
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018 855

Design Implementation With Noninteger
Multiple-Height Cells for Improved Design

Quality in Advanced Nodes
Sorin Adrian Dobre, Andrew B. Kahng, and Jiajia Li

Abstract—Standard-cell libraries can be developed with
different cell heights (e.g., in FinFET technology, corresponding
to different numbers of fins). Larger cell heights provide higher
drive strengths, but at the cost of larger area and power con-
sumption as well as pin capacitance. Cells with smaller heights
are relatively smaller in area, but have weaker drive strengths
and are more likely to suffer from routing congestion and pin
accessibility issues. Existing design methodologies and tool flows
are able to mix cells with different heights at the block level (i.e.,
each block contains cells with heights being integer multiples of a
particular “single row” cell height). To our knowledge, no design
methodology in the literature or in production mixes cells with
different, noninteger multiple heights in a fine-grained manner.
In this paper, we propose a novel physical design optimization
flow to implement design blocks with mixed cell heights in a
fine-grained manner. Our optimization resolves the “chicken-
and-egg” loop between floorplan site definition and the optimized
choices of cell heights after placement with full comprehension of
the constraints and costs of mixing cells of different heights (e.g.,
the “breaker cell” area overheads of row alignment between sub-
blocks of 8 T and 12 T cell rows), our optimization achieves up
to over 30% area and power reductions versus 12 T-only imple-
mentation while maintaining the same performance, and up to
over 10% performance improvement along with power and area
reductions versus 8 T-only implementation.

Index Terms—Digital integrated circuits, mixed cell height,
physical design, placement algorithms.

I. INTRODUCTION

STANDARD cell-based implementation has been widely
used for very large scale integration designs due to its

relatively accurate abstraction and semi-regular layout. Cells
are designed with different heights (e.g., different numbers
of fins in FinFET node). Larger cell heights have higher
drive strengths at the cost of larger area and power consump-
tion as well as pin capacitance. Smaller cell heights result in
relatively smaller area, but have weaker drive strengths and

Manuscript received November 28, 2016; revised March 15, 2017 and
May 31, 2017; accepted June 21, 2017. Date of publication July 24, 2017;
date of current version March 29, 2018. A preliminary version of
this work appeared at the 2015 IEEE/ACM International Conference on
Computer-Aided Design [3]. This paper was recommended by Associate
Editor I. H.-R. Jiang. (Corresponding author: Jiajia Li.)

S. A. Dobre is with Qualcomm Technologies, Inc., San Diego,
CA 92121 USA (e-mail: sdobre@qti.qualcomm.com).

A. B. Kahng and J. Li are with the University of California at San Diego,
La Jolla, CA 92093 USA (e-mail: abk@ucsd.edu; jil150@ucsd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2731679

Fig. 1. Delay-area tradeoff of 8 T and 12 T buffers/inverters in 28 nm LP
foundry libraries. Corner: [Slow (nMOS) slow (pMOS) process (SS), 0.95 V,
125 ◦C]. Load cap = FO4 + 20 μm M3 wire.

Fig. 2. Post-synthesis netlist with mixed cell heights has significant area
reduction compared to 12 T-only and 8 T-only netlists. Technology: 28 nm
LP. Design: AES. Frequency: 1.5 GHz. Corner: (SS, 0.95 V, 125 ◦C). Total
cell area and number of instances are normalized to those of the 8 T-only
case. In the right figure, the solid bar indicates worst negative slack (WNS),
and the shaded bar indicates TNS. Implementations with 12 T-only and mixed
cell heights have no timing violations.

are more likely to suffer from routing congestion and pin
accessibility issues. Although a cell with smaller height can
be designed with large width to gain drive strength, the addi-
tional poly capacitance and metal capacitance can lead to area
and power overheads as compared to a cell with larger height.
Fig. 1 shows the delay and area tradeoff of buffers and invert-
ers at foundry 28 nm linear programming (LP) technology.1

Each circle represents a buffer or an inverter. In red are 12 T
cells, and in blue are 8 T cells. As expected, 12 T cells can
achieve smaller delay at the cost of larger area.

1The area values of buffers and inverters are from the liberty models in a
foundry 28LP technology. We further estimate the intrinsic delay of a buffer
or an inverter based on delay lookup tables from liberty models. Specifically,
we assume fanout-of-four load capacitance together with an extra capacitance
of 20 μm M3 wire, and an initial input slew of 30 ps. We then iteratively
feed the output slew of the cell to its input pin until the change of the output
slew value is less than 1 ps. We then report the cell delay with the stabilized
slew value in Fig. 1.

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:sdobre@qti.qualcomm.com
mailto:abk@ucsd.edu
mailto:jil150@ucsd.edu
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

856 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

Given that cells of different heights exhibit different trade-
offs among performance, power, and area, mixing cells of
different heights in a design is able to provide a larger solution
space and—up to some practical limit—improved design qual-
ity. Fig. 2 shows the post-synthesis area and timing comparison
among implementations of an open-source design AES [17]
with 12 T-only, 8 T-only, and mixed cell heights. Due to gen-
erally larger areas of cell instances (particularly those with
low drive strengths), 12 T-only implementation tends to have
larger design area. On the other hand, weak drive strengths
of 8 T cells result in a large number of buffer insertions to
meet timing constraints, which also increases design area.2

We observe from the example that mixing cell heights achieves
14% and 18% area reduction at the post-synthesis stage versus
the 12 T-only and 8 T-only implementations, respectively. Note
that since the example only compares post-synthesis solutions,
where layout effects are not considered, the example only
shows a (motivating) estimation of the potential block-level
benefits from mixing cell heights.

Motivated by the above observations, in this paper we pro-
pose to mix cell heights at the sub-block level (i.e., within
a single P&R block) of physical implementation, to achieve
improved design quality—specifically, tradeoffs of achievable
performance, power, and area.3 However, optimizing a design
by mixing noninteger multiple cell heights is highly nontrivial.
The challenges include the following.

1) Current design methodologies and tool flows can only
mix cells of different heights at the block level, i.e.,
each block of a design uses cells with a particular height,
with fine-grained mixing not available with today’s EDA
tools.

2) There is a “chicken-and-egg” quandary: heights of cell
rows are defined (in the placement site map) at the floor-
plan stage, but the optimized choices of cell heights are
highly dependent on the placement outcome and timing
constraints.

3) There are costs associated with mixing cells of different
heights. For instance, “breaker cells” must be inserted
for row alignment between sub-blocks of cell rows with
different heights. We define a breaker cell as the space
(i.e., placement and/or routing blockages) that must be
inserted between the boundaries of regions of different
cell heights.

The contributions of this paper are as follows.
1) To our knowledge, we are the first in the literature to

propose mixed cell-height implementation with noninte-
ger multiple heights at the sub-block or subisland level
in advanced nodes.

2) We develop methodologies which can easily be
integrated within existing physical design flow, using
standard commercial tools, for mixed cell-height
implementation.

3) We show that mixing 12 T and 8 T cells in a 28 nm LP
foundry technology achieves up to over 30% area and
power reductions versus 12 T-only implementation while

2The larger total cell area of the 8 T-only netlist as compared to that
of the 12 T-only netlist is due to tight timing constraints. We demonstrate
in Section V that with loose timing constraints, 12 T-only implementations
typically incur area overhead as compared to 8 T-only implementations.

3Since today’s P&R tools already support placement of integer multiple-
height standard cells (e.g., [20]), this paper mainly focuses on implementation
with noninteger multiple-height cells, which has not been addressed in the
literature.

maintaining the same performance, and up to over 10%
performance improvement along with power and area
reductions versus 8 T-only implementation.

II. RELATED WORKS

To our knowledge, there is no previous work on mixed cell-
height design methodology that addresses noninteger multiple
heights within a block. A recent work [12] optimizes cell
placement with heights being integer multiples of a particu-
lar cell height. And, commercial placers have been capable of
handling multicell row height cells (i.e., with heights that are
integer multiples of a single-row height) for over two decades.
However, placement of single-height, double-height, triple-
height, etc. cells does not require site map change (i.e., the
floorplan rows and placement sites are fixed during the opti-
mization), whereas in our problem, different noninteger cell
heights require different row and site definitions. Therefore,
the placement problem involving cells with multiple nonin-
teger heights cannot be solved by existing optimizations that
handle the integer-multiples problem.

