Random Walks for Circuit Clustering

Jason Cong, Lars Hagen and Andrew Kahng

UCLA Computer Science Dept.. Los Angeles, CA 90024-1596

Abstract

We introduce a fast, parallelizable approach to circuit
clustering based on analysis of random walks in the
netlist. The method yields good clustering solutions
for classes of “difficult” inpuls in the literature as well
as for indusiry benchmark circuits. We characlerize
our results using a new clustering metric which facil-
ilales comparison with fulure work. Eztensions to a
number of other CAD applications are proposed.

1 Introduction

Advances in process technology have improved the
switching speed of circuit elements at a much faster
rate than corresponding improvements have occurred
in packaging technology. This has led to a “hierar-
chy bottleneck”, where choice of high-level organiza-
tion dramatically constrains system performance. To
address this issue, new packaging approaches have
been developed (e.g.,, MCM technology), and hier-
archical top-down design has become an important
CAD paradigm. In particular, high-level partitioning
?nd clustering problems have attracted much atten-
ion.

Partitioning is important for hierarchy-related per-
formance optimization (e.g., signal time-of-flight
across system partitions, lossy transmission line ef-
fects, etc.), and because early partitioning decisions
in top-down synthesis strongly constrain the quality
of the final layout. Clustering analysis of the circuit
netlist is traditionally distinguished from partitioning
as a bottom-up process arising in floorplanning, con-
structive initial placement, and even multi-way parti-
tioning when the sizes of the partitions are not known
a priori. However, as design complexity increases,
top-down partitioning and bottom-up clustering have
been used to complement each other in addressing
the same issues. A primary use of clustering is for
aggregation analysis of the netlist, i.e., so that small
clusters can be treated as single elements, resulting
In a smaller, “condensed” instance for top-down par-
titioning. Without this simplification, newer designs
can have complexity beyond the capabilities of tradi-
tional partitioning algorithms or their hardware plat-
forms. More importantly, the solution quality of iter-
ative partitioning methods (particularly Kernighan-
Lin and simulated annealing) does not scale well with
problem size, and such authors as Bui et al. [1] and
Lengauer [8] have noted that a good clustering will
improve the performance of such partitioning algo-

rithms. Finally, traditional partitioning methods do
not readily identify “natural” divisions which might
be discovered by bottom-up analysis [9]. The sur-
veys of Donath [4] and Lengauer [8] give additional
discussion of partitioning and clustering.

The remainder of this paper is organized as follows.
In Section 2, we discuss previous work in clustering,
particularly the recent (k,!)-connectivity method of
Garbers et al. [5]. Section 3 proposes a new ap-
proach to clustering: we infer graph structure from
the node sequence generated as we iteratively move to
a random adjacent node in the netlist. Two theoret-
ical results bound the required length of the random
walk; another result shows that dense, highly clus-
tered graph inputs will be correctly analyzed via the
random walk process. Section 4 develops a practi-
cal clustering algorithm for netlist hypergraphs, and
Section 5 gives experimental results for both random
input classes from the literature as well as industry
benchmark circuits. The random walk method has a
number of attractive features, including stability and
perfect parallelizability, which are increasingly useful
as design complexity increases. We conclude in Sec-
tion 6 by listing several extensions and a number of
additional applications of the random walk method.

2 Previous Work

Previous work in clustering is limited, primarily re-
lying on intuitive notions of edge density among sets
of modules. For example, if more than ¢ - C(c,2)
edges are present among ¢ vertices in the netlist graph
G = (V,E), then the c vertices are said to form a
cluster. Practical use of such a definition is impossi-
ble since it requires checking all subsets of V' with
cardinality ¢. Thus, the related concept of gk,l)-
connectivity was recently used by Garbers et al. [5]
for circuit clustering.

