Optimization of Overdrive Signoff in High-Performance and Low-Power ICs

Tuck-Boon Chan, Andrew B. Kahng, Jiajia Li, Siddhartha Nath, and Bongil Park

10003

Abstract-In modern system-on-chip implementations, multimode design is commonly used to achieve better circuit performance and power across voltage-scaled, "turbo" and other operating modes. To the best of our knowledge, there is no available systematic analysis or methodology for the selection of associated signoff modes for multimode circuit implementations. In this brief, we observe significant impacts of signoff mode selection on circuit area, power, and performance. For example, incorrect choice of signoff voltages for required overdrive frequencies can incur 12% suboptimality in power or 20% in area. Using the concept of mode dominance as a guideline, we propose a scalable, model-based adaptive search methodology to explore the design space for signoff mode selection. Our proposed methodology is duty cycle-aware in its minimization of lifetime energy. Results show that our proposed methodology provides >8% improvement in performance, for given V_{dd} , area and power constraints, compared with the traditional "signoff and scale" method. Further, the signoff modes determined by our methods result in <6% overhead in power compared with the optimal signoff modes.

Index Terms—Design space exploration, frequency overdrive, multicorner multimode design, signoff optimization.

I. INTRODUCTION

In the era of heterogeneous multicore systems-on-a-chip (SoCs), the performance of single-threaded operations limits the overall speedup of applications. Designers use frequency overdrive at elevated voltages to obtain better performance in consumer electronic devices [2]. An operating mode (for simplicity, mode) is defined by an (operating frequency, voltage) pair. Devices typically operate at two or three modes, e.g., supply voltage-scaled (SVS), nominal, and turbo (overdrive). The nominal and SVS modes correspond to a lower operating voltage and a lower frequency, whereas the overdrive mode corresponds to a higher operating voltage and a higher frequency. We define the average power (P_{avg}) for a circuit with both nominal and overdrive modes as

$$P_{\text{avg}} = r \times P_{\text{OD}} + (1 - r) \times P_{\text{nom}}, \quad 0 < r < 1$$
 (1)

where the duty cycle r is the total overdrive time normalized to the total lifetime. P_{OD} and P_{nom} are the circuit power at overdrive and nominal modes, respectively.

We define the signoff mode design space (or design space) as the set of feasible signoff mode combinations. A point in this design space specifies m (frequency, voltage) pairs for m-mode signoff, where $m \ge 1$. Signing off at different points in a design space results in circuits with different performance, power, and area. Fig. 1 shows that the average power of a given design can vary up to 26% across 40 different definitions of the overdrive mode, with a fixed nominal mode. Even when the overdrive frequency is fixed, the average power can vary up to 12% for different overdrive voltages. Circuit power varies with signoff voltage because when signing off

Manuscript received September 9, 2013; revised April 13, 2014; accepted June 23, 2014. Date of publication August 15, 2014; date of current version July 22, 2015.

T.-B. Chan, A. B. Kahng, J. Li, and S. Nath are with the University of California at San Diego, La Jolla, CA 92093 USA (e-mail: tbchan@ucsd.edu; abk@ucsd.edu; jil150@ucsd.edu; sinath@ucsd.edu).

B. Park is with the System LSI Division, Samsung Electronics Company, Ltd., Hwaseong 445-330, Korea (e-mail: bongil.park@samsung.com).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2339848

> 100 mW 100 -900 MHz 88 ~ 90 mW 95 ~ 100 mW 98 -950 MHz 950 96 86 ~ 88 mW 90 ~ 95 mW Mower (mW) 92 90 12% 900 84 86 mW 82 ~ 84 mW 850 88 80 ~ 82 mW 86 800 x 1.03 < 80 mW 84 x x x x x 1.07 1.09 1.11 1.13 Overdrive Voltages (V) 1.05 1.17 1.15 1.03 1.07 1.11 1.15 **Overdrive Voltages (V)** (a) (b)

Fig. 1. P_{avg} of circuits signed off at the same nominal mode (500 MHz, 0.9 V), but 40 different overdrive modes. Design: AES [12]. Technology: foundry 65 nm. Corner: FF/125 °C. r = 10%.

at a lower voltage, buffer insertion to meet timing constraints leads to higher power. On the other hand, although circuit area decreases with a higher signoff voltage, power increases with operating voltage. The optimal signoff voltage must comprehend this tension.