Notwithstanding the above, the mixed cell-height place-
ment problem bears some similarity to the problem of voltage
island placement, in that both problems try to assign a
certain attribute with different values (e.g., cell height or sup-
ply voltage) to standard-cell instances, in order to improve
performance or reduce power. Further, both problems must
comprehend a type of incurred cost (e.g., area overhead of
breaker cells or insertion of level shifters) when performing
the assignment. We therefore review exemplary works from
the literature on voltage island placement.

Ching et al. [2] and Wu et al. [15] proposed partitioning
methodologies to divide post-placement die area into regions
which will be assigned to different supply voltages. The objec-
tives are, respectively, to minimize the number of partitions
and to handle nonrectangular partitions. Wu et al. [16] further
considered timing constraints during the voltage assignment.
However, the interaction with standard-cell placement is miss-
ing in all of these works. An improved optimization proposed
in [14] performs incremental placement to move timing-
critical cells out from the low-voltage regions by adjusting
net weights and cell delays. Guo et al. [6] embedded their
voltage-island-aware placement optimization to a partitioning-
based placement algorithm to minimize the number of level
shifters.

Although the voltage island placement problem has been
well-studied in the previous literature, there is still no available
solution for mixed cell-height design implementation due to
the existence of chicken-and-egg loop between floorplan and
cell height selection, additional layout constraints, and area
impact of cell height choices.

III. PROBLEM FORMULATION

Table I gives notations used in the following discussion.
We state the noninteger multiple-height cell placement

problem as follows.4

Given a design (i.e., gate-level netlist), timing constraints,
liberty and technology models for cell libraries with multiple
track heights, and P&R block area and aspect ratio, place the

4Since we focus on placement with noninteger multiple-height cells, in
the following discussions “mixed cell heights” or “mixed heights” refers to
“mixed noninteger multiple cell heights.”

DOBRE et al.: DESIGN IMPLEMENTATION WITH NONINTEGER MULTIPLE-HEIGHT CELLS 857

TABLE I
NOTATIONS USED IN OUR WORK

Fig. 3. Area cost of breaker cells.

design such that each cell instance is legally placed in row sites
with corresponding height. The objective of the placement is
to achieve minimum design power or area while maintaining
the (same) target performance.

Additional layout constraints for mixed cell-height imple-
mentation applied in our studies below are as follows.5

C1: To ensure manufacturability, each region of a particular
cell height must have at least two cell rows.

C2: Due to N-well sharing, each region of a particular cell
height must have an even number of rows.

C3: Every region with a particular cell height must align with
the block’s overall metal and poly track definitions.

C4: The horizontal distance between two regions of different
cell heights must be no less than four placement sites to
honor the well-to-well spacing rule.

C5: The minimum vertical distance between two partitions of
different cell heights must ensure that the power/ground
(P/G) rail of one cell does not encroach beyond the
P/G rail of another cell. In other words, there must be
a vertical gap to avoid P/G track alignment issue with
mixed-cell heights. (Fig. 3 shows an example with M2
pitch = 64 nm, and P/G rail width = 48 nm and 64 nm
for 8 T and 12 T cells, respectively. Although the P/G
rail width difference between 8 T and 12 T cells is less
than one M2 pitch, to align cells to routing tracks, the
minimum d in the example is 64 nm.)

5Our proposed approaches given below transparently handle other values
of the parameters that define these constraints (e.g., minimum number of cell
rows in a given-height region, or minimum separation between two different-
height regions, etc.).

(a)

(b)

(c)

Fig. 4. Overall flow of our optimization. In the example, the maximum
cut number (K) = 30. (a) Initial placement with mLEF, 8 T cell rows only.
(b) Legalized placement with mLEF, 8 T cell rows only. (c) Optimized place-
ment in updated floorplan with original LEF, mix of 12 T/8 T rows (with
space for breaker cell).

C6: Breaker cells must be inserted to ensure the minimum
horizontal and vertical distances between two regions of
different cell heights.

IV. METHODOLOGY

We now describe our optimization methodology for mixed
cell-height implementation. The overall optimization flow is
shown in Fig. 4. Given an input design (i.e., register-transfer
level netlist) and timing constraints, we first synthesize it with
liberty files of all available cell heights having been made
available to the logic synthesis tool. To resolve the chicken-
and-egg loop between floorplan and cell height selection, we
modify standard-cell library exchange format (LEF) files such
that all cells have the same height (i.e., the minimum cell
height among all the available heights), while maintaining the
original area of each cell.6 In the discussion below, we refer to
such modified LEF files as modified LEF (mLEF). In this way,
we break the chicken-and-egg loop and enable a commercial
placement tool to “freely” place cells with timing-awareness.
In other words, based on the synthesized netlist which contains
various cell heights, we perform floorplanning with mLEF
such that all cell rows have the same height (i.e., the minimum
cell height among all the available cell heights). We then use
a commercial placer (i.e., Innovus) to perform placement and
post-placement optimization. Since we use the original liberty
timing/power models and preserve the original area for each
standard cell (although with modified aspect ratio for cells

6In doing so, we round cell widths to the nearest whole site with no cell
area reduction. E.g., given three libraries with heights 8 T, 9 T, and 12 T:
1) a 12 T, 6-site cell would be represented by an 8 T, 9-site cell and 2) a 9 T,
5-site cell would be represented by an 8 T, 6-site cell.

858 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

that originally had nonminimum height), this placement opti-
mization is able to comprehend the tradeoff between timing
constraints, power and area overheads. We emphasize that in
the initial placement, we do not enforce any layout constraints
or define regions for different cell heights, whereby the com-
mercial placer is able to freely exploit the benefits from mixing
cell heights. As a result, timing-critical cells tend to have larger
heights (i.e., larger width with mLEF), while noncritical cells
are smaller. An example initial placement solution of design
AES is shown in Fig. 4(a), in which 12 T cells (with mLEF)
are in red, and 8 T cells are in blue.

Based on the initial placement solution, we partition the
block area into regions of particular cell heights with aware-
ness of area cost due to breaker cells. Here, cell height refers to
the original cell height as opposed to the cell height in mLEF.
We then legalize the placement solution by: 1) displacement
of cells (i.e., placement perturbation) and 2) swapping of cells
across different heights (i.e., gate sizing). Here, we say that a
placement solution is legal when each cell instance is placed
in a region with the same height [e.g., as shown in Fig. 4(b)].
Once the placement solution is legal, we update the floor-
plan. Specifically, we perform refloorplanning such that the
cell row height in each region is defined by the partitioning
solution. We also insert space between regions with differ-
ent cell heights to model the cost of breaker cells. We then
map cells to the cell rows of the updated floorplan, using
the original standard-cell LEF files. In the end, we perform
clock tree synthesis and route the design [Fig. 4(c)]. In the
following, Section IV-A describes our partitioning methodol-
ogy, Section IV-B presents our placement legalization flow,
and Section IV-C discusses cross-row displacement and cell
mapping algorithms.

A. Floorplan Partitioning and Region Definition

We perform slicing-based partitioning using dynamic pro-
gramming to divide the block area into regions of particular
cell heights. Algorithm 1 shows our partitioning procedure.
We first evaluate the cost of each candidate partition, i.e.,
cost(xl, yb, xr, yt, 0), in which the fifth parameter indicates
the number of cuts within the partition (line 1). If the
height of a candidate partition is hj, the cost of the parti-
tion is calculated as

cost = β ·
∑

hi �=hj

areai + λ ·�power+ η ·�delay (1)

where areai is the total area of cells with height hi located
within the candidate partition; �power is the estimated total
cell power increase by swapping cells with original cell height
hi < hj to height hj

7; �delay is the estimated total cell delay
increase by swapping timing-critical cells (i.e., cells with slack
<20% of the clock period) with original height hi > hj to
height hj; and β, λ, and η are weighting factors.

Reducing the value of component
∑

hi �=hj
areai (i.e., the sum

of areas of cells whose heights differ from the height of the
partition) will help to minimize the cost of placement legaliza-
tion (i.e., displacement and cell-height swapping) as well as the
perturbation to the initial placement solution. Furthermore, to
reduce the potential power and timing penalties due to legaliza-
tion, we minimize the estimated cell power and delay increase
within each candidate partition. More specifically, we first find

7Since dynamic power dominates in our testcases, we use the gate
capacitance ratio between different cell heights to estimate the power increase.

