference clock solutions with multi-corner multi-
mode (MCMM) optimization; we define our mode and corner
settings in Table III. We also apply late and early deratings of
1.1 and 0.9 to model OCV effects. We use Synopsys HSPICE
G-2012.06-SP1 [50] to perform timing and power analysis.

A. Comparison with Trees from State-of-the-art CTS

Figure 8 and Figure 9 respectively compare skew and clock
power, and maximum latency and clock power, of GH-tree
solutions to those from the two commercial tools and one
academic flow [39]. Table IV compares #buffers, buffer area,
max (insertion) delay across corners, and wirelength among
clock tree solutions as well as optimization runtime. All flows
use the same sink placement solution as input. We apply the
same setups (i.e., clock buffer cells (X50, X67, X100, X134
and ganged buffers), BEOL layers (M3 and M4), maximum
transition constraints (60ps)) to our GH-tree construction and
to both commercial and academic tool flows. We sweep the
maximum skew and maximum latency constraints on the four
designs for the GH-tree constructions. Blue curves in the
figures are skew-power and latency-power Pareto curves of
our GH-tree solutions.'?

Overall analysis. Our results show that our GH-tree solutions
achieve significant clock power reduction with similar or
reduced skew and latency values as compared to the solutions
from both commercial and academic tools. We also include
the conventional “strict” H-tree solution as a comparison.
Note that we use the same methodology to determine the
buffer locations and sizes in “strict” H-tree and GH-tree
constructions. In other words, it is unnecessary to add a
buffer at each branching point. For example, we achieve power
reductions of 30% on B19 and 20% on LEON3MP in Table IV
compared to commercial tools’ results. Moreover, we observe
that due to the symmetric topology of our GH-tree, our GH-
tree solution is typically more robust against skew variation
across different corners as compared to the clock trees from
other tools. As an example, skew of the clock tree solution
from Tool2 increases by 137% on design VGA_blockage
between two corners; by contrast, our solutions generally have
similar skew values across corners. The conventional “strict”
H-tree achieves the minimum clock skew but at the cost of
larger power, buffer area and wirelength. As an example,
for LEON3MP, H-tree has depth P = 12, but GH-tree has
P = 10 (i.e., branching factor = (2, 2, 2, 2, 2, 4, 4, 2,
2, 2)). The shallower depth of GH-tree significantly reduces
the number of buffers and wirelength. We also validate our
GH-tree optimization on design VGA with high floorplan

12We estimate the Pareto curve based on discrete solution points due to
limited computing resources. In addition, since the tradeoff between skew/max
latency versus clock power is monotone, we feel that three solution points can
provide a useful estimation of the tradeoff.

10

aspect ratio and existence of placement blockages (shown in
Figure 15), where we observe similar clock power and latency,
but larger skew, compared to the case without blockage and
high floorplan aspect ratio. Compared to the results of [39],
our GH-tree achieves much smaller power (i.e., up to 55% on
B19) and skew, but at the cost of larger maximum latency.
Power analysis. We also observe that our GH-tree solutions
have smaller number of buffers and clock wirelength as
compared to solutions from commercial and academic tools.
Figure 10 further shows a histogram of clock buffer power
(i.e., sum of internal, leakage and dynamic power) values of
our GH-tree versus corresponding values from a commercial
tool’s solution. We observe that our DP-based optimization,
which can select its buffering solution “optimally” based on
the characterized LUTs, achieves smaller buffer power values
for most of the clock buffers. In other words, our GH-tree
optimization is able to achieve optimized load capacitance
of buffers as well as slew propagation for reduced clock
power. The power information from our LUTSs enables power-
awareness in our DP-based GH-tree construction.
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Fig. 10: Distribution of clock buffer power values from GH-
tree and commercial tool’s solution. Design: VGA.

Runtime analysis. Results in Table IV show that although the
naive worst-case time complexity of our (DP- and ILP-based)
optimization is high (cf. the nested for loops in Algorithm 1),
the pruning techniques and empirically selected granularity of
our LUTs (e.g., 15um for distance, Sps for slew, and 5 f F for
capacitance) make the runtime of our optimization comparable
to those of commercial tools. The large runtime of design
LEON3MP mainly comes from bottom-level tree construction
(~40 minutes) and ECO routing according to our GH-tree
solution using OpenAccess [46] (~15 minutes). The actual
GH-tree construction runtime (i.e., DP + ILP runtime) for
design LEON3MP is only ~25 minutes. We understand that
such runtime is very acceptable in light of the potential clock
power benefits from our approach.