If there are k edge-disjoint paths of length I be-
tween nodes u and v, then u and v are said to be
(k,1)-connected; [5] showed that for certain highly
structured inputs, the transitive closure of the (k,!)-
connectedness relation gives an equivalent clustering
to that induced by the edge density criterion. In-
deed, on some instances of a class of random inputs
and for a highly structured standard-cell benchmark,
the (k,!) criterion yields reasonable solutions. How-
ever, the connectivity based method suffers from two
main weaknesses. First, although determining (k,{)-
connectivity is more “algorithmically tractable” than
checking edge density, the methods proposed in [5}

91TH0379-8/91/0000-P14-2.1$01.00 © 1991 IEEE

P14-2.1

still require time exponential in k£ and [, even for
1 = 2. Second, (k,!)-connectivity yields nonintuitive
results: nodes v; and v; can belong to a cluster even
when no node on any path between v; and v; belongs
to the cluster (e.g., a cycle of length four through
nodes A, B, C and D will be broken into an (4,C)
cluster and a (B, D) cluster by the (2, 2)-connectivity
criterion; this solution has twice the cutsize of the
more natural (A, B)(C, D) clustering).

With this in mind, we wish to develop an effi-
cient method that returns intuitively reasonable cir-
cuit clusterings. In examining the literature, one
notes that the lack of previous work is in no small
part due to the difficulty of even defining the cluster-
ing problem. While a number of metrics have been
devised to assess the quality of a graph partition,
the nature of a “good” circuit clustering is still very
much an open issue. Without knowledge of what con-
stitutes an optimal clustering, researchers have thus
constructed examples for which the desired output is
known, and measured clustering heuristics by their
ability to output the correct answer. (Although we
evaluate our new method with respect to such input
classes, note that Section 5 proposes a highly general,
new metric for circuit clustering.)

Two classes of “difficult” instances for partition-
ing and clustering are respectively due to Bui et al.
[l]gand Garbers et al. {5]. The first is given by the
random graph model Ggi(n,d,b) and was developed
in (1] to analyze graph bisection (partitioning) algo-
rithms. A graph in Gpgyi(n,d,b) has n nodes, is d-
regular and has minimum bisection width almost cer-
tainly equal to b. The second input class is given by
the Ggar(c, m, Pint, Pezt) random model of (5}, which
prescribes ¢ clusters of m nodes each, with each of the
c-C(m,2) edges inside clusters independently present
with probability p;,; and each of the m?.C(c, 2) edges
between clusters independently present with proba-
bility per:.

The essential quality of the Ggy; and Ggq, inputs
is that they have optimal cutsize (i.e., the number of
edges between clusters) that is significantly smaller
than the optimal cutsize of a random graph with sim-
ilar node and edge cardinalities. It has been shown
that on these instances, traditional Kernighan-Lin
and simulated annealing methods usually return so-
lutions an unbounded factor worse than optimal Ll]
For inputs in Gp,i(n,3,b), these standard approaches
give bisection results that are no better than ran-
dom solutions, a disturbing observation which further
motivates clustering as an alternative way of dealing
with difficult partitioning instances. As discussed be-
low, our approach can eflectively deal with such “dif-
ficult” partitioning instances.

3 Random Walks in Graphs

Our main contribution is a new methodology which
computes a circuit clustering based on random walks
in the netlist hypergraph. A random walk on a graph
is defined to be a discrete-time stochastic process
which iteratively moves from the current vertex in
the random walk to a random adjacent vertex. with

P14-2.2

all adjacent vertices (i.e., all transitions) equiproba-
ble. Our method relies on the fact that such a ran-
dom walk will with high probability quickly capture
the graph structure. It is instructive to consider the
progress of a random walk on the “barbell” example
of Figure 1, which consists of two cliques joined by
a chain. With some thought, a number of standard
probabilistic results (cf. E?] [7]) are clear: (i) if we
start at z, then all nodes in cluster A will be visited
within the first O(n log n) steps, but (ii) the walk
will not escape to the middle chain until O(n?) steps
have been taken; if we consider the same example
with cluster A deleted, then (iii) a walk from y will
require O(n?) steps to reach z, but (iv) a walk from
z will need O(n3{ steps to reach y (since every time
we return to z, the walk will wander around cluster
B before again escaping into the chain).

A B

X

Figure 1: “Barbell” graph example.