Fig. 1 suggests that we can reduce design cost by carefully optimizing the signoff modes. Accordingly, in this brief, we study the signoff mode optimization problem, which seeks the optimal nominal and overdrive modes with respect to optimization objectives and constraints. Similar multimode signoff optimization has been studied by [5]. However, our work achieves greater insight into the basic tradeoff between frequency and voltage at the circuit level. As an extension to the previous work [1], we propose a more efficient and effective methodology for multimode signoff optimization.

Our contributions are summarized as follows.

- Based on the property of equivalent dominance, we propose a global optimization flow (using model-based adaptive search) to analyze and identify the dominant modes *before* circuit implementation.
- Our proposed methodologies lead to >8% and 6% performance improvements compared with the traditional "signoff and scale" and previous work [1], respectively, while maintaining similar power and area.
- The proposed methodologies can successfully determine signoff modes that reduce lifetime energy for a given duty cycle.

II. DOMINANCE OF MODES

To analyze the dominance of modes, we define the concept of design cone as follows.

Definition: The design cone of a given mode M is the union of (maximum frequency, voltage) operating modes for all feasible circuit implementations that are signed off at mode M.

Fig. 2 shows the design cone R of mode A. Circuits signed off at mode A will have their own frequency versus voltage tradeoffs.¹ At a given voltage, the boundary of the design cone is determined by the upper and lower bounds of the maximum frequency that is achievable by circuits signed off at mode A.

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

¹Boundaries of a design cone can be affected by threshold voltage, gate type, and/or wire resistance. In this brief, we determine the boundaries using frequency versus voltage curves of high-threshold voltage (HVT) and low-threshold voltage (LVT) cells since other parameters have little impact at 65-nm technology [1].

Fig. 2. Illustration of the design cone of mode A (the shaded region).

Given the design cone of mode A, a mode C (f_C , V_C) has a positive slack (respectively, a negative slack) with respect to mode A if f_C is below (respectively, above) the lower (respectively, upper) boundary of design cone at V_C . Since the positive slack can be exploited to reduce power [1], we say that the existence of positive slack indicates overdesign.

We further define the dominance of modes as follows.

Definition: Given two modes M_1 and M_2 , if mode M_2 shows positive slacks with respect to mode M_1 , we define mode M_1 as the dominant mode and mode M_2 as the dominated mode.

Definition: Given two modes M_1 and M_2 , if mode M_1 is in the design cone of mode M_2 and mode M_2 is in the design cone of mode M_1 , we say that modes M_1 and M_2 exhibit equivalent dominance.

In Fig. 2, mode A is dominant and mode C is dominated. The dominant mode has tighter constraints, thus determining the properties (e.g., area, gate count, and total capacitance) of a design in a multimode signoff. In addition, when equivalent dominance holds for multiple signoff modes, we expect resulting design properties that are similar to those when the design is signed off at each mode individually.

Based on the equivalent dominance concept, we state the following Lemmas. $^{2} \ \,$

Lemma 1: If two modes do not exhibit equivalent dominance, then each mode is outside of the design cone of the other.

Lemma 2: Multimode signoff at modes which do not exhibit pairwise equivalent dominance leads to overdesign.

Lemma 3: Mutual pairwise equivalent dominance holds among $m (m \ge 3)$ modes if and only if the modes are collinear in the (v, f) space for signoff.

III. PROBLEM FORMULATIONS

To sign off a circuit that operates at both nominal and overdrive modes, we need to select four parameters: nominal frequency (f_{nom}) and voltage (V_{nom}) , and overdrive frequency (f_{OD}) and voltage (V_{OD}) . In this brief, we study the problems where two parameters are given and two parameters must be determined as follows.

A. FIND_OD Problem

Given f_{nom} , V_{nom} , and r, and upper bounds on V_{OD} , P_{avg} , and P_{OD} , determine f_{OD} and V_{OD} such that f_{OD} is maximized.