Robustness analysis. We further perform Monte Carlo
simulation on our GH-tree solution and those from commercial
tools, and compare the resultant variation in clock skew
and power. Figure 11 shows that our GH-tree solution
exhibits relatively smaller variation in clock skew (i.e.,
~35ps) compared to commercial tools’ solutions (i.e., ~40ps).
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Fig. 9: Power and maximum latency comparisons among GH-tree, Tooll, Tool2 and [39] for four testcases.

Furthermore, all of Tooll, Tool2 and GH-tree solutions have
small power variation.

B. Impact of NDR

We now summarize observed impacts of non-default rules
(NDRs) on clock tree solution quality. We generate GH-trees
with various NDR options: (i) IWI1S only, (ii)) 2W2S only,
and (iii) the combination of 1W1S and 2W2S. We set the
maximum skew constraint to 200ps and compare Pareto curves

of the latency versus clock power tradeoffs. Figure 12 shows
the comparison for the JPEG testcase at 28LP technology. Due
to better slew propagation, solutions with 2W2S have fewer
clock buffers as compared to the 1WIS solutions (i.e., the
average numbers of clock buffers are respectively 83 and 111
in 2W2S- and 1W1S-only solutions). Further, solutions that
permit either IW1S or 2W2S at each level (of clock subnets)
are able to achieve a better tradeoff between latency and power.
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TABLE IV: Comparison between clock tree solutions from [39], Tooll and Tool2 versus our GH-trees. Technology: 28LP.

Corner = C1 Corner = C2 .
Testcase Flow Max laten. | Skew | CIk power | Max laten. | Skew | CIk power | #Buffers Buf area | Clk WL | Runtime
(ps) (ps) (mW) (ps) (ps) (mW) (um?) (mm) (min)
Tooll 150 17 3.8 110 27 9.3 104 227 15688 15
Tool2 222 29 34 129 5 8.3 84 245 12996 11
B19 [39] (min_pwr) 111 40 5.6 63 40 12.1 211 338 N/A N/A
[39] (min_skew) 125 36 6.0 78 38 13.0 228 413 N/A N/A
GH-tree 170 12.5 2.6 116 25.8 6.4 41 106 12242 15
H-tree 166 7 3.1 106 11 7.6 147 227 13941 16
Tooll 196 26 6.9 131 26 16.8 160 345 20967 16
Tool2 236 34 6.2 141 18 15.2 120 352 18432 14
JPEG [39] (min_pwr) 179 65 9.2 103 73 19.7 340 651 N/A N/A
[39] (min_skew) 155 30 94 92 36 20.4 353 676 N/A N/A
GH-tree 201 19 5.9 129 17 14.5 147 296 20009 17
H-tree 229 12 6.6 150 16 16.3 169 456 20064 14
Tool1 260 36 20.7 152 7 55.3 464 1119 57678 16
Tool2 314 28 18.0 201 11 48.5 369 1047 56305 22
VGA [39] (min_pwr) 171 52 24.0 114 73 52.1 911 1651 N/A N/A
[39] (min_skew) 171 52 24.0 114 73 52.1 911 1651 N/A N/A
GH-tree 238 19 174 174 41 44.2 331 1036 57404 21
H-tree 253 16 20.4 162 19 55.0 597 1682 62957 16
Tooll 426 63 109.5 276 25 195.9 2661 6654 369737 54
Tool2 633 34 102.5 421 58 184.2 2509 7225 367854 37
LEON3MP [39] (min_pwr) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
[39] (min_skew) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
GH-tree 415 24 87.2 285 35 157.3 1331 4154 374568 101
H-tree 415 22 96.0 287 24 173.0 2399 6741 393582 99
Tooll 245 23 21.3 174 36 56.7 475 1148 66323 14
Tool2 347 57 17.6 212 24 47.5 401 1127 64640 24
VGA blockage [39] (min_pwr) 298 133 29.9 208 145 54.5 1118 2154 N/A N/A
- g [39] (min_skew) 252 86 344 157 93 74.3 1291 2387 N/A N/A
GH-tree 239 36 16.9 163 31 454 293 815 68635 19
H-tree 282 22 20.8 174 21 56.0 599 1685 72636 16
Tooll 231 19 20.5 164 27 54.7 456 1094 59506 14
Tool2 325 33 18.5 211 43 49.8 395 1120 58114 21
. [39] (min_pwr) 161 28 25.1 105 74 54.5 956 1679 N/A N/A
VGA_high AR |50 0w 161 28 25.1 157 93 545 956 1679 N/A N/A
GH-tree 265 33 17.5 187 30 47.3 299 1039 57855 21
H-tree 271 15 20.4 169 12 54.8 661 1669 65181 22
25.0 B — _
245 L™ I“cla" HArs, - L 1W1Sonly
506 : i 5gll ® 2W2S only b
|l Tool1 £ | ® 1wWisS+aw2s
—235|4s ToOI2 =
% 23.0/eee GH-tree = 5.6 »
— — — @
% 225 §_ i R
220 SN 0 R i
215 - O, ® e .
203 5 e 70 80 90 100 110 5 - -
Skew (ps) 90 195 200 205 210 215

Fig. 11: Clock skew and power comparison among GH-tree,
Tooll and Tool2 through Monte Carlo simulation. Design:
VGA.