Algorithm 1 DP-Based Partitioning

1: calculate cost(xl, yb, xr, yt, 0)

∀Xl ≤ xl ≤ xr ≤ Xr, Yb ≤ yb ≤ yt ≤ Yt

2: for k := 1 to K do
3: for xl := Xl to Xr −�x do
4: for yb := Yb to Yt −�y do
5: for xr := xl +�x to Xr do
6: for yt := yb +�y to Yt do
7: cost(xl, yb, xr, yt, k)= min

xl≤x≤xu,yb≤y≤yt
(

cost(xl, yb, x, yt, k′)+ cost(x, yb, xr, yt, k′′)+ 4 · wsite · (yt − yb),

cost(xl, yb, xr, y, k′)+ cost(xl, y, xr, yt, k′′)+ d · (xr − xl)
) ∀k′, k′′ s.t. k′ + k′′ = k − 1

8: end for
9: end for

10: end for
11: end for
12: if cost(Xl, Yb, Xr, Yt, k) ≥ cost(Xl, Yb, Xr, Yt, k − 1) then
13: return cost(Xl, Yb, Xr, Yt, k − 1)

14: end if
15: end for
16: return cost(Xl, Yb, Xr, Yt, K)

the best candidate library cell (with height hj) for each cell
instance (assume that the original height of the cell instance
is hi), such that the best candidate library cell has the minimum
cell power without any delay increase (resp. the minimum cell
delay without any power penalty) if hj > hi (resp. hj < hi). We
then estimate �power and �delay values for each candidate
partition accordingly.

Furthermore, we set the cost of a candidate partition to infin-
ity if it violates any of the constraints (e.g., constraints C1
and C2) described in Section III. More specifically, a partition
(xl, yb, xr, yt) with height hj must satisfy

yt − yb ≥ 2 · hj (2)

	y
t − yb

2 · hj

 · 2 · hj ·

(
xr − xl

)
≥

(
yt − yb

)
·
(

xr − xl
)
· Uj. (3)

Inequality (2) forces each partition to have at least two rows.
Inequality (3) ensures that partitions in the updated floorplan,
after rounding to an even number of rows per partition accord-
ing to constraint C2, have enough sites to place cells; here, Uj
is the placement utilization within the partition. Finally, for
each candidate partition, we set the height of the partition as
the height which leads to the minimum cost function value.

Fig. 5 shows contour maps of power and delay costs, as
well as partitioning solutions with various weighting factors
of design AES.8 The contour maps are plotted based on the
sum of power or delay costs within each grid. As the value
of λ decreases and the value of η increases, the area of 12 T
regions and power both increase, while timing slack improves.
In our experiments, we empirically set (β, λ, η) as (1, 1, 1),
(1, 0.1, 1), (1, 1, 0.1), (1, 0.1, 0.1) and select the outcome
with minimum power that satisfies timing constraints.

The heart of the dynamic programming recurrence (i.e., in
determining the partitioning solution with minimum cost) is
given in lines 2–16. We recursively search for the minimum-
cost partitioning solution of a rectangular region with k
cuts, and increase the value of k in each iteration up to a
given maximum allowable number of cuts, K, which is a

8We measure area, power, and delay in units of μm2, μW, and ps for
cost function estimation. A small value of β will result in large perturbation
of the initial placement, such that the power, area, and timing costs due to
legalization can be high. On the other hand, a large value of β will limit the
timing- and power-awareness in the partitioning optimization. We empirically
use β = 1 and vary the values of λ and η between 0 and 1 to explore the
tradeoff between power and timing during partitioning optimization.

DOBRE et al.: DESIGN IMPLEMENTATION WITH NONINTEGER MULTIPLE-HEIGHT CELLS 859

(a) (b) (c) (d) (e)

Fig. 5. (a) Contour map of power cost function. (b) Contour map of delay cost function. (c) Partitioning solution with β = 1, λ = 0.8, and η = 0.2.

(d) Partitioning solution with β = 1, λ = 0.7, and η = 0.3. (e) Partitioning solution with β = 1, λ = 0.6, and η = 0.4. Cell area, power, and delay are,
respectively, measured in units of μm2, μW, and ps for cost estimation. In red are 12 T cells, and in blue are 8 T cells. Design: AES. Technology: 28 nm
LP. By comprehending power and timing penalties, our partitioning optimization defines the height of regions with large power penalty as 8 T (e.g., region
defined by black boundaries) and the height of regions with large timing penalty as 12 T (e.g., regions in yellow-dotted boxes).

(a) (b)

Fig. 6. Examples of partitioning solutions for the AES testcase. In red are
12 T cells (with mLEF); and in blue are 8 T cells. Yellow lines are cuts. The
cell height of a partition is marked on its side. β = 1, λ = 0, and η = 0.
(a) Cut number = 5 and cost = 4818 μm2. (b) Cut number = 10 and cost =
4584 μm2.

user-defined parameter.9 Specifically, the for loop in line 2
sweeps the number of cuts. The for loops in lines 3–6 further
enumerate all regions to optimize with a given minimum grid
size (i.e., �x × �y), where (xl, yb) and (xr, yt) are, respec-
tively, the coordinates of the lower-left and upper-right corners
of a region, and (Xl, Yb) and (Xr, Yt) are, respectively, the
coordinates of the lower-left and upper-right corners of the
design block. Fig. 6 and its caption tell us that the total cost
within partitions reduces as the number of cuts increases.10

However, the area cost of breaker cells increases with the
number of cuts. We therefore sweep the number of cuts during
our partitioning optimization and select the solution with the
minimum total cost.

To find the best partitioning solution of a region
(xl, yb, xr, yt) using exactly k cuts, we observe that such a
solution can always be seen as a single “top-level” cut, along
with the best solutions of the two subregions induced by that
cut. Hence, to find the best k-cut solution, we enumerate all
potential vertical and horizontal cuts of the region (where x
and y in line 7, respectively, indicate the location of the vertical
and horizontal cuts), and select the solution that minimizes the
sum of the costs of the two separate parts (subregions)—with
respective number of cuts k′ and k′′ satisfying k′+k′′ = k−1—
plus the cost of the single vertical or horizontal top-level cut.

9In our experiments, we set K to a large value (e.g., 30 for a
100 μm×100 μm floorplan) in order to ensure good solution quality.

10For clarify of illustration, we only consider the component of area cost
in Fig. 6, which is indicated by the amount of red (12 T) or blue (8 T) area
in the figure. Therefore, the costs are measured in units of μm2.

Fig. 7. Runtime of DP-based partitioning with number of grids (i.e., M×N)
varying from 400 to ∼6000 using a single thread on a 2.5 GHz Intel Xeon
server. The maximum cut number is fixed at 40.

Note that the proposed partitioning comprehends the area cost
of breaker cells, for which width = 4 · wsite for a vertical
cut, and height = d for a horizontal cut (line 7). For the
example shown in Fig. 3, d must be larger than 64 nm. The
procedure terminates when the cost does not decrease with
an increased cut number (line 13), or the maximum cut num-
ber K is achieved (line 16). To improve the scalability, we
divide the block area into M × N grids (where M and N
are also user-defined parameters), and perform the proposed
partitioning method on these grids. The runtime complexity
of the procedure is O((M+N)(M ·N ·K)2). Fig. 7 shows the
empirical runtime of our dynamic programming (DP)-based
partitioning. We observe that partitioning with no larger than
50 × 50 grids and 40 cuts requires less than 10 min using a
single thread on a 2.5 GHz Intel Xeon server. It must be noted
that, as an initialization step, we traverse all cell instances in
the design to estimate the potential cost of each grid. The
corresponding runtime complexity of this initialization step
is O(G), where G is the total number of cell instances. In
practice, this initialization requires less than one minute for a
design with 60 K instances.

