
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2017 3045

Logic Design Partitioning for Stacked
Power Domains

Kristof Blutman, Hamed Fatemi, Ajay Kapoor, Andrew B. Kahng, Jiajia Li, and José Pineda de Gyvez

Abstract— Energy and battery lifetime constraints are critical
challenges to IC designs. Stacked power-domain implementation,
which connects voltage domains in series, can effectively improve
power delivery efficiency and thus improve battery lifetime.
However, such an approach requires balanced currents between
different domains across multiple operating scenarios. Further-
more, level shifter insertion, along with placement constraints
imposed by power domain regions, can incur significant power
and area penalties. To the best of our knowledge, no existing work
performs subblock-level partitioning optimization for stacked-
domain designs. In this paper, we present an optimization frame-
work for stacked-domain designs. Based on an initial placement
solution, we apply a flow-based partitioning that is aware of
multiple operating scenarios, cell placement, and timing-critical
paths to partition cells into two power domains with balanced
cross-domain current and minimized number of inserted level
shifters. We further propose heuristics to define regions for
each power domain so as to minimize placement perturbation,
as well as a dynamic programming-based method to minimize
the area cost of power domain generation. In an updated floor
plan, we perform matching-based optimization to insert level
shifters with minimized wirelength penalty. Overall, our method
achieves an excellent current balance across stacked domains
with less than 10% discrepancy, which results in up to more than
2× battery lifetime improvements.

Index Terms— Digital integrated circuits, low-power optimiza-
tion, partitioning algorithms, physical design, power domains.

I. INTRODUCTION

ENERGY and battery lifetime constraints induce new
and critical challenges to IC designs, especially for

mobile and Internet of Things applications. To achieve power
autonomy in the era of a slowing Moore’s law, new low-
power techniques must be exploited. While many low-power
techniques [9] have concentrated on the circuit side of system
design, power management techniques have received growing
attention due to the importance of power efficiency. Notably,
the misalignment of battery voltages compared with scaled
core voltages causes inefficiencies that present significant
opportunities for power saving. In order to better align sys-
tem on chip power domain voltages with battery voltages,

Manuscript received February 2, 2017; revised April 30, 2017; accepted
June 9, 2017. Date of publication August 1, 2017; date of current version
October 23, 2017. This paper was presented at the 2017 Asia and South
Pacific Design Automation Conference. (Corresponding author: Jiajia Li.)

K. Blutman, H. Fatemi, A. Kapoor, and J. Pineda de Gyvez are
with NXP Semiconductors, Eindhoven, 5656 AG, The Netherlands (e-mail:
kristof.blutman@nxp.com; hamed.fatemi@nxp.com; ajay.kapoor@nxp.com;
jose.pineda.de.gyvez@nxp.com).

A. B. Kahng and J. Li are with the University of California at San Diego,
La Jolla, CA 92093 USA (e-mail: abk@ucsd.edu; jil150@ucsd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2017.2729587

Fig. 1. Comparison between (a) stacked power-domain design versus
(b) conventional design. VR indicates voltage regulator. The orange
arrows indicate current from VRs. The red arrow indicates stacked
current.

stacked power domain (or voltage stacking) has been
proposed [21], [24], [27].

Fig. 1 shows the basic idea of stacked power domain.
A stacked power-domain (or stacked-domain) design connects
in series power domains that are connected in parallel in a
conventional design.1 Fig. 1 shows that one power domain
(i.e., the top domain) is placed over the other (i.e., the bottom
domain) to double the voltage and (ideally) halve the current
compared with that in a conventional design. More specifically,
if the supply voltage of a conventional design is V (i.e.,
V DD = V and V SS = 0), then the {V DD, V SS} of the
top and bottom domains in the corresponding stacked-domain
design are {2V , V } and {V , 0}, respectively. For bulk CMOS,
note that the {2V , V } top domain must be placed on a
deep n-well, so that the bulk potentials can be maintained
at (2V , V ). Moreover, in the ideal case, the current is balanced
across the two domains. The stacked-domain scheme provides
implicit 2:1 downconversion of external supplies. In light of
this, there is no need to employ a bulky supply to generate the
supply voltage for the core (i.e., gate instances and memories).
Instead, it suffices to employ a much smaller converter that
acts only as a watchdog to the supply rail that connects the
power domains. This results in increased power efficiency for
the overall system [4].

Based on the power conversion modeling proposed in [3],
we derive the battery lifetime improvement from stacked-
domain optimization as follows. (Table I lists the nota-
tions used in our discussion.) Since battery lifetime (T )
is inversely proportional to Pext, we compare Pext of a

1This paper focuses on optimization with two power domains (i.e., top
and bottom domains) and conventional planar monolithic implementation
(as opposed to 3-D integration). In other words, both stacked-domain and
conventional designs in the following discussions are planar monolithic
implementations. Stacked-domain optimization with more than two power
domains and/or in 3-D integrated circuits is left as a direction for future
research.

1063-8210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3046 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2017

TABLE I

DESCRIPTION OF NOTATIONS USED IN OUR DISCUSSION

stacked-domain design to that of a conventional design.2

By definition (see Table I), in a stacked-domain design, we
have

Pext = Pstk + PV R,in = Pstk + PVR,out/ηVR. (1)

On the other hand, in a conventional design, power is only
supplied through the VR. Thus, the total input power from the
external supply of a conventional design (P ′

ext) is calculated as

P ′
ext = Pcore/ηVR. (2)

By assuming the same core power consumption in both
stacked-domain and conventional designs, we have

Pcore = Pstk + PVR,out. (3)

Furthermore, based on the model described in [3], which
assumes that the VR power efficiency is the same for both
cases, we have

PVR,out/Pcore = IVR/(2 · Istk + IVR). (4)

Finally, based on the above-mentioned analyses, the battery
lifetime ratio between the stacked-domain design (T ) versus
the conventional design (T ′) is [3]

T

T ′ = P ′
ext

Pext
= Pcore/ηVR

Pstk + PVR,out/ηVR
= (2 · Istk + IVR)/ηVR

2 · Istk + IVR/ηVR

= 2 · Istk + IVR

2 · ηVR · Istk + IVR
. (5)

We observe that the battery lifetime benefit from a stacked-
domain implementation increases with a smaller IVR. As a
motivating example, if the current is perfectly balanced
between two domains (i.e., IVR = 0), assuming ηVR = 80%,
the stacked-domain implementation provides 25% battery
lifetime improvement over the conventional implementation.
Moreover, since the power efficiency of the VR decreases
with small supply currents, the battery lifetime benefit from
the stacked-domain implementation is expected to be higher
for designs in low-power modes that use a VR optimized for
high-power cases.