C. Study of “Skew Budgeting” across Clock Levels

How to optimally budget skew across clock tree levels has
been an open problem for over two decades. Interestingly, our
DP approach may provide new insights into how to budget
skew for minimum clock power. To study the skew budgeting
across clock levels, we run our optimizer multiple times with
target skews from Sps to 40ps in steps of 5ps on testcase
VGA. In each run, we find the minimum-power GH-tree
solution that satisfies the given target skew. Figure 13 shows
the normalized skew at each clock level of the minimum-
power GH-tree solutions across different target skews . When

Max. latency (ps)

Fig. 12: GH-tree optimization with various NDR options.

the skew constraint is tight (i.e., <15ps), most of the skew
occurs in the bottom levels (i.e., levels 5, 6 and 7) of the
clock tree. However, when the skew constraint is relaxed (i.e.,
>20ps), most of the skew occurs in the top levels (i.e., levels
1 and 2) of the clock tree. We show the normalized clock
power for each target skew at the top of each bar in Figure
13. For example, minimum-power GH-tree solution for target
skew 30ps consumes 74% power of minimum-power GH-tree
solution for target skew 5ps. To achieve ~26% clock power
reduction by changing target skew from 5ps to 30ps, the clock
tree must have ~80% of the skew in levels 1 and 2. We
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emphasize that, as noted above, in our GH-tree a level does
not necessarily imply the insertion of a buffer. In other words,
a higher number of levels does not necessarily result in larger
latency. Rather, we observe from our GH-tree solutions (which
are on Pareto frontiers with respect to tradeoffs among skew,
latency and clock power) that skew and latency are typically
correlated with each other.

Hlevel=18Llevel=2Hlevel = 38 Level = 4

S level =5 level =6 @ level =7  =4=Depth

1.0 097 097 077 074 0.7 8
1000 - P Pt P .

g,:», ,
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= | 4 '2‘
& ! =
= a0 : 3
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Target skew (ps)

Fig. 13: Skew budgeting, normalized clock power and the
number of levels (depth) of the clock tree for different target
skews. According to our optimal DP solutions, nearly 80% of
skew occurs in the bottom levels of the tree when the target
skew is <15ps, but this shifts to the top levels of the tree
when the target skew is >20ps.

V. CONCLUSION

In this work, we propose the concept of a generalized
H-tree, which is a balanced tree topology with an arbitrary
sequence of branching factors at each level. Our DP-based
method provides an optimal GH-tree that has minimum
clock power for a given skew and maximum latency targets.
Our DP solutions are constructed using clock buffers (with
ganging) along with interconnect timing and power models
from a 28LP foundry design enablement; we co-optimize
the clock tree topology along with the buffering along
branches. We furthermore propose a clustering- and linear
programming-based heuristic to embed the GH-tree with
respect to the given placement of clock sinks. We validate
our solutions in commercial P&R tool flows in a 28LP
foundry technology. The results show up to 30% clock power
reduction while achieving similar skew and latency as CTS
solutions from recent versions of leading commercial P&R
tools. Our proposed approach also achieves up to 56% clock
power reduction compared to a state-of-the-art academic tool
[39]. Compared to “strict” H-tree, our results achieve better
tradeoffs such that power is significantly reduced at the
cost of small skew increase. Our ongoing and future work
includes (i) co-optimization of sink placement and clock tree
construction; (ii) budgeting of skew and latency across levels;
(iii) application of useful skew in GH-tree; (iv) application
of GH-tree construction in hierarchical designs (that require
hierarchical CTS); (v) co-optimization of datapath placement
and GH-tree construction; (vi) clock gate- and logic cells-
aware GH-tree construction; and (vii) blockage-aware DP-
based clock tree topology and buffering.

13

routing of the top four levels in the GH-tree with branching
pattern (4, 4, 2, 6). The left figure shows clock routing (top and
bottom levels) and the right figure shows the sink clustering
solution.

Fig. 15: Layout example of GH-tree on VGA_blockage. In
red is clock routing of the top six levels in the GH-tree with
branching pattern (2, 2, 2, 2, 2, 4). The left figure shows clock
routing (top and bottom levels) and the right figure shows the
sink clustering solution.
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