B. FIND_NOM Problem

Given f_{OD} , V_{OD} , and r, and upper bounds on P_{avg} and P_{OD} , determine f_{nom} and V_{nom} such that f_{nom} is maximized.

C. FIND_VOLT Problem

Given f_{nom} , f_{OD} , and r, and upper bounds on V_{OD} and P_{OD} , determine V_{nom} and V_{OD} such that P_{avg} is minimized.

²Proofs of Lemma 1 and Lemma 2 are given in [1]. Lemma 3 can be established for m = 3, followed by a simple induction for m > 3.

Fig. 3. Our adaptive search flow (top) and power model (dotted box).

D. FIND_FREQ Problem

Given V_{nom} , V_{OD} , and r, and upper bounds on P_{avg} and P_{OD} , determine f_{nom} and f_{OD} such that $(1 - r) \times f_{\text{nom}} + r \times f_{\text{OD}}$ is maximized.

IV. EFFICIENT EXPLORATION OF DESIGN SPACE

The key challenge in signoff mode optimization is to efficiently search for the desired modes using a small number of implementation trials. To this end, we propose a model-based adaptive search to explore the design space for signoff mode selection. In the model-based adaptive search, new solutions are determined using models, which are updated or derived from implementations with previous solutions [3]. Fig. 3 shows our adaptive search flow. We construct our power model based on initial samples. Using the power model, we *predict* the optimal signoff mode and sample [i.e., run synthesis, placement, and routing (SP&R)] at the predicted mode. We iteratively sample and update the power model until the flow converges.

A. Power Model

Following industry standard models (Liberty format) and tools (e.g., [16]), we model circuit power as being comprised of three components—switching (P_{sw}), internal (P_{int}), and leakage (P_{leak}). Our power model uses the following circuit properties: load capacitance (C_{load}), which includes wire capacitance and the capacitance of input pins driven by nets [6], total gate capacitance (C_{gate}), and percentage of cell instances with different V_T flavors ($Pct_{\{LVT,HVT,NVT\}}$). As we observed in Fig. 1(b), circuit power exhibits unimodal behavior with varying signoff voltage. This suggests that we model power as a second-order polynomial of the signoff voltage. We also observe below that power linearly depends on circuit properties. Therefore, we also model the circuit properties as second-order polynomials of the signoff voltage or frequency,³ as

$$c_{\text{load}} = q_1 \times V^2 + q_2 \times V + q_3 \tag{2}$$

$$c_{\text{gate}} = q_4 \times V^2 + q_5 \times V + q_6 \tag{3}$$

$$Pct_{\rm LVT} = q_7 \times V^2 + q_8 \times V + q_9 \tag{4}$$

³Note that circuit properties may not always behave as second-order relations with the signoff voltage or frequency, which can lead to errors in power estimation. However, our experimental results show that the estimation error is <10%.

where q_1-q_9 are fitting parameters. Equations (2)–(4) are used when V is the variable in adaptive search; when f is the variable, we use f in place of V. We then use the estimated circuit properties to model power components.

1) Net Switching Power: We model net switching power as

$$P_{\rm sw} = k_1 \times \alpha \times C_{\rm load} \times f \times V^2 \tag{5}$$

where α is the switching activity factor, f and V are operating frequency and supply voltage, respectively, and k_1 is a fitting parameter used during adaptive search.

2) Internal Power: Since the internal power mainly consists of the short circuit power, based on [8], [9], we model internal power as

$$P_{\rm int} = k_2 \times \alpha \times C_{\rm gate} \times f \times V^2 \tag{6}$$

where k_2 is a fitting parameter used during adaptive search.

3) Leakage Power: We use gate capacitance as a parameter to fit leakage power [7]. Further, we use the functional form $e^{\beta \times V}$ (β is a fitting parameter depending on technology and threshold voltages of transistors) to model the leakage current. Due to dominant impact of LVT cells on leakage power as compared with NVT and HVT cells, we also use percentage of LVT cell instances in our model. We model leakage power as

$$P_{\text{leak}} = V \times C_{\text{gate}} \times (k_3 \times Pct_{\text{LVT}} + k_4) \times e^{\beta \times V}$$
(7)

where k_3 and k_4 are fitting parameters for adaptive search.