Although the stacked-domain implementation provides sig-
nificant battery lifetime improvement, it also raises nontrivial
implementation methodology challenges that must be solved.
First, the communication between the power domains must
be ensured by level shifters that can convert such extreme

2We use battery lifetime (T ) as the metric to evaluate energy improvement
achieved by our proposed methodology. We also report power values of core
(Pcore) and the entire system (Pext) from our optimization in Table III.

signal levels. Second, the power efficiency improvement is
directly dependent on the current balancing between the two
power domains. In other words, the design must be bipar-
titioned in terms of current consumption. We also note that
such a partitioning optimization must comprehend multiple
operating scenarios, area, and power penalties as well as
timing impact of level shifters, as well as additional placement
constraints imposed by region definition of power domains.
The first challenge has been thoroughly investigated, with
several different level shifter architectures having been pro-
posed [24], [27]. However, the optimization of partitioning
and layout planning of the designs has remained an open
challenge that prior works (which have mostly been ad hoc or
design-specific) do not ultimately answer for general systems.
In this paper, we address this open challenge and provide a
comprehensive optimization framework for partitioning and
floor planning of stacked-domain implementation that can be
used for a wide range of systems.

The contributions of this paper are as follows.
1) We propose a comprehensive optimization frame-

work for stacked-domain implementation. Key elements
include a flow-based partitioning with layout and timing-
path awareness, heuristics for layout region generation
of power domains, and a matching-based optimization
for level shifter insertion.

2) We are the first to propose a partitioning optimization at
the subblock level for stacked-domain implementation
that can be used for a wide range of systems.

3) We validate our optimization flow on industrial designs,
in the context of an industrial implementation flow that
includes placement, clock tree synthesis, and routing.

4) Our optimization accommodates current balancing
constraints between stacked domains, and multiple par-
titioning scenarios with respect to movement of hard
macros and logic across the stacked domains.

5) Using the power delivery block described in [4], our
optimized stacked-power domain designs achieve more
than 10% and 2× battery lifetime improvement com-
pared with the conventional designs in function and
sleep modes, respectively.

II. PREVIOUS WORK

In this section, we review the previous literature on:
1) stacked-domain implementation and 2) netlist partitioning.
Our stacked-domain optimization problem is different from
the power-island generation problem [8], [13], [28], in that
the power-island generation optimization assumes different
supply voltages for power domains and minimizes the power
overhead from voltage assignments, while our optimization
exploits charge recycling by balancing current across domains.
Moreover, many critical issues, such as timing impact of
level shifters, insertion of shifter rows, and region definition
of power domains, are not addressed in power island-related
works.

A. Stacked-Domain Implementation

The circuit blocks needed for a stacked-domain
implementation—such as level shifters and VRs—are well



BLUTMAN et al.: LOGIC DESIGN PARTITIONING FOR STACKED POWER DOMAINS 3047

studied in the literature. However, to the best of our
knowledge, no existing work is able to fully automate the
implementation flow of a stacked-domain design. Various
VRs and level shifters have been studied in [24] and [27],
but the designs used in their studies lack the complexity
of a realistic application. A smart regulation scheme has
been proposed in [21], and the studied design has relatively
higher complexity, featuring processor cores. At the same
time, in the work of [21], there is no connection between
different processor cores, which makes the partitioning
problem much simpler. Similarly, [5] and [22] only focus
on specific design Blocks, such as IO cells and memories.
A recent work [3] applies stacked-domain optimization to a
complete microcontroller unit (MCU) system designed with
a standard design flow. The partitioning approach presented
in [3] is somewhat ad hoc, and is not applicable to a general
design. By contrast, here, we present a comprehensive
optimization framework for stacked-domain implementation
that is applicable to a wider range of designs.

B. Netlist Partitioning

As a classic problem in VLSI optimization, netlist parti-
tioning has been thoroughly studied in the previous literature.
A comprehensive, still-relevant taxonomy of approaches is
given in [1]. We highlight four basic partitioning approaches.

1) Move-Based Approach: Fiduccia and Mattheyses [11]
and Kernighan and Lin [19] propose to iteratively move
or swap vertices guided by gain functions to partition a
given set of vertices into two partitions with balanced
weights and minimized number of hyperedge cuts. Important
improvements and/or extensions have been proposed, such
as multilevel extension [6], timing-path awareness [16],
multiway partitioning [17], and “lookahead” gain
functions (e.g., gain vectors, cluster-oriented iterative improve-
ment partitioner/cluster-detecting iterative improvement
partitioner, and last-in-first-out gain buckets [10], [14], [20]).

2) Mathematical Programming-Based Approach: Shih and
Kuh [26] formulate the partitioning problem as quadratic
Boolean programming to minimize the total cost of cell-to-
partition assignments as well as the number of cuts, with
respect to capacity and timing constraints. Goemans and
Williamson [12] use semidefinite programming for partitioning
optimization.

3) Flow-Based Approach: Yang and Wong [29] propose to
use repeated max-flow computations and clustering operations
to achieve a balanced bipartitioning solution. The work of [7]
documents high efficiency and relatively good solution quality
of flow-based partitioning with a min-cut objective.

4) Clustering Approach: Rajaraman and Wong [25] propose
a clustering approach to minimize the delay from primary
input (PIs) to primary output (POs) with a maximum-area
constraint for each cluster.

In this paper, we apply the flow-based approach [29] to
partition instances into two power domains. We propose sev-
eral extensions to the existing flow-based partitioning, includ-
ing layout and timing-path awareness, multiscenario weight
(i.e., current) balancing, and a prior clustering step for runtime
reduction.

Fig. 2. Overall optimization flow.

III. METHODOLOGY

We now describe our optimization framework for stacked-
domain logic design partitioning implementation. We first state
our stacked-domain optimization problem as follows.

Given: A netlist, timing constraints, level shifters, VR effi-
ciency, and switching information of instances in the netlist.

Do: Partition the netlist instances into two domains, define
the layout region of each domain, and place instances and level
shifters, such that battery lifetime is maximized.

As implied by (5), to maximize the battery lifetime, our
basic objective is to balance the current between the two
stacked power domains, while minimizing the power penalty
due to level shifter insertion.

Fig. 2 shows our overall optimization flow. A common
practice in stacked-domain implementations is to partition the
netlist (i.e., define the power domain of each instance or block)
prior to the floor-planning stage [3]. However, performing a
power domain assignment before placement can result in sub-
optimal floor-plan and placement solutions. More importantly,
the placement optimization inserts buffers and upsized cells,
which can change the current profile of each power domain.
As a result, currents that have been balanced during the
partitioning stage are no longer balanced after the placement
stage. To resolve this, we propose to perform a trial placement,
based on which we perform a layout-aware partitioning (with
minimized number of cuts as well as placement perturbations)
to assign instances to power domains.