B. Timing-Aware Placement Legalization

Based on the partitioning solution, we perform iterative
optimization to achieve a legal placement. Note that we still
use mLEF at this optimization stage, but boundaries and cell
heights of regions have been defined. We apply two knobs in
our iterative heuristic: 1) displacement of a cell (e.g., mov-
ing a 12 T cell from an 8 T region to a 12 T region) and

860 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

Algorithm 2 Heuristic to Legalize Placement

1: while there exists a cell with a different height than its partition do
2: list← ∅
3: for all cell g with a different height than its partition do
4: calculate cost function of g
5: add g to list
6: end for
7: sort list in order of decreasing cost
8: swap_cnt← 0
9: for all g ∈ list do

10: apply displacement/swapping based on cost function
11: incremental timing analysis
12: if slack of g < min(0, original slack of g) || whitespace_of_grid < ω then
13: undo change
14: else
15: ++swap_cnt
16: end if
17: if swap_cnt ≥ γ · total_gate_count then
18: apply ECOs in Innovus
19: correlate internal timer with Innovus
20: for all cell g in the design do
21: downsize g
22: incremental timing analysis
23: if slack of g < min(0, original slack of g) then
24: undo change
25: end if
26: end for
27: if WNS ≤ −θ · clock_period then
28: fix maximum transition violations
29: timing recovery
30: apply ECOs in Innovus
31: correlate internal timer with Innovus
32: end if
33: end if
34: end for
35: end while

2) cell-height swapping (e.g., assign an 8 T cell to a 12 T cell
master in a 12 T region via gate sizing). Both of these knobs
affect timing, and cell-height swapping also affects area. Thus,
to ensure that the optimization does not lead to large design
quality degradation, we evaluate the timing and area impacts
of each potential move (one move is a cell displacement or a
cell-height swap).

Because timing analysis with commercial P&R tools is typ-
ically slow, our optimization approach requires a relatively
accurate and fast timing engine. We have developed an internal
timing analysis engine (i.e., internal timer) to guide the opti-
mization. Our internal timer estimates gate delay and slew at
an output pin based on the liberty lookup tables. It further
uses D2M [1] and PERI [11] models that, respectively, esti-
mate wire delay and slew propagation along the interconnect.
Wirelength change due to cell displacement is measured by
net half-perimeter wire length (HPWL), and wire capacitance
and resistance are scaled correspondingly. More specifically,
we scale a given net’s latest correlated (with the P&R tool)
wire parasitics by a ratio WLcur/WLcorr, where WLcur is the
net’s current HPWL and WLcorr is the net’s HPWL in the
placement corresponding to the latest correlation with the P&R
tool. This gives us an approximate estimation of updated (i.e.,
current) wire parasitics, and hence of the net’s wire parasitic
change. To correlate the internal timer with the P&R tool
(line 19 in Algorithm 2), we update cell locations, sizes, and
threshold voltage (VT) types in the P&R tool through a Tcl
socket, and use the P&R tool to perform placement legaliza-
tion, trial route, parasitic extraction, and timing update. We
then update the cell locations, wire parasitics in our internal
timer correspondingly. We apply a slack offset at each pin to
match the internal timing slacks to those from the P&R tool
following the general approach of [9] and [13].

To comprehend wire congestion effects, we add a penalty
in the form of wire resistance and capacitance scaling, based

Fig. 8. Framework of our optimization.

on routing demand versus supply overflows within the bound-
ing box of a given net. We estimate overflow based on the
trial routing solution from Cadence Innovus Implementation
System v16.1 [20]. More specifically, if the average horizon-
tal (resp. vertical) routing congestion within the bounding box
of a net is X%, we penalize the horizontal (resp. vertical)
portion of HPWL by a multiplicative factor of (X%-Xth%)
whenever X > Xth. Here, Xth% is a threshold that we set
to 95% based on separate studies. The value Xth% = 95%
is used in all experiments reported below.11 To maintain the
accuracy of our internal timer, we correlate timing slack, wire
capacitance, and overflow information during the optimization
through a Tcl socket with Cadence Innovus Implementation
System v16.1 [20]. Fig. 8 shows our optimization framework.
We believe that our internal timer approach most closely
resembles that of the previous work [9]; however, our internal
timer better comprehends the impact of cell displacement on
timing by considering both wirelength change and routing
congestion information.

Algorithm 2 describes our heuristic to legalize the place-
ment. We first evaluate the cost (in terms of area and timing)
of each potential move (i.e., cell displacement or swapping)
(line 4). We consider cell displacement in eight directions (i.e.,
{N, S, E, W, NE, NW, SE, SW}) with the maximum movement
distance of D (D = 15 μm in our experiments). The set of
candidate cell displacements is similar to what is applied in
the local optimization of [7]. For cell-height swapping, we
consider candidate library cells whose heights match that of
the partition. We use the cost function shown

cost = α · max(0,−�slack)

max
(
1ps, slackorig

)

+ (1− α) · max(0,�area)

max
(

1μm2, whitespaceorig

) (4)

where �slack and �area are, respectively, the timing slack
and cell area changes due to displacement and/or swapping.
slackorig and whitespaceorig are the original timing slack of
the cell and whitespace of the corresponding grid. We divide
the block area into an M × N mesh of grids. For each grid,
we estimate whitespace based on placement utilization. The
parameter α is a weighting factor, which has an initial value
of 0.5. We adaptively change the value of α for each cell
during the iterative optimization, such that when an attempt

11For example, if the average horizontal congestion is 98%, we multiply
the x-component of HPWL by 1.03 = 0.98/0.95.

DOBRE et al.: DESIGN IMPLEMENTATION WITH NONINTEGER MULTIPLE-HEIGHT CELLS 861

leads to timing violation (resp. placement utilization violation),
we increase (resp. decrease) α of the cell by 1.5×.

The cost function (4) only considers area and timing impacts
due to each move. In separate studies, we have also included
input pin and wire capacitance, as well as leakage power, into
our cost function for legalization moves. However, the resul-
tant solutions show negligible improvement (e.g., <1%) in
terms of power, area, and timing. This might be due to the
positive correlations among area, pin capacitance, and leak-
age power. Furthermore, we adaptively change the value of
α during our optimization. As a result, we observe from our
experiments that moves with small area and power costs are
typically selected during the early steps. As the value of α
increases, moves with small delay penalties are selected during
the late-stage legalization.

We sort all cells which have different height than their par-
tition in decreasing order of cost, and apply moves to legalize
the placement (line 7). When a move results in timing fail-
ure or violation of placement density, we undo the move
(lines 12-13); here ω is the required whitespace according to
the area of breaker cells and maximum placement density con-
straints.12 We rely on the commercial P&R tool (i.e., Innovus)
to perform incremental placement legalization. By considering
the placement density, we minimize the impact of potential
displacement on the cells that are already legalized. To ensure
the convergence of the flow (i.e., that optimization can lead to
a legalized placement), we commit the move of a cell which
has been visited F times, regardless of its impact on timing
and area. We use F = 5 in our optimization.13 In addition,
we apply a form of Tabu search [5] during the optimization to
increase the likelihood of finding feasible solutions for cells.
Specifically, we record the latest three attempts and forbid
these moves for the current move of optimization. During the
optimization, we (re-)correlate our internal timer with Innovus
in terms of timing slack/slew, cell location, wire parasitic, and
routing, overflow after every γ % of the total number of cells
has been changed (lines 17–19), so that cost function terms
will be estimated based on accurate timing and placement den-
sity information. We use γ = 2 in our optimization.14 We
also include area recovery (lines 20–26) and timing recov-
ery (lines 27–32) in our optimization to maintain timing and
area quality. The parameter θ is a threshold of slack violation
that triggers timing recovery; we empirically set this to 0.15.
Note that during the timing recovery, we perform backward
(in which we downsize fanout cells) and forward (in which
we upsize cells) maximum transition violation fixes, which
enhance the timing recovery quality.

12In our experiments, we set the maximum placement density of the entire
block as the placement density from the initial placement plus 5%.

13We observe in our experiments that the number of cells which have been
visited six times without a feasible solution is quite small, e.g., less than 60 in
a design with 15 K cells. Moreover, although such a move will cause density
violation within a grid, the neighbor grids typically have enough whitespace
for placement legalization (i.e., the placement density constraint of a partition
can still be met). However, for a high-density design, the move of a cell must
ensure that the placement density of a partition does not exceed the density
constraint. Otherwise, a repartitioning step might be required.

14In our experiments, each correlation of our internal timer with Innovus
takes ∼20 s on a design with 15 K instances and ∼42 s on a design with 60 K
instances. The number of correlations highly depends on the initial partitioning
solution (i.e., number of cell instances to be legalized). We empirically observe
from our experiments that the correlation takes ∼15% of the total runtime of
our optimization, which includes partitioning, placement legalization, and cell
mapping.