We emphasize that (5)–(7) are not for accurate power calculation. Rather, they are based on chosen parameters for power estimation within our adaptive search. In multimode signoff, since the circuit is mainly determined by the dominant mode, which has the tightest timing constraints, we use the dominant mode to model C_{load} , C_{gate} , and Pct_{LVT} . However, when two or more modes exhibit equivalent dominance, we choose the modes that are not yet fixed and among these modes we choose the mode with the largest duty cycle for power modeling as it has the greatest impact on P_{avg} .

B. Adaptive Search

We now propose two generic adaptive search flows for signoff mode selection (shown in Algorithm 1). We then extend them to solve the problems described in Section III.

Given a signoff frequency (f), we use the MIN_POWER flow to search for the signoff voltage (V) that minimizes circuit power (P). The inputs V_{\min} and V_{\max} are user-specified minimum and maximum signoff voltages, respectively. V_{stop} is a stopping criterion for adaptive search. We first construct our power model based on three initial samples (Lines 1–3). Based on the obtained power model, we predict the optimal signoff voltage to minimize power (Line 6). We then run SP&R with the predicted signoff voltage and update the power model (Lines 7–9). If the change in the value of the estimated optimal signoff voltage is less than V_{stop} , the adaptive search terminates. Otherwise, more accurate estimation of the optimal signoff voltage is predicted from the improved power model.

Given a signoff voltage (V), we use the MAX_FREQ flow to search for the maximum signoff frequency (f) under particular power constraints (P_{max}). The input f_{min} is the predefined lower bound on performance and f_{max} is the maximum achievable frequency with voltage V. f_{min} and f_{max} define the range of signoff frequency selection. f_{stop} is a stopping criterion.

V. METHODOLOGY

A. Design Space Reduction

According to Lemma 2, we search only the design space in which the equivalent dominance property holds to reduce overdesign.

Algorithm 1 Adaptive Search Flows

Procedure MIN_POWER $(f, V_{\min}, V_{\max}, V_{stop})$

- 1: Run SP&R with $(f, V_{\min}), (f, V_{\max}), (f, \frac{V_{\min}+V_{\max}}{2});$
- 2: Extract circuit information (= C_{load} , C_{gate} , $P_{ct_{\text{LVT}}}$, P_{sw} , P_{int} and P_{leak});
- 3: Build the power model based on extracted information;
- 4: $i \leftarrow 1$; $V_0 \leftarrow V_{\min}$;
- 5: while $\Delta V \ge V_{\text{stop}}$ do
- 6: $V_i \leftarrow$ select the optimal V based on the power model;
- 7: Run SP&R with (f, V_i) ;
- 8: Extract circuit information;
- 9: Update the power model using least squares regression (LSQR) based on extracted information;

10: $\Delta V \leftarrow V_i - V_{i-1}; i \leftarrow i+1;$

11: end while

12: return V_{i-1}

Procedure MAX_FREQ (V, P_{max} , f_{min} , f_{max} , f_{stop})

- 1: Run SP&R with (f_{\min}, V) , (f_{\max}, V) , $(\frac{f_{\min}+f_{\max}}{2}, V)$;
- 2: Extract circuit information;
- 3: Build the power model based on extracted information;
- 4: $i \leftarrow 1$; $f_0 \leftarrow f_{\min}$;
- 5: while $\Delta f \ge f_{\text{stop}}$ do
- 6: $f_i \leftarrow \text{select } f \text{ based on the power model such that } P = P_{\max};$
- 7: Run SP&R with (f_i, V) ;
- 8: Extract circuit information;
- 9: Update the power model using LSQR based on extracted information;
- 10: $\Delta f \leftarrow f_i f_{i-1}; i \leftarrow i+1;$

11: end while

12: return f_{i-1}

B. Duty-Cycle Awareness

Our power model estimates P_{avg} based on r and our optimizations aim at reducing P_{avg} or are constrained by an upper bound on P_{avg} .

C. Design Cone Approximation

We estimate a design cone using LVT- and HVT-only inverter chains, as in [1].