Fig. 3(a) shows an example of our layout-aware par-
titioning solution on design advanced encryption standard
(AES) [32] in 28LP technology. Based on the partition-
ing solution, we define the layout region for each power
domain such that each domain has a continuous region
[Fig. 3(b)]. Note that since gaps must be inserted along
the boundary between two power domains, we propose a
dynamic programming optimization to minimize the bound-
ary length between two domains. We then legalize instance
placements within the (updated) region for each power
domain using a commercial place-and-route (P&R) tool [31].
We then update the floor plan by shifting the power domains



3048 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2017

Fig. 3. Example of optimization. (a) Layout-aware partitioning; (b) region
definition of power domains; and (c) level shifter insertion in the updated floor
plan. Blue: instances assigned to the bottom domain. Red: instances assigned
to the top domain. Yellow: level shifters. Design: AES (∼11K instances).
Technology: 28LP.

[as shown in Fig. 3(c)] and inserting level shifters.3 We per-
form a matching-based optimization to determine level shifter
placement locations that minimize wirelength. Although our
partitioning flow is aware of the timing-critical paths from the
trial (initial) placement, level shifter insertions and placement
legalization (according to defined power domains) can result in
timing violations. We, therefore, perform an incremental place-
ment optimization (including gate sizing and VT-swapping) to
fix timing violations (last step in Fig. 2).

A. Flow-Based Netlist Partitioning

The greedy iterative partitioning approach is not natu-
rally amenable to timing path-aware partitioning, and has no
mechanism to preserve solution structure of an initial (trial)
placement. We thus apply the flow-based approach described
in [29] to partition instances into two power domains. Our
objectives include: 1) to minimize the number of cuts, which
reduces timing, area, and power penalties from level shifter
insertions and 2) to minimize the perturbation to the initial
placement solution.

To construct the flow network, following the approach
in [29], we insert a vertex (V c

i ) for each cell or cluster of
cells. For each net, we insert two vertices (V n

j ) and a bridging
edge of unit capacity between the two vertices. For each
cell or cluster of cells incident to a net, we insert two edges
of infinite capacity between the vertex corresponding to the
cell or cluster (V c

i ) and each of the two vertices corresponding
to the net (V n

j ). Finally, the weight of a vertex corresponding
to a cell or a cluster (V c

i ) is estimated based on the current of
the cell or cluster, while the weights of vertices corresponding
to nets (V n

j ) are set as zero. Fig. 4 shows an example of the
constructed flow network corresponding to a net connecting
two cells. More details of the flow network construction are
described in [29]. As simplified illustrations, in the follow-
ing discussions, we only show graphs of logic connections
[see Fig. 4(a)] to describe our flow-based partitioning.

According to the max-flow min-cut theorem, the approach
finds the partitioning solution with the minimum number of
cuts for a given netlist via a max-flow optimization. How-
ever, this does not guarantee that the balancing constraint

3We understand that modification of the block size might not be consistent
with certain implementation flows. At the same time, we believe that perform-
ing the initial trial placement (with appropriate instance bloating) in a block
having the shape of Fig. 3(c) will not diverge significantly from the initial
trial placement in Fig. 3(a), particularly with improved (smaller) level shifter
designs. Ongoing work is aimed at a predictive (or, “one loop”) methodology
to determine the block size prior to trial placement.

Fig. 4. Example of flow network construction for a net with degree of two.
(a) shows a net connected with two cells a and b. (b) shows the corresponding
flow network, where V n

1 and V n
2 are vertices corresponding to the net;

V c
1 and V c

2 are vertices corresponding to cells a and b, respectively. Labels
on the edges are capacities.

Fig. 5. Flow-based partitioning. (a) and (b) Source and sink, respectively. All
vertices have the same weight. Red dotted lines: cuts. (a) Initial flow network.
(b) First max-flow min-cut computation. (c) Clustering operation. (d) Second
max-flow min-cut computation.

Algorithm 1 Flow-Based Partitioning

is met. To address this, after each max-flow optimization,
the approach clusters the vertices belonging to the smaller
partition together with one neighbor vertex (to avoid obtaining
the same partitioning solution) into one super vertex. Based
on the updated flow network, another max-flow optimization
is performed. The approach iteratively performs (incremen-
tal) max-flow optimization and clustering until the balancing
constraint is satisfied. In other words, the iterative max-
flow optimization and clustering procedure keeps track of
the aggregated current until the currents of two partitions
are balanced. Fig. 5 shows the basic idea of the flow-based
partitioning.

We adopt the flow-based partitioning approach to our
stacked-domain optimization with the following five exten-
sions. Algorithm 1 describes our partitioning procedure.

1) Extension 1 (Source and Sink Selection): The approach
in [29] randomly picks two nodes (instances) in the flow
network (netlist) as the source and sink nodes. However, there
are cases in which the flows between selected source and
sink vertices cannot cover the entire flow network, resulting in
unbalanced partitioning solutions. As an example, the selection
of vertices a and b as the source and sink from the flow net-
work shown in Fig. 6(a) will not be able to achieve a balanced
partitioning solution. To address this, we add a supersource



BLUTMAN et al.: LOGIC DESIGN PARTITIONING FOR STACKED POWER DOMAINS 3049

Fig. 6. (a) Choosing a/b, or c/d, or d/c as source/sink cannot lead to a
balanced solution. (b) Adding a supersource (s) and a supersink (t) resolves
the issue. Edges in black have unit capacities. Edges in red have infinite
capacities.

and a supersink and connect them to multiple vertices (e.g., PIs
and POs in a netlist, or instances located at the core boundary)
with edges of infinite capacity to minimize the number of
uncovered vertices (instances) as shown in Fig. 6(b).

2) Extension 2 (Layout Awareness): To avoid excessive
placement perturbation, which can result in current profile
changes and thus power penalty, the partitioning optimization
must be aware of trial placement locations of the instances—
such that instances partitioned into the same power domain
are placed close to each other in the original trial placement.
We achieve this required layout awareness in two ways. First,
we only select the instances located close to each other
to connect to the supersource (or supersink). As an exam-
ple, we select instances located within a particular distance
(e.g., ten cell rows) from the bottom (resp. top) core boundary
to connect to the supersource (resp. supersink). Second, after
each max-flow optimization, we detect outliers, which are
instances belonging to the larger-current partition that are
located within a region with a majority of instances belonging
to the smaller-current partition. We then cluster these outliers
with the instances from the smaller-current partition (line 6 in
Algorithm 1).

3) Extension 3 (Critical-Path Awareness): Ignoring signal
flow direction and timing path structure during the partitioning
optimization can easily result in multiple cuts along one timing
path. We extend the partitioning flow in [29] to minimize
the number of cuts along timing-critical paths. Similar to the
layout awareness extension discussed earlier, after each max-
flow optimization, we detect “V-shaped vertices” [16], which
are a sequence of instances belonging to the larger-current
partition along a timing-critical path, where the fan-in and fan-
out instances of these instances along the timing-critical path
are in the smaller-current partition. We then collapse (cluster)
the instances corresponding to the V-shaped vertices into the
smaller-current partition as long as this does not violate the
balancing constraints (line 7 in Algorithm 1).

