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Abstract

Advances in VLSI technology and the increased
complezity of circuit designs cause performance to be-
come an increasingly important constraint for layout.
In this paper, we address the issue of delay optimiza-
tion during the global routing phase. We formulate
this problem as the construction of a bounded-radius
spanning tree for a given pointset in the plane, and
present a family of effective heuristics. Our approach
has very good empirical performance with respect to to-
tal wirelength, and can be smoothly tuned between the
competing requirements of minimum delay and mini-
mum total netlength, as confirmed by extensive com-
putational results which confirm this. Erxtensions can
be made to the graph and Steiner versions of the prob-
lem, and a number of open problems are described.

1 Introduction

As VLSI fabrication technology advances, intercon-
nection delay becomes increasingly significant in de-
termining overall circuit speed. Recently, it has been
reported that interconnection delay contributes up to
50% to 70% of the clock cycle in the design of very
dense and high performance circuits [2] [16]. Thus,
with submicron device dimensions and over a million
transistors integrated on a single microprocessor, on-
chip and chip-to-chip interconnections play a major
role in determining the performance of digital systems.

Due to this trend, performance-driven layout de-
sign has received considerable attention in the past
few years. However, most of the work in this area
has been on the timing-driven placement problem. A
number of methods have been developed to gener-
ate good placements wherein the blocks or cells in
timing-critical paths are placed close together. The
so-called zero-slack algorithm was proposed by Hauge,
Nair and Yoffa [5]; fictitious facilities and floating an-
chors methods were used by Marek-Sadowska and Lin
[12], and a linear programming approach was used by
Jackson, Srinivasan and Kuh [7] [8]. Several other
approaches, including simulated annealing, have also
been studied [2] [11] [16]. Since no global routing solu-
tion is generally available at the placement step, most
of these placement algorithms use the net bounding
box semiperimeter to estimate the interconnection de-
lay of a net.
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While such techniques have been developed for
timing-driven placement, only limited progress has
been reported for the timing-driven interconnection
problem. In [3], net priorities are determined based
on static timing analysis; nets with high priorities are
processed earlier using fewer feedthroughs. In [9], a hi-
erarchical approach to timing-driven routing was out-
lined. In [13], a timing-driven global router based
on the A* heuristic search algorithm was proposed
for building-block design. However, these results do
not provide a general formulation of the timing-driven
global routing problem. Moreover, their solutions are
not flexible enough to provide a trade-off between in-
terconnection delay and routing cost.

In this paper, we give a solution for timing-driven
global routing in cell-based design regimes. The
method is motivated by considering the similar prob-
lem of finding minimum spanning trees of bounded
radius. In particular, when given a lower bound R
for the spanning tree radius, we search for spanning
trees with radius (1 + ¢) - R. Such a formulation of-
fers a very natural, smooth trade-off between the tree
radius (maximum signal delay) and the tree cost (to-
tal interconnection length). This in turn affords the
circuit designer a great deal of algorithmic flexibility,
as the parameter ¢ can be varied depending on perfor-
mance constraints. The timing-driven global router
that we propose is based on several simple yet very ef-
fective heuristic algorithms for computing bounded ra-
dius minimum spanning trees. Extensive experimen-
tal results show that our global router reduces maxi-
mum source-sink pathlength by an average of 28% for
10-pin nets when compared with conventional mini-
mum spanning tree based global routers. Moreover,
our method indeed produces an entire class of routing
solutions which embody the trade-off between mini-
mum delay and minimum wire cost.

The remainder of this paper is organized as follows.
In Section 2, we present a general formulation of the
performance-driven global routing problem. In Sec-
tion 3, we present a simple yet very effective heuris-
tic algorithm for computing bounded radius minimum
spanning trees, and analyze performance bounds for
the algorithm. Section 4 describes several variations
and improvements of this basic algorithm, and exper-
imental results are reported in Section 5.



2 Formulation of the Problem

A net N is a set of terminals to be connected where
one of the terminals is a source and the rest are sinks.
A routing solution of a net is a spanning tree T (called
the routing iree of the net) which connects all of the
terminals in the net. Since the routing tree may be
treated as a distributed RC tree, we may use the first-
order moment of the impulse response (also called El-
more’s delay) to approximate interconnection delay
[4] [15]. A more accurate approximation can be ob-
tained using the upper and lower bounds on delay in
an RC tree derived in [15]. However, although both
the formula for Elmore’s delay and those in [15] are
very useful for simulation or timing verification, they
involve sums of quadratic terms and are difficult to
compute and optimize during the layout design pro-
cess. Thus, a linear RC model (where interconnection
delay between a source and a sink is proportional to
the wire length between the two terminals) is often
used to derive a simpler approximation for intercon-
nection delay (e.g., [11] [14]). In this paper, we shall
also use wire length to approximate interconnection
delay in the construction of routing solutions. In prac-
tice, a subsequent iterative improvement step, based
on a more accurate RC delay model, may be used to
enhance the routing solutions.