TABLE II
USER-DEFINED PARAMETERS

We observe from our experimental results that the ratio
between the number of cells being swapped and the num-
ber of cells being displaced ranges from 1.2 to 5.4. This ratio
seems highly dependent on the partitioning solution, timing
constraints, netlist structure, etc. For instance, fewer parti-
tions and/or tighter timing constraints can lead to more swaps
relative to displacements.

We list all the user-defined parameters applied during
partitioning and placement legalization in Table II.

C. Mapping From mLEF to Original LEF in
Assigned Regions

As discussed above (e.g., in the context of Fig. 4), we use
mLEF with adjusted aspect ratios for cell layouts during the
initial placement, partitioning, and legalization stages, where
all cells have the same height (i.e., the minimum cell height h0)
but scaled cell widths. When the placement solution is legal-
ized (i.e., each cell instance is placed in a region with the same
height), we update the floorplan to insert cell rows according
to the actual cell height of each partition. We also allocate
space to model the area cost of breaker cells in the updated
floorplan. Thus, there are two distinct optimizations that we
apply—cross-row cell displacement and cell mapping—which
we describe next.

Cells with the minimum height have their original layout
aspect ratios in mLEF, and therefore no aspect ratio changes
are needed to map these cells in the updated floorplan. In a
partition with the minimum cell height, we only remove over-
laps between cell instances and breaker cells. In other words,
we perform cross-row cell displacement to ensure that the total
cell width (i.e., total number of placement sites) in a row does
not exceed the available number of placement sites with the
existence of breaker cells (which are modeled as spaces in our
experiments).

Algorithm 3 describes our cross-row cell displacement
procedure. We perform four iterations of cross-row cell dis-
placements. The first and the third iterations are top-to-bottom,
traversing from the topmost row to the bottommost row, and
optimizing one row at a time. The second and the fourth
iterations optimize similarly, but in a bottom-to-top manner.
Furthermore, in the first and second iterations, we move cells
to adjacent rows only if there is enough space in the adja-
cent rows. In the third (resp. fourth) iteration, we force cells
to move to the lower (resp. upper) adjacent row regardless
of available space in the adjacent row. This strategy enables
chained moves of cells across rows. In Algorithm 3, k is the
row index, which ranges from 1 (the bottommost row) to R
(the topmost row); Wi is the total cell width in the ith row;
Wmax

i is the maximum allowed cell width in the ith row; w(g)
is the width of cell g; � records the HPWL increase due to
cross-row cell displacement; and function move(g, dir) moves

862 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

(a) (b)

Fig. 9. Example of cross-row cell displacement (an 8 T region located at the
lower-left corner of the DMA block). (a) Before cross-row cell displacement.
In blue are 8 T cells. In gray are 12 T cells. (b) After cross-row cell displace-
ment. In green are breaker cells. Breaker cells introduce routing blockages on
M1/M2, whereas ports (in yellow) are placed on M3 and above.

Algorithm 3 Cross-Row Cell Displacement

1: for k := 1 to 4 do
2: for all ith row in the partition do
3: while ith row has capacity/overlap violation do
4: �min ←+∞; gmove ← ∅
5: for all g ∈ ith row do
6: if i �= 1 && (Wi−1 + w(g) ≤ Wmax

i−1 || k == 3) then
7: �← HPWL increase by moving g to (i− 1)th row
8: if � < �min then
9: �min ← �; gmove ← g; dir = down

10: end if
11: end if
12: if i �= R && (Wi+1 + w(g) ≤ Wmax

i+1 || k == 4) then
13: �← HPWL increase by moving g to (i+ 1)th row
14: if � < �min then
15: �min ← �; gmove ← g; dir = up
16: end if
17: end if
18: end for
19: if gmove == ∅ then
20: break
21: else
22: move(gmove, dir)
23: end if
24: end while
25: end for
26: end for

cell g to the row that is adjacent in direction dir. After the
cross-row cell displacements, we perform single-row incre-
mental placement optimization using dynamic programming
to further reduce wirelength.15 Fig. 9 shows an example of
our cross-row displacement optimization.

On the other hand, cells originally having large height (i.e.,
larger than the minimum cell height) become shorter and wider
in mLEF. We must recover the original aspect ratio of cell
layouts in the updated cell rows with actual cell heights. For
example, assume that there are 20 10 T cells uniformly placed
in five 8 T cell rows (i.e., as a 5 × 4 mesh). To update the
floorplan, we maintain the same partition area and place cell
rows according to the height of the partition. We therefore have
four 10 T cell rows. Given that the layout of these 10 T cells
(with the same cell area) are scaled back to their original height
with a reduced cell width, five cells now can fit into one row in
the updated floorplan. The mapped cell placement becomes a
4 × 5 mesh. Note that in this mapping procedure, the region
outlines are fixed, and we only update the cell row height
within each region [as illustrated in Figs. 4(b)–(c) and 11]. As
shown in the example, cell mapping in the updated floorplan

15Our dynamic programming formulation is the same as the “minimum
HPWL” formulation in [10]. Formulation details are given in [10].

(a)

(b)

Fig. 10. Illustration of graph embedding (a) from [4] and (b) for proposed
cell mapping. Vertical connections are not shown.

can be viewed as embedding a graph to another graph with a
different aspect ratio (e.g., embed a 5 × 4 mesh to a 4 × 5
mesh). We therefore revisit the graph embedding literature.

Ellis [4] showed that to embed a 2-D mesh of size w × h
(with unit distance between every two adjacent nodes in both
horizontal and vertical directions) to another 2-D mesh of size
w′ × h′, where w′ < w and h′ is the smallest integer satisfying
w′ · h′ ≥ w · h, if (w/w′) is no larger than 2, the maximum
wirelength of a two-pin net (in Manhattan distance) in the
embedded graph is no more than two units. An example with
(w/w′) = (5/4) is shown in Fig. 10(a): the wirelength of each
connection in the original graph is one, and the maximum
wirelength in the embedded graph (i.e., the diagonal connec-
tion) is two. Note that our optimization of cell mapping differs
from [4], in that [4] varies the area of the graph (i.e., mesh)
while our optimization assumes a fixed mesh area (i.e., area
of a partition).

Following the discussions in [4], we can show that if we
map a 2-D-mesh placement with cell height h0, in which all
cells have the same cell area, to another 2-D-mesh placement
with cell height h1, the maximum wirelength scaling of a
mesh edge (i.e., two-pin net) according to the mapping is no
more than (h0/h1) + (h1/h0).16 Fig. 10(b) shows an exam-
ple with 10 T and 8 T cells. Assuming unit wirelength for
each two-pin connection between any horizontally or verti-
cally adjacent cells in the original 2-D-mesh placement, the
maximum wirelength increase is 1.05.

Inspired by the graph-embedding theory, we propose an
approach to map cells to cell rows with original cell heights
for general cases, in which cells have different widths and
are not necessarily placed in a 2-D mesh. Algorithm 4 shows
our procedure to map cells from an initial floorplan with R
rows of height h0 to an updated floorplan with R′ rows of
height hj. We first estimate the average total cell width of
each cell row in the updated floorplan (line 1), in which g
is a cell in partition Pj; w(g) is the actual width of cell g
corresponding to height hj. We then store cells in the ith row
from the initial floorplan into list1 and sort them by increasing
order of their X-coordinates (lines 5–6). For each cell on the
(i+1)th row of the initial floorplan, we estimate the wirelength
(i.e., HPWL) difference between the case of assigning the cell
to the (i′)th row of the updated floorplan versus the case of
assigning the cell to the (i′ + 1)th row of the updated floor-
plan (lines 9-12). We then sort the cells on the (i+ 1)th row
of the initial floorplan by the corresponding delta wirelength

16Proof details are given in [4].