4) Extension 4 (Preclustering): Although the max-flow
optimization can be achieved with an incremental flow com-
putation and the entire optimization takes O(N) iterations to
converge, where N is the number of instances in a design,
the runtime in practice can be substantial for a large design.
To reduce the runtime, we perform a preclustering optimiza-
tion based on the heavy-edge matching (HEM) strategy [18].
We enforce layout-awareness constraints (i.e., an upper bound
on the distance between two vertices that can be clustered)
during the HEM. Fig. 7 shows an example of the HEM
clustering up through 18 levels (clustering ratio = 0.76 at
each level), showing how instances within the same cluster

Fig. 7. HEM clustering solution. Different clusters are indicated by different
colors. (But since we are limited by 64 available colors, different clusters can
have the same color. Also, clusters with small size might not be visible from
the figure.) #Clusters = 200. Levels of clustering = 18. Clustering ratio at
each level = 0.76. Design: AES. Technology: 28LP.

are spatially proximate. Our experimental results show that
we can reduce runtime by 75% (two HEM levels and overall
clustering ratio of 0.5) with negligible degradation of solution
quality (e.g., cut number).

5) Extension 5 (Multiple Operating Scenarios): To ensure
high power efficiency across different operating scenarios,
the partitioning optimization must balance currents between
two domains across multiple scenarios (e.g., function mode
with different input vectors, and sleep mode). To achieve this,
we use the weighted sum of normalized currents from different
scenarios during our optimization (line 9 in Algorithm 1).
Specifically, the delta current is calculated as

�I =
∑

i

(
wi · ∣∣I i

top − I i
bot

∣∣ /
(
I i
top + I i

bot

))
(6)

where I i
top and I i

bot are, respectively, the currents of top and
bottom domains in the i th mode, and wi is the weighting factor
of the i th mode, such that

∑
i wi = 1.4 Our optimization

ensures that �I does not exceed a predefined upper bound
(i.e., �max in Algorithm 1).

B. Domain Region Definition

In this section, we describe our methodologies to define
the layout region (power island) for each power domain. The
definition of the layout region for each power domain affects
the design quality in two fundamental ways. First, gap area
must be inserted along the boundary between different power
domains. Therefore, a longer boundary length will lead to
higher area penalty. Second, the power domain definitions will
have downstream impact on the power delivery network (PDN)
design, which is not yet implemented at this point. Therefore,
it is desirable to adjust the power domain definitions for
minimized area, power, and performance penalties.5 If the
partitioning and the trial placement results in discontinuous
power domains, the length of the power domain boundaries
is highly likely to be longer compared with the case when
the regions of each power domain are merged. Moreover,
the power routing will be more difficult, since different power
rails will need to be routed to discontinuous power domain

4A mode is an operating scenario, such as sleep mode or function mode.
5Since the power domain definitions change after our partitioning optimiza-

tion, in our implementation flow, we perform refloor planning with updated
power grids.



3050 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2017

Fig. 8. FM-based bin movement. (a) Initial placement solution. Red and
blue: instances partitioned to top and bottom domains. (b) Yellow: outliers of
the top domain. Green: neighboring bins of the top domain. (c) Postmovement
placement, where each domain has a continuous region. (The small number
of remaining outliers is minority instances in their bins, and will be legalized
during an incremental placement.) Design: AES. Technology: 28LP.

Algorithm 2 FM-Based Bin Movement

regions. Thus, we seek to have only two regions (i.e., power
islands) corresponding to the two power domains.

Although our partitioning optimization is layout-aware,
there can still be separated regions for each power domain.
Fig. 8(a) shows an example trial placement and partition-
ing solution where the top domain (shown in red) has two
separated regions. To merge the regions while minimizing
placement perturbation (e.g., wirelength increase), we perform
an FM-based bin movement optimization (i.e., an iterative,
swap-based greedy algorithm as described in Algorithm 2).
We first divide the core area into bins. The power domain of
each bin is defined as the power domain of majority instances
within the bin. We then define the outliers (i.e., bins outside
the largest continuous region of the corresponding domain) and
neighboring bins (i.e., bins adjacent to the largest continuous
region of the different domain) (line 1). Fig. 8(b) shows an
example of outliers and neighboring bins. We calculate the
cost to swap pairs of outliers and neighboring bins (lines 2–8).
We iteratively swap the pair of an outlier and a neighbor-
ing bin with the minimum movement cost, until all outliers
[e.g., yellow bins in Fig. 8(b)] are removed (lines 9–16).

In the last step of domain region definition, we apply
dynamic programming to minimize the length of the boundary
between two power domains while maintaining the area within
each domain. As the base cases, we calculate the boundary
length decrease of each boundary segment by simplifying
the boundary shape (e.g., highlighted segment in Fig. 9).
We note that such simplification must meet an upper bound of
moved area (i.e., total area with changed domain assignment).
Assuming that the (turning) points along the boundary are

Fig. 9. Boundary optimization. (a) Original boundary between two power
domains after bin movement. (b) Optimized boundary with smaller length.
An example of segment optimization is shown. Optimized segments have
smaller total length while maintaining the same area in each power domain.
Design: AES. Technology: 28LP.

indexed from left to right or from bottom to top, the recurrence
relation in our dynamic programming optimization is

Sol( j) = Min(Sol(i).length + seg(i, j).length), ∀1 < i < j

(7)

where Sol( j) is the optimized boundary solution from the first
point to j th point, and seg(i, j) is the simplified boundary
segment between the i th and the j th points. The dynamic
programming-based boundary simplification has O(M2) time
complexity, where M is the number of points or segments.
The time complexity further decreases to O(M) if we only
search a limited range of existing subsolutions [i.e., i in (7)].

C. Level Shifter Insertion

In the last step of our optimization, we insert and place
required level shifters between the top and bottom domains,
and perform refloor planning if the total cell area exceeds
the block floor-plan area. Specifically, we define placement
regions for level shifters, where each region must have an
even number of level shifter rows due to deep n-well sharing.
Furthermore, we assume that the layout of the level shifter
has already included the boundary of the deep n-well of
either or both power domains, and that the edges facing either
of the power domains have a standard-cell row structure. As a
result, we are able to seamlessly integrate the level shifters
with only a small separation (i.e., 2.5 μm) at left and right ends
of each level shifter row from standard cells. The row height
of our level shifter is 6× of the standard-cell row height.6

Furthermore, additional space (i.e., ∼10% of area within each
level shifter placement region) is required for tie and decap
cell insertion. The objectives for our level shifter placement
optimization are to minimize the area overhead and minimize
the wirelength penalty due to level shifter region definition
and level shifter placement, respectively.