Figure 1: An example where the cost of a minimum-
radius routing tree (right) is Q(n) times larger than the
cost of a minimum spanning tree (left).

The radius R of a net is the maximum Manhattan
distance from the source to any sink in the net. The
length or cost of an edge between points z and y is
the Manhattan distance dist(z,y). The shortest path
in the routing tree T between any two terminals
and y, denoted by minpathr(z,y), is the sum of the
lengths of all edges in the unique path from z toyin 7.
The cost of minpathr(z,y) is the sum of the costs of
its edges, and is denoted distp(z,y). We define the ra-
dius of a routing tree, r(T), to be the maximum path-
length from the source to any sink. Clearly, 7(7) > R
for any routing tree T. According to the linear RC
delay model, in order to minimize the interconnection
delay of a net, we want to minimize the radius of the
routing tree since it measures the maximum intercon-
nection delay between the source and any sink. If
minimizing the radius was our only consideration, the
global routing problem is trivial: simply connecting
the source to every sink using the shortest path yields
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r(T) = R, which is the best possible result. How-
ever, the cost of this routing tree, i.e., the total edge
length, might be very high. In fact, we can show that
the cost of the tree can be Q(n) times larger than the
cost of the minimum spanning tree (MST), where n
in the number of terminals in the net, as illustrated in
Figure 1.

A routing tree with high cost may increase the over-
all routing area. Moreover, high cost also contributes
to the interconnection delay which is not captured in
the linear RC model. Therefore, neither tree shown in
Figure 1 is particularly desirable. In order to balance
the radius and the cost in the routing tree construc-
tion, we formulate the timing-driven global routing
problem as follows:

The Bounded Radius Minimum Spanning Tree
(BRMST) Problem: Given a parameter¢ > 0 and a
signal net with radius R, find a minimum-cost routing
tree T with radius r(T") < (1 +¢) - R.

The parameter ¢ controls the trade-off between the
radius and the cost of the tree. When ¢ = 0, we min-
imize the radius of the routing tree, and when € = oo
we minimize the total cost of the tree. In general,
as € grows, there is less restriction on the radius, so
we can further minimize the cost of the tree. For the
example of Figure 2, we show three spanning trees ob-
tained using different values of ¢. Figure 2(a) shows
the minimum radius spanning tree corresponding to
the case € = 0, with maximum pathlength r(T') = 6;
Figure 2(b) shows a solution with (7} = 10 corre-
sponding to the case € = 1; and Figure 2(c) shows the
minimum cost spanning tree corresponding to the case
€ = oo, with r(T") = 14. We can see that the tree cost
decreases as the radius increases.

*—
1! 3

4 3 4
2 X2 o
(a) £=0, cost=17, (b) €=1, cost=15, (c) €= oo, cost=14,
R=6 R=10 R=14

Figure 2: Examples showing how increasing the value of
€ may result in decreased tree cost but increased radius.

The bounded-radius minimum spanning tree for-
mulation provides a great deal of flexibility for our
timing-driven global router. In practice, for nets in
the timing-critical paths, the router uses small € so
that the interconnection delay is minimized. For nets
not in any timing-critical path, the router uses large ¢
so that the total wire length is minimized.

According to the result in [6], constructing a mini-
mum spanning tree with bounded radius in a general
graph 1s NP-complete. However, this result does not
imply that the BRMST problem is NP-complete since
in our formulation, terminals are in the Manhattan
plane (whose underlying graph is a grid graph) rather



than a general graph. So far, the exact complexity of
the BRMST problem is still unknown, and the objec-
tive of this paper is to present a heuristic algorithm
for the BRMST problem. Our goal is to construct a
bounded-radius spanning tree with small cost.

3 Algorithm for Computing Bounded

Radius Minimum Spanning Trees

Our basic algorithm for a net N finds a routing
solution by growing a single connected component,
following the general scheme of Prim’s classical min-
imum spanning tree construction. We grow a tree
T = (V,E) which initially contains only the source
s. At each step, we choose 2 € V and y € N — V such
that dist(z,y) is minimum. If adding (z,y) to T does
not violate the radius constraint, i.e., distp(s,z) +
dist(z,y) < (14¢€)- R, we include the edge (z,y) in T
Otherwise, we “backtrace” along the path from x to s
to find the first point ’ such that (z',y) is appropriate
(i-e., disty(s,2’) + dist(z’,y) < R), and add (z’,y) to
the tree. In the worst case, the backtracing will termi-
nate with z’ = s, since the edge(s, y) is always appro-
priate. Note that in backtracing we could choose z’
such that distp(s,z’) + dist(z’,y) < (1+¢€)- R. How-
ever, our choice of appropriate edges leads to fewer
backtracing operations, while guaranteeing that back-
tracing is still always possible. In other words, we in-
tentionally introduce some “slack” at y so that points
within an €R neighborhood of y will not cause addi-
tional backtracing. Limiting the amount of backtrac-
ing in this way will keep the cost of the resulting tree
close to that of the minimum spanning tree.