DOBRE et al.: DESIGN IMPLEMENTATION WITH NONINTEGER MULTIPLE-HEIGHT CELLS 863

Algorithm 4 Cell Mapping

1: Wavg = (
∑

g∈Pj
w(g)) /R′

2: i = 1
3: list′ ← cells in ith row from the initial floorplan
4: for i′ := 1 to R′ do
5: list1 ← list′
6: sort list1 in order of increasing cells’ X-coordinate
7: W ← total width of list1
8: ++i
9: for all cell g in ith row from the initial floorplan do

10: �(g)← HPWL_diff (g, i′, i′ + 1)

11: list′.push(g)

12: end for
13: sort list′ in order of increasing �(g)

14: while list′ �= ∅ && W ≤ Min(1.05 ·Wavg, Wmax
i′) do

15: g← list′.pop()

16: list2.push(g)

17: W ← W + w(g)

18: end while
19: sort list2 in order of increasing cells’ X-coordinate
20: if list′ == ∅ then
21: ++i
22: list′ ← cells in ith row from the initial floorplan
23: end if
24: DPPlace(i′, list1, list2)

25: end for

values (line 13). We iteratively add these cells to list2 until
the total width of cells in list1 and list2 exceeds 1.05× of the
average total cell width of each row (Wavg) or the maximum
allowed total width in the (i′)th row (Wmax

i′ , where the width
of breaker cells is considered) (lines 14–18). If all cells from
list’ are added to list1 and list2, we fill list’ with cells from
the next row in the initial floorplan (lines 21–22). Finally, we
use dynamic programming to order and place cells from list1
and list2 onto the (i′)th row in the updated floorplan. In sum-
mary, lines 1–23 of Algorithm 4 determine Y-coordinates of
cells and optimize the vertical component of HPWL; while the
DPPlacer(i′, list1, list2) further minimizes the horizontal com-
ponent of HPWL. As an improvement to [8] which also uses
dynamic programming to optimally order two rows of cells
into a single row with minimized wirelength, our formula-
tion also determines the optimal cell locations. The recurrence
relation in our dynamic programming optimization is

sol(i, j, k) = Min

{
sol(i, j, k − 1)
sol(i− 1, j, k − w(gi))+ cost(gi, k)
sol(i, j− 1, k − w(gj))+ cost(gj, k)

where sol(i, j, k) is the wirelength corresponding to the optimal
placement solution of the first i cells in list1 and the first j cells
in list2 within the first k placement sites in the updated cell
row; gi is the ith cell in list1; gj is the jth cell in list2; w(g)
is cell width (i.e., in terms of the number of sites) of g; and
cost(g, k) is the HPWL increase by allocating g (i.e., right
edge of g) at the kth placement site.

Fig. 11 shows an example of our cell mapping optimization.
With a fixed region outline, we map 21 rows of 12 T cells in
8 T height (i.e., using mLEF) to 14 rows of 12 T cells in 12 T
height. Fig. 11 also shows inserted breaker cells around the
12 T region.

Fig. 12 shows the optimized wirelength (i.e., HPWL)
comparison between our proposed method (using dynamic
programming) versus a greedy method proposed in [3].
We observe that our proposed optimization achieves up to
16% wirelength reduction compared to the greedy method.
Furthermore, it is obvious that the proposed algorithm can
achieve the mapping solution or a solution with the same total
wirelength shown in Fig. 10(b). We note that the procedure

(a) (b)

Fig. 11. Example of cell mapping (a 12 T region located at upper-right
corner of the block). (a) Before mapping optimization. 12 T cells (in red) are
of 8 T cell height. In gray are 8 T cells. (b) After mapping optimization. 12 T
cells (in red) are of 12 T cell heights. (8 T cells are moved to neighboring
8 T regions.) In green are breaker cells. The mapping of five specific cell
instances is shown by labels 1−5.

Fig. 12. Wirelength comparison between our dynamic programming-based
optimization versus a greedy optimization in [3]. Wirelength values are
normalized to the wirelength before cell mapping.

TABLE III
BENCHMARKS

described in Algorithm 4 only applies to the case, where the
ratio between hj and h0 is no larger than two. We can easily
extend our mapping procedure to address cases with height
ratio greater than two by extending our dynamic programming
formulation to optimize more than two lists of cells.

V. EXPERIMENTAL RESULTS

We perform experiments in a 28 nm LP foundry technology
with dual-VT libraries, 0.95 V nominal supply voltage, and
cell height choices 12 T and 8 T. To confirm that our optimiza-
tion can perform a fine-grained mixed cell-height implementa-
tion, we select four design blocks (AES, DES, JPEG, MPEG)
from the OpenCores [17] website. Parameters of these four
testcases are shown in Table III. For each design, we deter-
mine a range of clock periods starting from a clock period
with relative loose timing constraint, up to the clock period at
which the 8 T-only implementation shows setup timing viola-
tions. These designs are synthesized using Synopsys Design
Compiler vI-2013.12-SP3 [18] and then placed and routed
using Cadence Innovus Implementation System v16.1 [20].

864 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

Fig. 13. Inserted space on the boundaries between 12 T and 8 T regions to
model the cost of breaker cells.

In our experiments, we set the gate density at the floorplan
stage as 60% and the aspect ratio of the floorplan as 1. We
use the same commands and options for placement, post-
placement optimization, clock tree synthesis (CTS), post-CTS
optimization, routing and post-routing optimization for single-
height and mixed-height cases. We, respectively, use Cadence
Innovus Implementation System and Synopsys PrimeTime-PX
vH-2013.06-SP3 (PT-PX) [19] for timing and power analysis
at the post-routing stage and wire parasitics (standard parasitic
exchange format) obtained from Innovus. We use Synopsys
PrimeTime vH-2013.06-SP2 [19] to search for the minimum
supply voltage that satisfies a given frequency target. Our opti-
mization flow is implemented in C++. Functions used in P&R
tools and the socket between our optimizer and the P&R tool
are implemented in Tcl. We conduct our experiments on a
2.5 GHz Intel Xeon server.

Modeling Breaker Cell Costs: The placement site pitch
(width) and the M2 metal pitch in the 28 nm LP technology
that we use are, respectively, 0.136 μm and 0.1 μm. Based
on the discussion in Section III, the horizontal and vertical
shifts between any 8 T and 12 T regions must be no less than
0.544 μm and 0.1 μm, respectively. In our experiments, we
shift cell rows by 0.8 μm in the vertical direction between any
12 T and 8 T regions (Fig. 13).17 We also insert placement
and routing blockages correspondingly. In FinFET technology,
layout constraints for mixed-height design become more com-
plicated (e.g., fin alignment). To evaluate the impact of breaker
cell cost, we perform experiments with up to 3.5X area cost
of the breaker cell in 28 nm technology. Results in Fig. 14
show small performance and power degradation when breaker
cell area is <∼2X. When breaker cell area increases beyond
∼2X, timing violation increases due to placement and routing
congestion.

A. Performance-Area Tradeoff Comparison

We implement our benchmark designs using our proposed
flow with mixed 8 T/12 T cells. We also perform con-
ventional synthesis, placement, clock tree synthesis, and
routing (SP&R) with 12 T-only cells and 8 T-only cells
for comparison. The designs are implemented with clock
periods shown in Table III. We use the nominal voltage
0.95 V at (SS, 125 ◦C) corner for design implementation and

17Due to the lack of mixed-height implementation flow in commercial P&R
tools, we implement a mixed-height design using a multiple power domain
flow in Innovus [20], where regions with different cell heights are defined
as different power domains. Such a flow allows different cell row heights
within a design block. Further, due to the limitation of the commercial P&R
tools, we insert space between regions (by defining the “minGap” attribute)
to model the breaker cell area cost. As a result, cell rows must be aligned
and the minimum vertical shift is 0.8 μm instead of 0.1 μm.

Fig. 14. Results with different breaker cell area cost values. Design: AES.
Frequency: 1.5 GHz.

timing analysis. Table IV shows our experimental results, in
which the clock period is the clock period used for imple-
mentation and each benchmark design is implemented in four
clock periods. Total power values are reported at the sig-
noff frequency. We divide the block area of each design into
grids of size around 6 μm × 6 μm for partitioning (i.e.,
�x = 6 μm and �y = 6 μm) as illustrated in Section IV-A,
and for placement density constraint evaluation as illustrated in
Section IV-B. Fig. 15 further shows the Pareto curves illustrat-
ing tradeoffs between performance and area of implemented
designs at the post-routing stage, where the frequency given
is the maximum achievable operating frequency.