D. FIND_OD Problem

We extend the MAX_FREQ flow to solve the FIND_OD problem (Algorithm 2). One key observation which reduces the number of multicorner multimode (MCMM) implementations during the adaptive search is that a circuit implemented at a particular pair of nominal mode and overdrive mode can also run at other overdrive modes along its frequency versus voltage tradeoff curve as shown in Fig. 4(a). This implies that circuits implemented with a nominal mode and any overdrive mode along one frequency versus voltage tradeoff curve will have similar circuit properties. Thus, we can extract circuit properties for solutions in the design cone by generating a few trial circuits with different frequency versus voltage tradeoffs.

E. FIND_NOM Problem

The FIND_NOM problem is similar to the FIND_OD problem. We solve the FIND_NOM problem using the same methodology as for the FIND_OD problem.

F. FIND_VOLT Problem

Finding the optimal (V_{nom} , V_{OD}) pair using exhaustive search incurs large runtime because there are $O(n^2)$ feasible solutions (*n* is the number of feasible signoff voltages). To reduce the runtime complexity, we propose an approximate optimization method: for each V_{nom} , we consider only one V_{OD} , in which we determine the V_{OD} based on a parameter $\lambda(V_{\text{nom}})$, as shown in Fig. 4(b).⁴

⁴Experimental results in Section VI show that our approximate optimization can achieve results similar to those of the exhaustive search.

Algorithm 2 Method for Solving the FIND_OD Problem

- 1: Find the design cone of the nominal mode (f_{nom}, V_{nom}) ;
- 2: Find the intersections of the maximum supply voltage V_{max} and boundaries of the design cone. Define the minimum and maximum frequencies of these intersections as f_a and f_b , respectively;
- 3: Run MCMM SP&R with the given nominal mode and overdrive modes defined by $\{f_a, f_b, \frac{f_a+f_b}{2}\}$ and V_{max} ;
- 4: Extract circuit information. Build or update the power model;
- 5: Estimate P_{avg} , based on the given r, corresponding to feasible overdrive modes within the design cone. Find the maximum f_{OD} along with the corresponding VOD satisfying power constraints;
- 6: Run MCMM SP&R with the overdrive mode obtained in Step 5. Repeat Steps 4–6 until Δf_{OD} is less than a stopping criterion f_{stop} .

Fig. 4. (a) Projection of mode **B** to mode **B**' for circuit property modeling. (b) $\lambda(V_{\text{nom}})$ calculation, where $\lambda(V_{\text{nom}}) = \Delta V 1 / \Delta V 2$. V_{HVT} and V_{LVT} are defined by the intersections of f_{OD} and the design cone.

 $\lambda(V_{nom})$ indicates the ratio of HVT cells to total cells in the critical paths. When the signoff voltage increases, paths become faster and more HVT cells are used to reduce power. As a result, for a fixed f_{nom} , $\lambda(V_{\text{nom}})$ increases with V_{nom} . We heuristically approximate $\lambda(V_{\text{nom}})$ as a linear function of V_{nom} in our method

$$\lambda(V_{\text{nom}}) = \frac{\lambda(V_{\text{max}}) - \lambda(V_{\text{min}})}{V_{\text{max}} - V_{\text{min}}} \times V_{\text{nom}} + \lambda(V_{\text{min}})$$
(8)

in which V_{max} and V_{min} are, respectively, the maximum V_{nom} at the given technology node and the minimum supply voltage at f_{nom} , which we assume can be determined by designers. We calculate $\lambda(V_{\text{max}})$ and $\lambda(V_{\text{min}})$ based on the desired V_{OD} that minimizes P_{avg} when V_{nom} equals to V_{max} and V_{min} , respectively. Algorithm 3 shows the steps to solve the FIND_VOLT problem.

G. FIND_FREQ Problem

For each f_{nom} , we consider only one f_{OD} . Further, we approximate $\lambda(f_{nom})$ as a linear function of f_{nom} . Since the methodology for the FIND_FREQ problem is similar to that for the FIND_VOLT problem (in that the frequency and voltage axes are swapped), we skip the detailed descriptions.