We may define the cover time of G as the maximum,
over all possible starting vertices, of the expected
length of a random walk that visits all vertices in
G. The following results are found in [2] [7] or are
simple to derive:

Theorem 1: For a dense connected graph G =
(V, E) with all node degrees > |V|/2, the cover time
of G is O(n log n). O

Theorem 2: In a random clustered graph with all
node degrees > c, - |V], all clusters of size < 2¢; - |V|
and total intercluster cutsize O(1/|V), two random
walks of length ©(|V|'®) from v, and vy will en-
counter identical node sets with probability 1 — o(1)
exactly when v; and v, belong to the same cluster. o

Theorem 2 implies that in a graph with dense clus-
ters, we may compare short random walks starting at
two nodes, and reliably determine whether the nodes
belong together in a cluster. A slightly weaker result
holds for sparse graphs [3]. We can also show that
when the input 1s sparse (e.g., netlists are degree-
bounded by a constant due to fanout/pinout limita-
tions), the cover time remains small:

Theorem 3: For a sparse connected graph G =
(V, E) that is d-regular with d < n/2, the cover time

of G is ©(n?). o

Thus, we may reasonably use a single random walk
to sample the entire graph, instead of computing sep-
arate walks from every vertex.

4 A Practical Algorithm

Two basic issues must be addressed to derive a prac-
tical clustering algorithm from the theoretical results
of Section 3. The first issue is definition of the random
walk transition probabilities between vertices (mod-
ules) of the netlist hypergraph, since the number of
modules in each signal net (i.e., hyperedge sizes) can
vary greatly. Because the random walk should remain
within each natural cluster for a “long” time, larger
signal nets should have smaller probability of traver-
sal, since they have a greater chance of leading out
of the current cluster. We have found the following
natural transition weighting to be effective. The net
sum of the current module v;_;, denoted sum,,_,,

is E“su__) 1/|sk|, where |s;| denotes the number of

pins in signal s;. From v;_, the walk will traverse
an incident signal net s; with probability inversely

proportional to [si|, i.e., netprob(s|vi—q) = %ﬁ%
Once signal net s; has been chosen for traversal,
the next module in the walk is chosen from the
other |s;| — 1 modules in s; with uniform probabil-
ity nodeprob(vi|s;) = 1/(]si| — 1).

Given this random walk process, the second issue
is how to extract useful clustering information from
the random walk within a reasonable time bound.
The obvious approach motivated by Theorem 2 would
be to look at two random walks respectively starting
from nodes v; and wv;, then assign v; and v; to the
same cluster if the random walks are sufficiently sim-
ilar. However, without prior knowledge of the netlist
structure we cannot prescribe a reasonable similarity
measure, nor can we exactly prescribe the length of
the random walks (each walk should be long enough
to explore its “natural cluster”, but not long enough
to escape the cluster). Furthermore, because compar-
ing two random walks requires time at least linear in
the combined length of the walks, testing all pairs of
walks (i.e., all pairs of starting nodes) is impractical.
Therefore, we examine the sequence of modules en-
countered by a single random walk in the netlist, and
use the notion of recurrence in the random walk to
efficiently determine clustering structure.

Consider the sequence of nodes {vg,vy,...,vn_1}
encountered during the random walk. A cycle
of the random walk is a contiguous subsequence

Up,Up41,.--,¥g} in the walk with vy, = vy and all v

istinct, : = p,p+1,...,¢ — 1. The mazimum cycle
for each node v;, denoted C(v;), is the longest cycle
in the random walk which begins and ends at v;. The
set of modules in each C(v;) intuitively corresponds
to (part of) a natural cluster, for two reasons: (i) if
there is a more tightly coupled subset, then the ran-
dom walk will recur within that subset and we would
not have found the C(v;) cycle; and (ii) it is unlikely
that the random walk will leave a cluster and return
to the same cluster without traversing some smaller
cycle in the process. Based on this idea, our algo-
rithm is as follows. We compute a random walk in
the netlist, find C(v;) for all modules v;, and then
define the relation 0a by v, ba vy if v, € C(v) and
vy € C(vs). The transitive closure of the ba rela-
tion (equivalently, the connected components of the

P14-2.3

clustering graph induced by >q) yields the netlist clus-
tering. This method, which we call Algorithm RW1,
is summarized in Figure 2.