Since the level shifter insertion approach in [2] does
not comprehend the above-mentioned layout constraints as
well as the space for tie/decap cell insertion, it cannot be
applied in a realistic implementation of a stacked-domain
design. We, therefore, propose a new level shifter placement
approach. Algorithm 3 shows our level shifter placement
procedure. We first perform a matching optimization (using the
Hungarian algorithm [30]) to map each inserted level shifter to

6Our level shifter model is from our industry collaborators.



BLUTMAN et al.: LOGIC DESIGN PARTITIONING FOR STACKED POWER DOMAINS 3051

Algorithm 3 Level Shifter Placement

a candidate placement location (i.e., a level shifter placement
site near the boundaries of power domains) with minimized
wirelength (line 1). More specifically, we enumerate possible
placement locations [i.e., all valid placement sites within the
minimum possible (feasible) even number of rows] near the
boundaries between two domains and calculate the poten-
tial cost [i.e., half-perimeter wirelength (HPWL) increase]
of placing each level shifter onto each candidate placement
location. Since cuts (i.e., level shifter insertions) occur on
nets connecting top and bottom domains, placing level shifters
along the boundaries between two domains will be less likely
to cause routing detour. We define the cost as the total HPWL
of nets connected to the level shifter. Based on the cost matrix,
we perform matching optimization to assign the placement
location for each level shifter while minimizing the total cost.
Note that such a level shifter placement solution does not
honor the layout constraint where each region must contain an
even number of level shifter rows. We, therefore, cluster level
shifters that are separated by a distance that is smaller than a
predefined value (e.g., 20 μm) and create a region having an
even number of rows for each cluster of level shifters (line 3).

According to the clustering solution, we generate placement
blockages for standard cells and update candidate locations for
level shifter placement (line 4). Specifically, we first round
the height of the bounding box of the corresponding level
shifter cluster to be the nearest even multiple of the level
shifter row height, i.e., we satisfy the constraint of having
an even number of level shifter rows. We use the rounded
value as the height of the blockage. We then calculate the
width of the blockage based on the total area of level shifters,
the required spacing area, and the blockage height. Last, we
shift the blockage horizontally to be centered at the weighted
center, i.e., centroid of the level shifter cluster. Importantly,
we also comprehend spacing requirement at the ends of each
level shifter row during placement blockage insertion. We then
perform another iteration of matching optimization based on
the updated candidate placement locations, and place level
shifters accordingly (lines 5 and 6). Observe that in the above-
mentioned optimizations, we use level shifters with bloated
(e.g., by 10%) widths. We now recover the level shifters’
cell widths and clump them to create space for tie/decap cell
insertion (line 7). Finally, we perform placement legalization
of standard cells to move them out from the created level
shifter placement regions. Fig. 10 shows an example of level
shifter placement.

IV. EXPERIMENTAL RESULTS

We perform experiments in a 28-nm LP foundry technology
with dual-VT libraries. We use four design blocks (AES, data

Fig. 10. Example of level shifter insertion. (a) Level shifter (blue) placement
after first matching. (b) Placement blockage (red) insertion. (c) Level shifter
placement after second matching. (d) Clumping of level shifters. (e) Placement
legalization applied to nearby standard cells.

TABLE II

TEST-CASE PARAMETERS

encryption standard (DES), JPEG, and video graphics array
(VGA)) from OpenCores [32] as our test cases. Parameters
of these four test cases are shown in Table II.7 The worst
case timing and power analysis view for AES, DES, JPEG,
and VGA is (SS, 0.95 V, 125 °C). We synthesize designs
using Synopsys Design Compiler vI-2013.12-SP3 [33] and
then place and route using Cadence Innovus Implementation
System v16.1 [31]. We set the placement density at the floor-
plan stage as 70%, and perform timing and power analyses
using Cadence Innovus Implementation System v16.1. We
also validate our optimization framework on two industrial
designs, designated as TC1 and TC2, in a 40-nm CMOS
foundry technology with high threshold voltage (HVT)-only
cells. TC1 contains a dual-core MCU and six memories.
TC2 contains more than ten memories and a number of IP
blocks. The worst case timing and power analysis views for
these two industrial designs are (SS, 0.99 V, −40 °C) and (TT,
1.1 V, 25 °C), respectively. We implement these two industrial
designs with Cadence tools. The shifter propagation delay for
nominal process, voltage, and temperature (TT, 1.1 V, 25 °C)
is 400 ps. For the nonindustrial benchmarks, we generate level

7The instance and flip-flop counts of design TC2 are normalized with
respect to the corresponding (instance and flip-flop) counts of the conventional
implementation.



3052 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2017

TABLE III

EXPERIMENTAL RESULTS (POWER UNIT: mW. CURRENT UNIT: mA. η VALUES ARE ESTIMATED BASED ON [4])

Fig. 11. Power efficiency of switched-capacitor VR used in [4].

shifter models in the 28-nm LP technology according to the
delay, area, and power ratios between the level shifter and the
minimum-size inverter in the 40-nm technology. Fig. 11 shows
the relation between output current versus the power efficiency
of the used VR. We use the command ccopt_design from
Innovus to perform clock tree synthesis. We observe that the
tool inserts additional clock buffers to compensate the delay of
level shifters for a given skew target. Since our optimization
minimizes the number of level shifter insertions, we observe
from our experimental results that the power penalty from such
additional clock buffer insertion is small (e.g., <1% clock
buffer area penalty on design TC2). Our optimization flow
is implemented in C++. Functions used in P&R tools are
implemented in Tcl. We conduct our experiments using a 2.5-
GHz Intel Xeon server.

A. Comparison to Conventional Designs

Table III shows the post-clock tree synthesis (CTS)
comparison between our stacked-domain optimization (opt)
versus the conventional implementation (ref) on four
test cases in 28-nm LP and two industrial designs
in 40 nm. Our optimization comprehends both function
mode and sleep mode (i.e., with only leakage power).
For the industrial design TC2, we only show normal-
ized metrics—the instance count, area, power (Pcore, Pext),
and battery lifetime (T ) values of the optimized designs
are normalized to those of the conventional design;
the currents (Ibot, Itop) of the optimized designs are normalized

to total current of the conventional design. We estimate η
values based on [4].

In 28-nm technology, our optimization achieves an aver-
age of 19% and 207% battery lifetime improvements in
function and sleep modes, respectively. For the industrial
designs in 40 nm, we also achieve more than 10% and
2× battery lifetime improvements in function and sleep modes,
respectively. In other words, we observe similar benefits
from the stacked-domain optimization in both 28- and 40-nm
technologies. Moreover, the power penalty due to our opti-
mization (see Pcore) is less than 10%, with well-balanced
currents (i.e., with <10% difference) between the top and
bottom power domains (see Ibot/Itop) for most cases. As a
result, our optimization significantly reduces Pext, and leads
to an improved battery lifetime. We also observe that the
battery lifetime increase is greater in the sleep mode. This
is because most of the current (leakage) goes through the
stacked domains, while the regulator needs to provide very
little current to maintain the mid node voltage. Hence, there is
a high power delivery efficiency despite the VR having lower
efficiency with smaller current (as shown in Fig. 11). There-
fore, stacked-domain optimization is expected to provide more
energy and battery lifetime benefits if the VR efficiency is low.