Results show that by mixing 8 T and 12 T cells, our opti-
mization achieves significant area reduction (e.g., over 20%
on design AES) compared to designs with only single-height
cells, especially for comparison to 12 T-only designs (e.g.,
over 30% area reduction on design AES).18 This is because
mixed cell heights provide a wider range of tradeoff between
performance and area such that 8 T cells are applied to tim-
ing paths with large slacks for area reduction, and 12 T cells
are used in timing-critical paths to meet timing constraints.
Furthermore, with loose timing constraints, the area benefit of
mixed cell-height designs over 8 T-only designs reduces. On
the other hand, mixed cell heights also have similar or even
higher maximum achievable performance compared to designs
with only single-height cells. For instance, we observe up to
13% performance improvement from mixed cell heights over
8 T-only designs (i.e., on design AES). This is because the
maximum achievable performance of an 8 T-only design is
limited by the weak drive strengths of 8 T cells. Moreover,
mixed cell heights are able to have more compact area, which
reduces wire capacitance, as well as smaller pin capacitance
(i.e., by using 8 T cells) on nontiming critical fanouts of a
timing-critical driver (which is typically a 12 T cell) compared
to 12 T-only designs.

Experimental results also show that our optimization with
mixed cell heights offers comparable routed wirelength com-
pared to 8 T-only designs and smaller routed wirelength

18Note that our mixed-height optimization on design AES (clock period =
800 ps) results in a 8 T-only design, but with 27% area reduction compared
to that of the 8 T-only implementation. This might be due to pessimism and
a large number of inserted buffers during the synthesis stage of the 8 T-only
flow. Specifically, at the post-synthesis and initial placement stages, the mixed-
height design (which contains 18% 12 T cells) achieves 5% area reduction
and 7% power reduction compared to the 8 T-only design. Moreover, our
partitioning solution swaps all 12 T cells in the mixed-height design to 8 T
cells, which results in 25% load pin capacitance reduction on average for
each cell, and hence further reductions of area and power (but without timing
violation due to the loose timing constraints).

DOBRE et al.: DESIGN IMPLEMENTATION WITH NONINTEGER MULTIPLE-HEIGHT CELLS 865

TABLE IV
PARAMETERS AND RESULTS OF IMPLEMENTED DESIGNS

Fig. 15. Pareto curves of performance-area tradeoff for implementations with 8 T-only, 12 T-only and mixed cells.

compared to 12 T-only designs, which is mainly due to our
wirelength-aware cell mapping and reduced total cell area (i.e.,
a more compact layout). Furthermore, in our experimental

flow we use command ccopt_design from Innovus to per-
form clock tree synthesis. Results show that our optimized
designs with mixed cell heights have similar clock tree metrics

866 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

Fig. 16. Iso-performance power comparison with voltage scaling among implementations with 8 T-only, 12 T-only, and mixed cells.

(i.e., total buffer area and clock tree wirelength) compared
to designs with only single-height cells. This indicates that
our optimization does not incur any power and area penal-
ties with respect to the clock tree synthesis optimization. As
described in Section IV-A, we use four sets of (β, λ, and
η) values to perform optimization and select the minimum-
power outcome. In our experiments, we perform the four
implementations in parallel and report the runtime corre-
sponding to the minimum-power solution in Table IV. On
the downside, we observe in our experiments that includ-
ing more libraries (i.e., with mixed cell heights) typically
increases the runtime of commercial SP&R tools. Furthermore,
although we apply our internal timer during the placement
legalization, the incremental timing analysis, placement legal-
ization, and trial routing used for correlation also incur
runtime overhead. Therefore, our mixed-height implementa-
tions are achieved at the cost of larger runtimes compared to
single-height cases.

B. Iso-Performance Power Comparison

Given that certain designs have timing violations, to achieve
a fair power comparison we perform voltage scaling on
each design so that all designs meet the timing constraints.
We then compare power at the scaled supply voltage. In
our experiments, we define scaling_lib_group in the PT-PX
tool to enable such comparisons. Note that to compensate
the slack discrepancy between Innovus and PrimeTime, we
apply a constant slack shift (i.e., the difference between the
WNS from PrimeTime versus the WNS from Innovus) of the
entire block to correlate the post-routing worst slack values,
then perform voltage scaling. When the difference between
the scaled voltage and the signoff voltage is larger than
30 mV, we perform SP&R with the scaled voltage and use
the smaller power value between that of the initial imple-
mentation and that of the additional implementation in our
comparison.

Fig. 16 shows the iso-performance power comparison. We
observe that 8 T-only designs typically have smaller power
compared to 12 T-only ones. The exception of design MPEG
with frequency = 1.8 GHz might be due to a larger number
of buffer insertion as well as voltage scaling in the 8 T-only
design to meet the performance constraints. Moreover, our
optimized designs with mixed cell heights provide power
reduction compared to 8 T-only and 12 T-only designs. Such
power reduction mainly comes from reduced cell area and
wirelength, as well as power-awareness in our partitioning
optimization. Similarly to area benefit, power benefit from
mixed heights over 8 T-only designs also reduces at a loose
timing constraint.

Fig. 17. Layout of AES_macro with mixed-height optimization. In gray is
the placement blockage. In red are 12 T cells. In blue are 8 T cells.

(a) (b)

Fig. 18. (a) Delay-area tradeoff and (b) delay-power tradeoff, of 8 T, 10 T,
and 12 T buffers/inverters in 28 nm LP foundry libraries. Corner: (SS, 0.95 V,
125 ◦C). Load cap = FO4 + 20 μm M3 wire.

C. Additional Validations

We further validate our optimization flow on three variants
of the design AES: 1) design AES with tight timing constraints
(AES_tight); 2) design AES with blockages to model existence
of macro blocks (AES_macro); and 3) a design containing
eight AES blocks (AES_x8). For AES_tight, we increase the
maximum frequency of AES by 20% compared to that in
Table IV. Results in Table V show that the mixed-height design
achieves more than 10% power and area reductions, as well as
better timing, compared to the 12 T-only design. Although the
8 T-only design shows smaller power and area compared to the
mixed-height design, the 8 T-only design has huge timing vio-
lations. Furthermore, we implement design AES with inserted
placement blockage (i.e., AES_macro) to model the existence
of macro blocks (as illustrated in Fig. 17). We extend our opti-
mization flow in several ways to comprehend the existence of
macro blocks: 1) we treat a grid that is occupied by a macro
block as having zero cost during our DP-based partitioning
step; 2) we comprehend placement blockages during our place-
ment legalization using placement density constraints; and

DOBRE et al.: DESIGN IMPLEMENTATION WITH NONINTEGER MULTIPLE-HEIGHT CELLS 867

Fig. 19. Pareto curves of performance-area tradeoff for implementations with 10 T-only and mixed (8 T+12 T and 8 T+10 T+12 T) cells.

Fig. 20. Iso-performance power comparison with voltage scaling among implementations with 10 T-only and mixed (8 T+ 12 T and 8 T+ 10 T+ 12 T)
cells.

TABLE V
RESULTS OF VARIOUS AES DESIGNS

3) we avoid overlaps with macro blocks during our cell map-
ping optimization. Results in Table V show more than 14%
reductions in power and area with our mixed-height optimiza-
tion, compared to 12 T- and 8 T-only implementations. Last,
to test the scalability of our optimization flow, we generate a
design containing eight AES blocks with ∼120K instances.

D. Comparison to 10 T-Only Designs

We generate 10 T cell libraries by performing interpolation
on timing and power tables of 12 T and 8 T libraries, which are

from foundry 28LP technology.19 We also generate cell LEF
by scaling area of cells proportional to cell drive strengths
according to area and drive strength information of 8 T and
12 T cells. In other words, we use the 8 T cell layouts from
foundry technology, and scale their area accordingly to the
10 T cells’ driving strength. Therefore, 10 T cells offer aver-
aged performance-area and performance-power tradeoff points
between 8 T and 12 T cells. Fig. 18 shows the delay-area and
delay-power tradeoffs of 8 T, 12 T and our generated 10 T
buffers and inverters. We use the methodology described in
Footnote 1 to estimate cell area and delay. We estimate cell
power assuming an operating frequency of 1 GHz and 10%
switching activity.

Figs. 19 and 20, respectively, show performance-area Pareto
curves and iso-performance comparisons between 10 T-only
designs and mixed-height designs with 12 T and 8 T cells. We
observe significant power and area reductions from the opti-
mized designs with mixed heights over the 10 T-only designs.
This indicates that single-height designs with an optimized
performance-power/area tradeoff are not able to provide the
similar performance, power, and area benefits compared to
mixed cell-height designs which are able to explore a wider
range of tradeoff among performance, power, and area.20

Moreover, we perform mixed-height optimization with 8 T,
10 T, and 12 T cells as an example to demonstrate the scal-
ability of our methodology to more than two cell heights.
The black curves and dots in Figs. 19 and 20, respectively,
show performance-area and performance-power tradeoffs of
the optimized design with three cell heights. Results show
similar design quality between the mixed-height solutions with

19As an example, with given input slew and output load capacitance, a
10 T 1X buffer’s delay is the average of the delay of an 8 T 1X buffer and
the delay of a 12 T 1X buffer with the same input slew and load capacitance.