VI. EXPERIMENTS AND RESULTS

Our experiments use two RTL designs (AES and JPEG) from OpenCores [12] and four blocks (FPU, MUL, EXU, and SPU) from OpenSPARC T1 [13]. Designs are implemented with foundry 65-nm triple- V_T libraries. We synthesize designs at both nominal and overdrive modes using Synopsys Design Compiler [15], and pick the mode with less power after routing.⁵ We run MCMM P&R using Cadence SoC Encounter [10]. To eliminate tool noise, we execute each P&R run three times, perturbing the timing constraints by a small amount (i.e., 0.5% of the clock period) [4]. We use SensOpt [14] for postrouting leakage optimization, and Synopsys PrimeTime [16] for timing and power analyzes. We run timing analysis at SS corner and power analysis at FF corner. Our basic experimental configuration assumes r = 50%. All implemented designs have worst negative slacks (WNS) ≥ -10 ps.⁶

Algorithm 3 Method for Solving the FIND_VOLT Problem

- 1: Define two nominal modes (f_{nom}, V_{min}) and (f_{nom}, V_{max}) ; For each nominal mode, determine the V_{OD} with the minimum P_{avg} by using the MIN_POWER flow;
- 2: Calculate $\lambda(V_{\min})$ and $\lambda(V_{\max})$ with the resultant V_{OD} ; 3: Run MCMM SP&R at { V_{\min} , V_{\max} , $\frac{V_{\min}+V_{\max}}{V_{\max}}$ } (with f_{nom}) and the corresponding V_{OD} (with f_{OD}) determined by λ values;
- 4: Extract circuit information. Build or update the power model;
- 5: Find V_{nom} and the corresponding V_{OD} that achieve minimum P_{avg} based on the power model;
- 6: Run MCMM SP&R with the V_{nom} and V_{OD} obtained in Step 6. Repeat Steps 4-6 until ΔP_{avg} is less than a stopping criterion P_{stop} .

	TABLE I										
	EXPERIMENTAL SETUP FOR THE FIND_OD PROBLEM										
e	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
	ATC	500	0.0	40	F F	1.0					

Case	Design	(MHz)	(V)	(mW)	(mW)	$(V)^{max}$
1	AES	500	0.9	40	55	1.2
2	JPEG	400	0.9	80	100	1.2
3	OST1	600	0.9	210	300	1.2

TABLE II

METRICS OF CIRCUITS IMPLEMENTED FOR THE FIND_OD PROBLEM

		Signoff	Proposed	Exhaustive	Method in
		&Scale	method	search	[1]
	f_{OD} (MHz)	760	822	840	810
AES	V_{OD} (V)	1.20	1.18	1.16	1.18
(Case 1)	$area (um^2)$	30002	30594	31405	30832
	P_{avg} (mW)	35.1	36.2	37.3	36.0
	#P&R runs	2	4	66	7
	f_{OD} (MHz)	580	638	660	600
JPEG	V_{OD} (V)	1.16	1.18	1.12	1.18
(Case 2)	$area (um^2)$	114679	122394	127361	117355
	P_{avg} (mW)	67.6	70.5	69.3	69.7
	#P&R runs	2	4	66	7
	f_{OD} (MHz)	860	916	940	870
OST1	V_{OD} (V)	1.16	1.14	1.12	1.16
(Case 3)	$area (um^2)$	151149	154253	156363	150491
	P_{avg} (mW)	163.2	162.0	162.0	162.4
	#P&R runs	2	5	66	7

During adaptive search, we derive and refine our power model using MATLAB [11].

A. FIND_OD Problem

Table I shows the experimental setup, where P_{avg_max} , P_{OD_max} , and V_{max} , respectively, constrain P_{avg} , P_{OD} , and V_{OD} . We assume the same overdrive mode for all four blocks from OpenSPARC T1 and combine them into a single instance which we denote as OST1. For each instance, we implement four methods to optimize the overdrive mode. The signoff&scale method applies the traditional "signoff and scale," where we first sign off circuits with the given nominal mode and then perform timing and power analyzes with libraries characterized at higher voltages to search for the maximum f_{OD} under power constraints. Note that we perform an additional MCMM P&R run to optimize power at both modes after the overdrive mode is selected. The proposed method uses the proposed adaptive search. The exhaustive search explores the entire feasible design space for given design parameters. We also compare with the method in [1].