The smaller battery lifetime improvement compared with
that in [4] is mainly due to placement blockage insertions
within level shifter rows (for decap cell insertion) and the con-
straint of having an even number of level shifter rows (for deep
n-well sharing), which incur placement perturbation along
with increased design power and �I . Furthermore, although
the clock buffer area penalty is negligible in our stacked-
domain designs compared with the corresponding conventional
designs, unbalanced clock power across two domains can
increase �I and thus reduce battery lifetime benefits.

We note that all the implementation solutions have negli-
gible timing violations (i.e., #timing violation paths <5), and
that the slightly improved worst negative slack (WNS) values
of our optimization solutions might be due to P&R tools’
noise [15]. Moreover, since logic gates are densely connected
in blocks AES, DES, JPEG, and VGA, and since the block
sizes are small, the relative area overheads due to level shifter
insertion are large. Runtimes shown in Table III indicate the



BLUTMAN et al.: LOGIC DESIGN PARTITIONING FOR STACKED POWER DOMAINS 3053

Fig. 12. Impact of level shifter delay, area, and power on design quality of
results in (a) function mode and (b) sleep mode. Design: TC1. Technology:
40 nm.

Fig. 13. Impact of VR efficiency on battery lifetime improvement.
Design: TC1. Technology: 40 nm.

extra runtime of our optimization that includes partitioning,
refloor planning, and incremental placement optimization.

B. Sensitivity to Level Shifter Delay

We further study the impact of level shifter model
on our stacked-domain optimization. We use a pessimistic
(i.e., worst case) model that has roughly 3–4× power, area, and
delay compared our current (i.e., nominal-case) model. Fig. 12
shows that the pessimistic level shifter model leads to slightly
larger total design power (Pcore) due to larger level shifter
power and timing impact. Since our partitioning optimization
minimizes the number of level shifters, the corresponding
power penalty due to the pessimistic level shifter model is
not large. Results also show larger �I with the pessimistic
level shifter model. The larger current difference comes from
the level shifters’ timing and area impact.

C. Sensitivity to Voltage Regulator Power Efficiency

We study the impact of VR efficiency on battery lifetime
improvement in stacked-domain designs. More specifically,
we vary the η value from 40% to 90% with a step size
of 10%. For each η value, we estimate the battery lifetime
improvement from our stacked-domain optimization compared
with the conventional design. Figs. 13 and 14, respectively,
show normalized battery lifetime with respect to that of the
conventional design, evaluated using different VR efficiencies.
Results show that battery lifetime decreases with a higher
VR efficiency. When the regulator efficiency is high, stacked-
domain implementation—which has power penalty due to
level shifter insertion—can even degrade the battery lifetime
of the design (e.g., η = 90% in sleep mode).

We note that the VR efficiency and area cannot both be
optimal in the same power converter [23]. In a typical CMOS
process, while highly efficient converters exist, they have poor
power density, and the opposite holds for high power density

Fig. 14. Impact of VR efficiency on battery lifetime improvement.
Design: TC2. Technology: 40 nm.

converters, where the efficiency is reduced. Since optimiza-
tion of both power efficiency and power density cannot be
performed beyond technology limitations, an alternate method
for further improvement is voltage stacking. Here, the better
the matching between the power domains, the less current
the regulator has to provide, improving the maximum output
current requirements that are related to the area, and also
improving the external power supply and, therefore, the power
delivery efficiency, in accordance with (5).

D. Tradeoff Between Current Balancing Versus
Level Shifter Cost

A relaxed current balancing constraint will lead to a smaller
number of level shifters, and hence reduced area and power
penalties. In this section, we study this tradeoff between cur-
rent balancing versus the cost of level shifters (e.g., the number
of level shifters and resultant Pcore increase) using the indus-
trial designs TC1 and TC2. Specifically, we vary the instances
defined as source and sink as well as the maximum delta
current constraint in our flow-based partitioning to achieve
different partitioning solutions with different numbers of level
shifters.

Table IV shows results for designs TC1 and TC2 with
different current balancing constraints, normalized to those for
conventional designs. In Table IV, each column corresponds
to one implementation—from left to right, �I increases while
the number of level shifter insertions decreases. Specifically,
the leftmost column (ref) corresponds to the conventional
design with only one power domain. The second column from
the left (opt’) indicates the stacked-domain implementation
with a small number of level shifters and unbalanced currents.
The rightmost column (opt) corresponds to the stacked-domain
implementation with well-balanced currents but a large num-
ber of level shifters. We then evaluate battery lifetime of
each implementation with three VR efficiency assumptions
(i.e., η = 50%, 80%, and 95%). In Table IV, for each η
value (i.e., for each row), the solution with the maximum
battery lifetime is shown in bold font.

Results in Table IV show that when η is small, solutions
with more balanced current offer larger battery lifetime. On the
other hand, when η is large, solutions with relaxed current
balancing constraints and a smaller number of level shifters
provide larger battery lifetime (e.g., on design TC2, when
η = 95%, opt’ compared with other implementations). This
is because when η is large, �I does not have large impact



3054 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2017

TABLE IV

RESULTS WITH DIFFERENT CURRENT BALANCING CONSTRAINTS.
DESIGNS: TC1 AND TC2. �I , Pcore, AND T ARE NORMALIZED

TO THOSE OF THE CONVENTIONAL DESIGN

Fig. 15. (a) Approximate layout of TC2. (b) Approximate partitioning
solution of TC2 (red: top domains and blue: bottom domains).

on battery lifetime. Moreover, with a relaxed �I constraint,
the number of level shifter insertions and corresponding power
penalty are small. Results in Table IV also show that since our
optimization is able to achieve a balanced-current partitioning
solution with a small number of level shifter insertions, for
design TC1, our solution (opt) achieves the maximum battery
lifetime for various VR efficiencies.