We call this algorithm the Bounded Prim
(BPRIM) construction. The high-level description
is given in Figure 3. We can show that the radius of
the resulting tree is never greater than the radius of
the MST whenever the MST is unique.

T=(VE =(5},0)
while |V} < |N|
Select two points z € V andy e N -V
minimizing dist(z,y)
if distr(s,z) + dist(z,y) < (1+¢) R
then V =V U{z}; E = FU{(z,y)}
else find first 2’ along path from z to s in T
such that distr(s,z") + dist(z',y) < R
V=VU{zLE = Eu{,y)

Figure 3: Computing a bounded-radius spanning tree T
for a set of terminals N, with source s € N and radius
R, using parameter e.

With regard to total tree cost, we note that the dif-
ference between the BPRIM and MST tree costs will
depend on the parameter €. In practice, most nets
will have between two and four pins. Furthermore,
it is unlikely that a single gate will be used to drive
more than six gates in CMOS design. In this case, we
can show that the cost of the resulting tree is within a
small constant factor of the cost of the MST for nets
of practical size [1]. In fact, the experimental results
of Section 5 suggest that the routing tree radius is still
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bounded by a small constant even for very large nets.
However, examples exist which show that the worst-
case performance ratio of BPRIM is not bounded by
any constant for any value of e.

4 Extensions of the Basic Algorithm

As it turns out, the bounded-radius construction
can also be applied to minimum spanning tree meth-
ods other than Prim’s algorithm. A more general al-
gorithm template could be as follows:

T =(V,E) = ({s},0)
while |V| < |N|
Select two points ¢ € V and y € N —
with distp(s,z) + dist(z,y) < (1 +
V=Vu{e}y E=EU{(z,y)}

Figure 4: A more general bounded-radius spanning tree
algorithm template.

This general template gives rise to a number of dis-
tinct variants, depending upon how the pair of points
z and y are selected inside the inner loop. Several vari-
ants give significant performance improvements over
the BPRIM algorithm:

e H1 - Find z and y as in BPRIM, and select
a terminal z’ along minpathr(s,z) yielding a
minimum appropriate edge (z’,y).

e H2 - Find a point y € N — V minimizing
dist(z,y) for any ¢ € V, and select a terminal
z' € V yielding a minimum appropriate edge
(Ilyy)'

e H3- Find a pair of terminals z € Vandy € N—
V yielding a minimum appropriate edge (z,y).

It is easy to show that for BPRIM and for each of
these variants, the radius of the routing tree is never
greater than the radius of the MST whenever the MST
1s unique. However, when the MST is nof unique, it is
possible for the radius of the BPRIM (or any variant)
construction to be arbitrarily larger than the radius of
some MST. The time complexity of variants H1 and
H2 is O(n?), while variant H3 can be easily imple-
mented within time O(n3). Each of the above variants
will also has unbounded worst-case performance ratio.

5 Experimental Results

The BPRIM algorithm and variants H1, H2, and H3
were implemented in ANSI C for the Sun-4, Macintosh
and IBM environments; code is available from the au-
thors. The algorithms were tested on a large number
of random nets of up to 50 terminals, generated from a
uniform distribution in the 1000 x 1000 grid. As noted
in [10], any set of approximation heuristics induces a
meta-heurisiic which returns the best solution found
by any heuristic in the set and has asymptotic com-
plexity equal to that of the slowest original heuristic;
we also implemented the meta-heuristic over H1, H2,
and H3, with respect to minimum radius.



Although there exist examples where the BPRIM
algorithm outperforms the more complicated variants,
the data indicates that on average, variant H1 dom-
inates BPRIM, H2 dominates H1, and H3 dominates
H2. The smooth tradeoff between radius and cost is
illustrated in figures 5 and 6 for typical values of ¢.
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Figure 5: Average BPRIM routing tree radius, repre-
sented as a fraction of MST radius.
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Figure 6: Average BPRIM routing tree cost, represented
as a fraction of MST cost.

6 Extensions and Open Problems

Our basic algorithm and all of its variants read-
ily extend to other norms and to alternate geome-
tries (e.g., 45- or 30-60-90-degree routing regimes). In
addition, the algorithm can be applied to arbitrary
weighted graphs with non-metric edge weights, as in
building-block and mixed-mode design. Extensions to
performance-driven Steiner routing are also straight-
forward.

There are several interesting open problems. First,
the complexity of the BRMST problem is still un-
known. Also, it is open whether there is a polyno-
mial time approximation algorithm for the BRMST
problem with constant performance ratio (the con-
stant would be independent of the problem size but
depend on the value of €). Moreover, for a given net,
if the minimum spanning tree is not unique, it is un-
known how to choose one with the minimum radius.
Further studies of these problems are in progress.

7 Conclusion

We presented a family of global routing heuristics
which construct a bounded-radius spanning tree for
a given net. Our approach allows a smooth trade-
off between delay minimization and total wirelength,
and has good empirical performance as well as efficient
time complexity.
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