Results in Table II show that the proposed method achieves >8%and 6% overdrive performance improvements compared with the signoff and scale and the method in [1], respectively, while maintaining similar area and power. Further, the proposed method is within 4% of that obtained from the exhaustive search, while using <8% of the exhaustive search runtime. We also note that our proposed method is scalable due to its use of adaptive search, which is able to converge to a near-optimal solution after a small number of SP&R runs.

When we optimize each block in OST1 individually (fine-grained optimization) the proposed method achieves 4%-8% for improvement compared with the signoff and scale. For Case 3 in Table II

⁵Although this may be unnecessary when modes are equivalently dominant, we use the same implementation for all experiments for fair comparisons.

⁶The small WNS is due to the discrepancy between timing analysis in Cadence SoC Encounter [10] and in Synopsys PrimeTime [16].

TABLE III Experimental Setup for the FIND_VOLT Problem

Case	Design	f_{nom} (MHz)	f_{OD} (MHz)	P_{OD_max} (mW)	V_{max} (V)
4	AES	700	850	50	1.2
5	JPEG	600	720	100	1.2

TABLE IV

METRICS OF CIRCUITS IMPLEMENTED FOR THE FIND_VOLT PROBLEM

		Proposed method	Exhaustive search	Method in [1]
	V_{nom} (V)	0.92	0.92	0.90
AES	V_{OD} (V)	1.02	1.02	1.04
(Case 4)	$area (um^2)$	35349	35349	34599
	P_{avg} (mW)	41.8	41.8	44.1
	#P&R runs	7	44	10
	V_{nom} (V)	0.94	0.90	0.86
JPEG	V_{OD} (V)	1.04	0.94	0.96
(Case 5)	$area (um^2)$	136747	148360	145906
	P_{avg} (mW)	85.4	80.9	91.9
	#P&R runs	6	46	9

TABLE V Experimental Setup for the FIND_FREQ Problem

Case	Design	V_{nom} (V)	V_{OD} (V)	P_{avg_max} (mW)	P_{OD_max} (mW)
6	AES	0.9	1.1	40	55
7	JPEG	0.9	1.2	80	120

TABLE VI Metrics of Circuits Implemented for the FIND_FREQ Problem

		Proposed method	Exhaustive search
	f_{nom} (MHz)	618	610
	f_{OD} (MHz)	810	860
AES	f_{avg}	714	735
(Case 6)	$area (um^2)$	31526	32740
	P_{avg} (mW)	40.3	39.6
	#P&R runs	6	70
	f_{nom} (MHz)	431	440
	f_{OD} (MHz)	623	630
JPEG	f_{avg}	527	535
(Case 7)	$area (um^2)$	119777	120670
	P_{avg} (mW)	81.2	82.6
	#P&R runs	6	52

(coarse-grained optimization), the corresponding f_{OD} improvement is 6.5%. These consistent f_{OD} improvements suggest that the proposed method is scalable.

B. FIND_VOLT Problem

Tables III and IV, respectively, show our experimental setup and results. The proposed method achieves <6% power overhead, with $7\times$ runtime reduction, compared with exhaustive search. The proposed method also achieves up to 12% reduction of average power compared with the method in [1].

C. FIND_FREQ Problem

Tables V and VI, respectively, show our experimental setup and results. The proposed method achieves <3% performance overhead, with around $10\times$ runtime reduction, compared with exhaustive search.

D. Duty Cycle-Awareness Validation

To show that our proposed methodology is duty cycle-aware, we optimize AES (in the context of the FIND_OD problem) with different duty cycles (r_{opt}). We assume the nominal mode as (500 MHz, 0.9 V) and constraints on P_{avg} and V_{max} as 30 mW and 1.2 V, respectively. We then evaluate the maximum f_{OD} of outcomes with different duty cycles (r_{eval}) under the power constraints.