20For our benchmark designs and selected clock periods, 8 T (resp. 12 T)
cells typically lead to timing violations (resp. power and area overheads). We
therefore consider 10 T cells to have an optimized performance-power/area
tradeoff.

868 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 4, APRIL 2018

8 T and 12 T cells versus the solutions with 8 T, 10 T, and
12 T cells for most of the designs.21 On design DES, adding
10 T cells reduces power and area. The slight power increase
on design MPEG (frequency = 1.66 GHz) might come from
the noise of SP&R tools as well as our optimization.

VI. CONCLUSION

In this paper, we have proposed a novel physical design opti-
mization flow (which includes synthesis, placement, clock tree
synthesis, and routing) to mix cells with different, noninteger
multiple heights in a fine-grained manner within a single place-
and-route block. Our flow addresses the chicken-and-egg loop
between floorplan site definition and the post-placement choice
of cell heights, and correctly models (based on industry feed-
back from 20SOC and 16FF design experience) breaker cell
overheads of the mixed-height placement. Our optimization,
applied to production 12 T and 8 T libraries in a 28LP foundry
technology, can achieve over 30% area and power reductions
while maintaining performance, as compared to a 12 T-only
design flow. Moreover, our optimized mixed-height designs
can achieve significant performance increase along with area
and power reductions as compared to designs with 8 T-only
cells.

Since there are recent studies on mixing integral multiple-
height cells (e.g., [12]), one interesting future direction might
be to thoroughly compare and contrast: 1) mixing of inte-
gral multiple-height cells, which has less area penalty but
coarser-grained performance, power, and area tradeoff, ver-
sus 2) mixing of noninteger cell heights, which has relatively
finer-grained performance, power, and area tradeoff but area
cost due to breaker cells. Furthermore, to improve the scal-
ability of our optimization flow, additional future directions
might include: 1) an improved internal timer with more accu-
rate incremental timing estimation with respect to the golden
timer and 2) a parallel optimization framework to optimize
different regions of a design simultaneously.

REFERENCES

[1] C. J. Alpert, A. Devgan, and C. Kashyap, “A two moment RC delay
metric for performance optimization,” in Proc. ISPD, San Diego, CA,
USA, 2000, pp. 73–78.

[2] R. L. S. Ching, E. F. Y. Young, K. C. K. Leung, and C. Chu, “Post-
placement voltage island generation,” in Proc. ICCAD, San Jose, CA,
USA, 2006, pp. 641–646.

[3] S. Dobre, A. B. Kahng, and J. Li, “Mixed cell-height implementation for
improved design quality in advanced nodes,” in Proc. ICCAD, Austin,
TX, USA, 2015, pp. 854–860.

[4] J. A. Ellis, “Embedding rectangular grids into square grids,” IEEE Trans.
Comput., vol. 40, no. 1, pp. 46–52, Jan. 1991.

[5] F. Glover and M. Laguna, Tabu Search. Boston, MA, USA: Kluwer
Acad., 1999.

[6] L. Guo, Y. Cai, Q. Zhou, and X. Hong, “Logic and layout aware voltage
island generation for low power design,” in Proc. ASP DAC, Yokohama,
Japan, 2007, pp. 666–671.

21We understand that adding 10 T cells increases the layout solution space
and would ideally provide more fine-grained tradeoffs of performance, power,
and area, thus leading to potentially better solution quality. However, perhaps
as a result of how we generate 10 T cells (i.e., by averaging the performance,
power, and area of 8 T and 12 T cells), adding 10 T cells does not signif-
icantly expand the available area-delay or power-delay tradeoff (which can
also be observed from Fig. 18), nor does it lead to improved design quality
in our experiments. Another explanation could be the not-unexpected “limit
of incremental benefit” that one would expect from additional available cell
heights—similar to how added VT flavors or added cell sizes (“rich libraries”)
also eventually show diminishing or zero incremental returns.

[7] K. Han, A. B. Kahng, J. Lee, J. Li, and S. Nath, “A global-local opti-
mization framework for simultaneous multi-mode multi-corner clock
skew variation reduction,” in Proc. DAC, San Francisco, CA, USA, 2015,
pp. 1–6.

[8] S.-W. Hur and J. Lillis, “Mongrel: Hybrid techniques for standard cell
placement,” in Proc. ICCAD, San Jose, CA, USA, 2000, pp. 165–170.

[9] A. B. Kahng, S. Kang, H. Lee, I. L. Markov, and P. Thapar, “High-
performance gate sizing with a signoff timer,” in Proc. ICCAD, San Jose,
CA, USA, 2013, pp. 450–457.

[10] A. B. Kahng, I. L. Markov, and S. Reda, “On legalization of row-based
placements,” in Proc. GLSVLSI, Boston, MA, USA, 2004, pp. 214–219.

[11] C. V. Kashyap, C. J. Alpert, F. Liu, and A. Devgan, “PERI: A technique
for extending delay and slew metrics to ramp inputs,” in Proc. TAU,
Monterey, CA, USA, 2002, pp. 57–62.

[12] Y. Lin et al., “MrDP: Multiple-row detailed placement of heterogeneous-
sized cells for advanced nodes,” in Proc. ICCAD, Austin, TX, USA,
2016, pp. 1–8.

[13] C. W. Moon, P. Gupta, P. J. Donehue, and A. B. Kahng, “Designing
a digital circuit by correlating different static timing analyzers,” U.S.
Patent 7 823 098, 2010.

[14] H. Wu and M. D. F. Wong, “Improving voltage assignment by outlier
detection and incremental placement,” in Proc. DAC, San Diego, CA,
USA, 2007, pp. 459–464.

[15] H. Wu, I.-M. Liu, M. D. F. Wong, and Y. Wang, “Post-placement volt-
age island generation under performance requirement,” in Proc. ICCAD,
San Jose, CA, USA, 2005, pp. 309–316.

[16] H. Wu, M. D. F. Wong, and I.-M. Liu, “Timing-constrained and voltage-
island-aware voltage assignment,” in Proc. DAC, San Francisco, CA,
USA, 2006, pp. 429–432.

[17] OpenCores. Accessed on Aug. 11, 2014. [Online]. Available:
http://opencores.org

[18] Design Compiler User Guide vI-2013.12-SP3, Synopsys, Mountain
View, CA, USA, 2013.

[19] PrimeTime User Guide vH-2013.06-SP3, Synopsys, Mountain View, CA,
USA, 2013.

[20] Innovus User Guide v16.1, Cadence Design Syst., San Jose, CA, USA,
2016.

Sorin Adrian Dobre received the M.S. degree in
microtechnology from the Faculty of Electronics
and Telecommunication, Politehnica University,
Bucharest, Romania.

He is a Senior Director of technology with
Qualcomm Technologies, Inc., San Jose, CA, USA.
His current research interests include advanced tim-
ing and power methodologies for implementation of
ultralarge scale integrated system on chips, physical
design and low power optimization methodologies,
design for manufacturing and the development of

next generation computer-aided design tools using HPC and deep learn-
ing (AI).

Andrew B. Kahng received the Ph.D. degree in
computer science from the University of California
at San Diego, La Jolla, CA, USA.

He is a Professor with the Computer Science
Engineering Department and the Electrical and
Computer Engineering Department, University of
California at San Diego. His current research
interests include IC physical design, the design-
manufacturing interface, combinatorial optimization,
and technology roadmapping.

Jiajia Li received the B.S. degree in software engi-
neering from Shenzhen University, Shenzhen, China,
in 2011, and the M.S. degree in electrical engineer-
ing from the University of California at San Diego,
La Jolla, CA, USA, in 2013, where he is currently
pursuing the Ph.D. degree.

He joined the Very Large Scale Integration
Computer-Aided Design Laboratory, University of
California at San Diego, in 2012. His current
research interests include physical design and sig-
noff optimization, margin reduction, and low-power
design.

http://opencores.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