/* Compute a random walk of length N */
vo = starting node in walk
fori=1toN -1
s; = random signal net, using netprob(s;lvi-1)
v; = i'® node in walk, using nodeprob(v;|s;)
Return sequence {v;} of nodes in walk

/* Perform clustering analysis */
for j =1 to |V|
Compute C(v;)
for i = 1 to |V|
for j=1i+1to |V|
Add edge (3, j) to clustering graph if v; ba v;

Output connected components of clustering graph.

Figure 2: Summary of Algorithm RW1.

5 Experimental Results

We ran Algorithm RW1 on random graphs from the
class Gpui with between 100 and 800 nodes, following
the parameters (n,d,b) reported by Bui et al. (Ta-
ble I, p. 188 of [1]). We also generated a number of
1000-node and 500-node examples of clustered inputs
in Ggar, using the same values (¢, M, Pint, Pest) 3s in
Table 1 of {5]. Typical results are shown in Table 1
below: six 200-node Gpy; examples and three 500-
node Ggqr examples are listed, with RW1 results for
random walks of length n!%, n2 and n%5. For the
Ggar results, g denotes the number of large clusters
found, and ! denotes the number of “loose” nodes
which did not belong to any large cluster. Since the
GBui instances represent 2-clustered graphs, our re-
sults show the number of nodes assigned to the two
largest clusters, A and B. The results demonstrate
that walks of length O(n?) are indeed appropriate
for sparse, degree-regular instances of the Gpy; and
Ggar classes; for most examples, the results are com-
parable to or superior to those reported in [5].

To measure the quality of a clustering when the
“correct” solution is not known, we propose to use the
weighted average of the cluster (degree/separation)
(DS) quality: (i) cluster degree is the average number
of nets incident to each node and having at least two
pins in the cluster; and (ii) cluster separation is the
average length of a shortest path between two nodes
in the cluster, with separation = oo if two nodes in the
cluster are disconnected. The DS measure is highly
robust: it accounts for multiplicity of connections,
is not unduly sensitive to small perturbations of the
netlist, and provides a very general metric for clus-
tering solutions. (The DS measure can be slightly
harsh: if two disconnected nodes are placed together
in a cluster, the entire cluster receives DS quality
= 0.) We believe that the DS metric is suitable as a

=
o
8
~
0

Bui Examples

n n n
n d b ATBITATB A B
200 3 2 2 5 10 12 8Y 73
200 5 2 4 4 a3 33 99 97
200 9 2 7 7 86 854 100 EE
200 3 10 3 3 5 [81 86
200 {510 3 EREN 39 96
200 9 10 6 4 34 93 196 1
Garbers Examples nl> n? nl”
< m Pint Pext g] g ! g !
5 {100 0.1 000025 | 5 [383 | 5 { 40 [4 2
S 100 0.1 0.00050 5 409 5 49 2 9
S5 100 0.1 0.00075] 500 2 71 1 12

Table 1: RW1 for Ggu; and Ggar inputs.

standard measure of clustering quality.

We have used RW1 to cluster several industry
benchmarks, including Primaryl from the MCNC
test suite and bml1, a Hughes benchmark discussed
in {9]. For these two circuits, Table 2 lists DS statis-
tics for the entire netlist, for the two largest clusters
found by RW1, and average DS quality over all clus-
ters found by RW1. Note that the DS average is
significantly higher for the clusters than for the en-
tire netlist, implying that the RW1 algorithm indeed
discovers tightly coupled subsets of nodes.

Primaryl | cluster cluster DS
nodes degree separation quality
Total 3833 3491 4.467 0.782
1st 50 3.100 3.236 0.955
2nd 40 3.675 2.458 1.495
Average over all RW1 clusters 0.022

bm1l cluster cluster DS
nodes degree | separation | quality
Total 332 3.299 4.310 0.636
1st 71 3451 3.046 1.133
2nd 45 3.667 2.823 1.299
Average over all RW1 clusters 0.852

Table 2: DS statistics for Primaryl and bml.