E. Block-Aware Partitioning

Design TC2 has two usage scenarios—with and without
logic block 2. To ensure that the currents between two domains
are balanced in both scenarios, we perform block-aware par-
titioning on TC2. To achieve this, we first partition logic
block 1 and memories into two domains with balanced cur-
rents. We then fix the partitioning solution on logic block 1 and
memories, and partition logic block 2 into two domains with
the current heuristically balanced for the entire design, and
with a minimized number of level shifter insertions. Fig. 15(a)
shows the relative locations of three blocks. Fig. 15(b) shows
the relative locations of top (red) and bottom (blue) domains
within each block. We are unfortunately not able to provide
additional floor plan and layout details for TC1 and TC2.
We note that since we perform partitioning optimization based
on trial placement, which has been optimized to minimize

Fig. 16. Block-aware partitioning solution, evaluated in both scenarios (with
and without logic block 2). Current values are normalized to the total current
of the conventional design including both logic block 1 and logic block 2.
Battery lifetime improvements are with respect to the conventional design.

the wirelength, and since our level shifter locations are deter-
mined by the matching optimization, which minimizes the
wirelength, our optimized design does not have large overhead
in signal wirelength. However, splitting the bottom domain
into two regions increases the complexity of the VR and
implied control circuitry, and incurs routing overhead between
the power management unit (PMU) and the bottom domain
as well as area overhead due to more local power switches.
We have also explored other partitioning solutions having a
contiguous region for each power domain in an attempt to
reduce the overheads in PDN, but all alternatives studied result
in a large number of level shifters.

Fig. 16 shows the optimized solution of TC2, evaluated in
the two scenarios of with and without logic block 2 working.
The VR efficiency is estimated based on the power delivery
block described in [4]. The solution has negligible timing
violations (i.e., the WNS is −60 ps, with less than five path
timing violations) and 1987 level shifters. Results show that
by applying the block-aware partitioning, we achieve balanced
currents in both working scenarios, and thus improved battery
lifetime. The currents are not perfectly balanced because of the
high complexity of the industrial design (otherwise, there will
be power and timing penalties from the large number of level
shifter insertions) as well as the multiscenario (i.e., function
mode and sleep mode) balancing constraints.

F. Partitioning With Multiple Power Domains

We further validate our partitioning optimization with mul-
tiple power domains. Fig. 17 shows our partitioning result on
design AES with three power domains. Specifically, we per-
form two flow-based partitioning optimizations in a sequential
way. The first partitioning optimization splits instances into
two parts with a current ratio of 2:1. The second partitioning
optimization then divides the larger-current part into two
domains with balanced currents. Last, we insert level shifters
based on the partitioning solution and perform matching opti-
mization to determine level shifter locations. Results in Fig. 17
show that currents are balanced across three domains.

Although our proposed flow is able to address stacked-
domain designs with multiple power domains, a stacked-
domain design with more than two power domains might



BLUTMAN et al.: LOGIC DESIGN PARTITIONING FOR STACKED POWER DOMAINS 3055

Fig. 17. Partitioning result with three power domains. Blue, green, and red
are, respectively, instances assigned to the bottom {V , 0}, middle {2V , V },
and top {3V , 2V } domains. Yellow: level shifters. Design: AES.

face several limitations, as follows: 1) partitioning with more
than two power domains typically leads to more number of
cuts, where the increased number of level shifters incur power
and area overheads; 2) stacked-domain designs with more
than two power domains demand a more complex power
delivery topology and VRs; and 3) stacked-domain designs
with more than two power domains might require additional
types of level shifters if the V DD range is large (e.g., level
shifters between domains {V , 0} and {3V , 2V }).8 Finally,
we note that for particular VRs (e.g., switched-cap converter),
2:1 conversion ratio (applied in a stacked-domain design
with two domains) has higher efficiency compared with other
conversion ratios (e.g., 3:1 and 3:2 in a stacked-domain design
with three power domains). The lower conversion ratio incurs
power penalty when currents are not perfectly balanced among
power domains.

V. CONCLUSION

In this paper, we propose the first comprehensive opti-
mization framework for stacked power-domain implementa-
tion with maximized battery lifetime. We extend the existing
flow-based partitioning methodology with layout- and timing-
path awareness, as well as multiscenario balancing objec-
tive. We further propose an FM-based bin movement and a
dynamic programming-based boundary optimization to define
the layout region (power island) of each power domain. Last,
we insert level shifter rows in an updated floor plan and place
level shifters using a matching optimization. We validate our
optimization flow in both 28-nm LP and 40-nm technologies,
as well as on industrial designs. Our optimization achieves
more than 10% and 2× battery lifetime improvements for
function and sleep modes compared with the conventional
design. Our future works include: 1) a predictive methodology
to determine the block size prior to trial placement and
2) co-optimization of stacked-domain partitioning and floor-
plan update.

8In our experiments, we cascade two level shifters to connect domains
{V , 0} and {3V , 2V }. However, this will increase the number of level shifter
insertions.

REFERENCES

[1] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning:
A survey,” Integr. VLSI J., vol. 19, nos. 1–2, pp. 1–81, 1995.

[2] K. Blutman, H. Fatemi, A. B. Kahng, A. Kapoor, J. Li, and
J. P. de Gyvez, “Floorplan and placement methodology for improved
energy reduction in stacked power-domain design,” in Proc. ASP-DAC,
2017, pp. 444–449.

[3] K. Blutman, A. Kapoor, J. G. Martinez, H. Fatemi, and J. P. de Gyvez,
“Lower power by voltage stacking: A fine-grained system design
approach,” in Proc. DAC, 2016, pp. 78-1–78-5.

[4] K. Blutman et al., “A microcontroller with 96% power-conversion
efficiency using stacked voltage domains,” in Proc. IEEE Symp. VLSI
Circuits, Jun. 2016, pp. 1–2.

[5] A. C. Cabe, Z. Qi, and M. R. Stan, “Stacking SRAM banks for ultra
low power standby mode operation,” in Proc. DAC, 2010, pp. 699–704.

[6] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Improved Algorithms
for Hypergraph Bipartitioning,” in Proc. ASP-DAC, 2000, pp. 661–666.

[7] A. E. Caldwell, A. B. Kahng, and I. L. Markov, “Optimal partitioners and
end-case placers for standard-cell layout,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 19, no. 11, pp. 1304–1313, Nov. 2000.

[8] R. L. S. Ching, E. F. Y. Young, K. C. K. Leung, and C. Chu,
“Post-placement voltage Island generation,” in Proc. ICCAD, 2006,
pp. 641–646.

[9] S. Devadas and S. Malik, “A survey of optimization techniques targeting
low power VLSI circuits,” in Proc. DAC, 1995, pp. 242–247.

[10] S. Dutt and W. Deng, “VLSI circuit partitioning by cluster-removal using
iterative improvement techniques,” in Proc. ICCAD, 1996, pp. 194–200.

[11] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for
improving network partitions,” in Proc. DAC, 1982, pp. 175–181.

[12] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” J. ACM, vol. 42, no. 6, pp. 1115–1145, 1995.

[13] L. Guo, Y. Cai, Q. Zhou, and X. Hong, “Logic and layout aware voltage
Island generation for low power design,” in Proc. ASP-DAC, 2007,
pp. 666–671.