 TABLE VII

 METRICS OF CIRCUITS IMPLEMENTED WITH DIFFERENT ropt

Design	ropt	fod	V_{OD}	f_{max} (MHz) with $r_{eval} =$				
Design		(MHz)	(V)	0.1	0.3	0.5	0.7	0.9
	0.1	844	1.20	845	830	725	670	640
	0.3	832	1.19	840	830	725	670	640
AES	0.5	726	1.10	815	815	730	670	635
	0.7	670	1.05	805	805	720	670	635
	0.9	638	1.02	805	805	720	670	640

Results in Table VII show that f_{OD} and V_{OD} decrease with a larger r_{opt} . That is, given fixed power constraints, optimization with a smaller r_{opt} results in a faster design. Further, maximum f_{OD} is achieved when $r_{eval} = r_{opt}$. These observations confirm the duty cycle-awareness of our proposed method. The results also show the cost of inaccurate prediction for r. For example, if r = 0.1 ($f_{OD} = 845$ MHz), but the optimization assumes r = 0.9 ($f_{OD} = 805$ MHz), there is a performance penalty of 5%.

VII. CONCLUSION

Based on the properties of equivalent dominance, we propose guidelines and efficient methodologies to search for the optimal modes for overdrive signoff. The proposed methodologies can successfully determine the signoff modes that reduce lifetime energy, and are shown to achieve >8% and 6% performance improvements compared with the traditional "signoff and scale" and the previous work [1], respectively. The methodologies also result in <6% power overhead as compared with the optimal solutions.

REFERENCES

- T.-B. Chan, A. B. Kahng, J. Li, and S. Nath, "Optimization of overdrive signoff," in *Proc. ASP-DAC*, Jan. 2013, pp. 344–349.
- [2] M. Elgebaly, K. Z. Malik, L. G. Chua-Eoan, and S.-O. Jung, "Adaptive voltage scaling for an electronics device," U.S. Patent 7417482, Aug. 26, 2008.
- [3] J. Hu, M. C. Fu, and S. I. Marcus, "A model reference adaptive search method for global optimization," *Oper. Res.*, vol. 55, no. 3, pp. 549–568, 2005.
- [4] K. Jeong and A. B. Kahng, "Methodology from chaos in IC implementation," in *Proc. ISQED*, Mar. 2010, pp. 885–892.
- [5] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, "Enhancing the efficiency of energy-constrained DVFS designs," *IEEE Trans. Very Large Scale Integr. (VLSI) Syst.*, vol. 21, no. 10, pp. 1769–1782, Oct. 2013.
- [6] A. B. Kahng, B. Lin, and S. Nath, "Explicit modeling of control and data for improved NoC router estimation," in *Proc. 49th DAC*, Jun. 2012, pp. 392–397.
- [7] R. Kumar and C. P. Ravikumar, "Leakage power estimation for deep submicron circuits in an ASIC design environment," in *Proc.* 7th ASP-DAC, 2002, pp. 45–50.
- [8] K. Nose and T. Sakurai, "Analysis and future trend of short-circuit power," *IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.*, vol. 19, no. 9, pp. 1023–1030, Sep. 2000.
- [9] H. J. M. Veendrick, "Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits," *IEEE J. Solid-State Circuits*, vol. 19, no. 4, pp. 468–473, Aug. 1984.
- [10] Cadence SoC Encounter User Guide. [Online]. Available: http://www.cadence.com/
- [11] MATLAB. [Online]. Available: http://www.mathworks.com/products/ matlab/, accessed Sept. 2013.
- [12] OpenCores. [Online]. Available: http://opencores.org/, accessed Jul. 2012.
- [13] OpenSPARC T1. [Online]. Available: http://www.oracle.com/ technetwork/systems/opensparc/, accessed Apr. 2014.
- [14] Sensitivity-Based Leakage Optimizer. [Online]. Available: http:// vlsicad.ucsd.edu/SIZING/, accessed Sept. 2013.
- [15] Synopsys Design Compiler User Guide. [Online]. Available: http://www. synopsys.com/, accessed Sept. 2013.
- [16] Synopsys PrimeTime User's Manual. [Online]. Available: http://www. synopsys.com/, accessed Sept. 2013.