6 Conclusions

We have proposed a new methodology for extracting
circuit clustering structure via random walks on the
netlist hypergraph. Results on “locality” in netlist
structure [6] suggest that the bottom-up random
walk based clustering, may well yield more usefu! re-
sults than traditional top-down recursive partition-
ing. Our method is provably good for dense clustered
graphs, and gives good empirical results for the diffi-
cult input classes of [1] [5] as well as industry bench-
mark designs. In analyzing the industry benchmark
designs, for which no “correct” solution is known, we
have characterized our clustering results using a new
clustering metric which may standardize comparisons
between current and future algorithms.

_ Our random walk approach has several computa-
tional advantages, notably the perfect parallelizabil-
ity of taking the random walk and computing the

P14-2.4

C(v;). Furthermore, a random walk of length O(n?)
can reliably cover a degree-regular graph and capture
its clustering structure; this theoretical result is con-
firmed in our experiments. Since all cycles C(v;) in
the random walk can be found in time linear in the
length of the walk, our algorithm is more practical
than traditional methods of analyzing graph struc-
ture, which involve Q(n®)-complexity matrix compu-
tations.

A number of extensions are the subject of current
work. (1) Maximum cycles in the random walk can
be merged into clusters via an overlap measure be-
tween two cycles. If the overlap between two cycles
C(v;) and C(v;) exceeds a threshold parameter T,
then v; o vj; the transitive closure of the o relation
gives a circuit clustering, as noted in [3]. The 7 pa-
rameter may be varied to force a prescribed number
of clusters in the final output, giving an added degree
of freedom beyond the variable length of the random
walk itself. (2) We can vary the transition probability
model used in computing the random walk, depend-
ing on design parameters and prevailing technology.
For example, changing the relative weighting of large
nets and small nets will yield a qualitatively different
circuit clustering. (3) As noted above, the RW1 algo-
rithm has perfect parallel speedup; we are investigat-
ing implementation on multiprocessor platforms. (4)
Finally, the random walk methodology is very gen-
eral, and is applicable whenever we must implicitly
analyze the structure of a netlist. Thus, recursive
partitioning and floorplanning, layout area predic-
tion, wireability estimation, etc. all offer promising
areas of application, and are the subject of current
investigation [3].

References

(1} T. N. Bui, S. Chaudhuri, F. T. Leighton and M. Sipser,
“Graph Bisection Algorithms with Good Average Case
Behavior”, Combinatorica 7(2) (1987), pp. 171-191.

[2) A. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky
and P. Tiwari, “The Electrical Resistance of a Graph
Captures its Commute and Cover Times”, Proc. ACM
Symp. on Theory of Computing, May 1989, pp. 574-586.

[3] J. Cong, L. Hagen and A. Kahng, draft, June 1991.

[4) W.E. Donath, “Logic Partitioning”, in Physical Design
Automation of VLSI Systems, B. Preas and M. Loren-
zetti, eds., Benjamin/Cummings, 1988, pp. 65-86.

[5] 1. Garbers, H. J. Promel and A. Steger, “Finding Clusters
in VLSI Circuits”, ertended version of paper in Proc.
IEEE Intl. Conf. on Computer-Aided Design, 1990, pp.
520-523.

[6) L. Hagen and A. B. Kahng, “Fast Spectral Methods
for Ratio Cut Partitioning and Clustering”, to appear
in Proc. IEEE Intl. Conf. on Computer-Aided Design,
Santa Clara, November 1991.

[7] J. D. Kahn, N. Linial, N. Nisan and M. E. Saks, “On the
Cover Time of Random Walks on Graphs”, J. of Theo-
retical Probability 2(1) (1989), pp. 121-128.

8] T. Lengauer, Combinatorial Algorithms for Integrated
Circuit Layout, Wiley-Teubner, 1990.

[9] Y.C. Wei and C.K. Cheng, “A Two-Level Two-Way Par-
titioning Algorithm”, IEEE Intl. Conf. on Computer-
Aided Design, 1990, pp. 516-519.