[14] L. W. Hagen, D. J.-H. Huang, and A. B. Kahng, “On implementa-
tion choices for iterative improvement partitioning algorithms,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 16, no. 10,
pp. 1199–1205, Oct. 1997.

[15] K. Jeong and A. B. Kahng, “Methodology from chaos in IC implemen-
tation,” in Proc. ISQED, 2010, pp. 885–892.

[16] A. B. Kahng and X. Xu, “Local unidirectional bias for smooth cutsize-
delay tradeoff in performance-driven bipartitioning,” in Proc. ISPD,
2003, pp. 81–86.

[17] G. Karypis and V. Kumar, “Multilevel K-way hypergraph partitioning,”
in Proc. DAC, 1999, pp. 343–348.

[18] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, 1998.

[19] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J. vol. 49, no. 2, pp. 291–307,
1970.

[20] B. Krishnamurthy, “An improved min-cut algonthm for partitioning
VLSI networks,” IEEE Trans. Comput., vol. C-33, no. 5, pp. 438–446,
May 1984.

[21] S. K. Lee, T. Tong, X. Zhang, D. Brooks, and G.-Y. Wei, “A 16-core
voltage-stacked system with an integrated switched-capacitor DC-DC
converter,” in Proc. Symp. VLSI Circuits, 2015, pp. C318–C319.

[22] Y. Liu et al., “A 0.1 pJ/b 5-to-10 Gb/s charge-recycling stacked low-
power I/O for on-chip signaling in 45 nm CMOS SOI,” in Proc. ISSCC,
2013, pp. 400–401.

[23] M. Steyaert et al., DCDC Performance Survey. Accessed on Jan. 6,
2017. [Online]. Available: http://homes.esat.kuleuven.be/~steyaert/
DCDC_Survey/DCDC_PS.html

[24] S. Rajapandian, K. Shepard, P. Hazucha, and T. Karnik, “High-tension
power delivery: Operating 0.18 μm CMOS digital logic at 5.4 V,” in
Proc. ISSCC, 2005, pp. 298–299, and 599.

[25] R. Rajaraman and D. F. Wong, “Optimum clustering for delay minimiza-
tion,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 14,
no. 12, pp. 1490–1495, Dec. 1995.

[26] M. Shih and E. S. Kuh, “Quadratic Boolean programming for
performance-driven system partitioning,” in Proc. DAC, 1993,
pp. 761–765.



3056 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2017

[27] K. Ueda, F. Morishita, S. Okura, L. Okamura, T. Yoshihara, and
K. Arimoto, “Low-power on-chip charge-recycling DC-DC conversion
circuit and system,” IEEE J. Solid-State Circuits, vol. 48, no. 11,
pp. 2608–2617, Nov. 2013.

[28] H. Wu, I.-M. Liu, M. D. F. Wong, and Y. Wang, “Post-placement voltage
island generation under performance requirement,” in Proc. ICCAD,
2005, pp. 309–316.

[29] H. H. Yang and D. F. Wong, “Efficient network flow based min-cut
balanced partitioning,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 15, no. 12, pp. 1533–1540, Dec. 1996.

[30] Hungarian Algorithm. Accessed on Oct. 17, 2016. [Online]. Available:
http://www2.informatik.uni-freiburg.de/~stachnis/misc.html

[31] Cadence Innovus User Guide, Cadence Design Systems, San Jose, CA,
USA, 2016.

[32] OpenCores. Accessed on Sep. 8, 2015. [Online]. Available:
http://opencores.org

[33] Design Compiler User’s Manual, Synopsys, Mountain View, CA,
USA, 2013.

Kristof Blutman received the M.Sc. degree (Hons.)
in electrical engineering from the Delft University
of Technology, Delft, The Netherlands, in 2014.

In 2014, he joined NXP Semiconductors, Eind-
hoven, The Netherlands, as a Senior Scientist, where
he is involved in low-power techniques for micro-
controllers. His current research interests include the
fields of energy-efficient digital systems and power
conversion methods.

Hamed Fatemi received the B.Sc. degree from the
Electrical and Computer Engineering Department,
University of Tehran, Tehran, Iran, in 1998, the
M.Sc. degree from the K. N. Toosi University of
Technology, Tehran, in 2001, and the Ph.D. degree
in computer architecture from the Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands,
in 2007.

He is currently an Innovation Lead/Department
Manager with NXP Semiconductors, Eindhoven.
He has authored or co-authored over 25 U.S. patents,

scientific publications, and presentations. His current research interests include
the areas of low-power design, multiprocessors, heterogeneous and reconfig-
urable systems, and variability tolerance design.

Ajay Kapoor received the B.Tech. degree in elec-
trical engineering from IIT Delhi, New Delhi, India,
and the M.Sc. (cum laude) degree in embedded
systems from the University of Twente, Enschede,
The Netherlands.

Since 1999, he has been with NXP Semiconduc-
tors, Eindhoven, The Netherlands, where he has been
involved in the design of low-power circuits, sys-
tem, and algorithms. His current research interests
include low-power circuits, architectures, and signal
processing.

Andrew B. Kahng received the Ph.D. degree in
computer science from the University of California
at San Diego, La Jolla, CA, USA.

He is currently a Professor with the Computer
Science Engineering Department and the Electrical
and Computer Engineering Department, University
of California at San Diego. His current research
interests include IC physical design, the design–
manufacturing interface, combinatorial optimization,
and technology road mapping.

Jiajia Li received the B.S. degree in software
engineering from Shenzhen University, Shenzhen,
China, in 2011 and the M.S. degree in electrical
engineering from the University of California at
San Diego, La Jolla, CA, USA, in 2013, where he
is currently pursuing the Ph.D. degree.

He joined the VLSI CAD Laboratory, Univer-
sity of California at San Diego, in 2012. His cur-
rent research interests include physical design and
signoff optimization, margin reduction, and low-
power design.

José Pineda de Gyvez was a Faculty Member
with the Department of Electrical Engineering,
Texas A&M University, College Station, TX, USA.
He is currently a fellow with NXP Semiconductors,
Eindhoven, The Netherlands, where he coordinates
research and development efforts on low-power
design technologies. His industrial responsibilities
are positioned at the interface between design and
technology. He also holds the Professorship Resilient
Nanoelectronics (part time) with the Department
of Electrical Engineering, Eindhoven University of

Technology, Eindhoven. This professorship fills a gap between industry
and academia by bringing industrial knowledge into classrooms, and open
innovation into NXP. He has over 150 publications in the fields of low-power
IC design, analog signal processing, and design for manufacturability and test.
He has (co)-authored four books. He has over 20 U.S. granted patents.

Dr. Pineda de Gyvez has been an associate editor of several IEEE transac-
tions. He is often involved in program and steering committees of international
symposiums. He is a member of the Editorial Board of the Journal of Low
Power Electronics.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


