EFFICIENT HEURISTICS FOR THE MINIMUM SHORTEST PATH STEINER
ARBORESCENCE PROBLEM WITH APPLICATIONS TO VLSI PHYSICAL DESIGN

Jason Congt, Andrew B. Kahng't, and Kwok-Shing Leung'

! Cadence Design Systems, San Jose, CA 95134
! UCLA Computer Science Department, Los Angeles, CA 90095-1596

ABSTRACT

Given an undirected graph G = (V, E) with positive edge
weights (lengths) w : E — RT, a set of terminals (sinks)
N C V, and a unique root node r € N, a shortest-path
Steiner arborescence (simply called an arborescence in the
following) is a Steiner tree rooted at r spanning all termi-
nals in N such that every source-to-sink path is a shortest
path in G. Given a triple (G, N,r), the Minimum Short-
est-Path Steiner Arborescence (MSPSA) problem seeks an
arborescence with minimum weight. The MSPSA problem
has various applications in the areas of VLSI physical de-
sign, multicast network communication, and supercomputer
message routing; various cases have been studied in the lit-
erature. In this paper, we propose three efficient heuristics
for the MSPSA problem and present applications to VLSI
physical design. Experiments indicate that our algorithms
generate near-optimal results and achieve speedups of sev-
eral orders of magnitude over existing algorithms.

1. INTRODUCTION

Given an undirected graph G = (V, E) with positive edge
weights (lengths) w : E — RT, a set of terminals (sinks)
N C V, and a unique root node r € N, a shortest-path
Steiner arborescence (simply called an arborescence in the
following) is a Steiner tree rooted at r spanning all terminals
in N such that every source-to-sink path is a shortest path
in G. Given a triple (G, N, r), the Minimum Shortest-Path
Steiner Arborescence (MSPSA) problem seeks an arbores-
cence with minimum weight.

The MSPSA problem is a special case of the Minimum
Steiner Arborescence (MSA) problem, which has been well
studied in the literature (for example, [13, 10]). Given a
triple (G, N,r) wherein G is a directed graph, the MSA
problem seeks a minimum-weight Steiner tree spanning all
nodes in N with all edges directed away from r. If G’ is
the shortest-path directed acyclic graph of G (defined in
the next section), it is easy to see that an MSA of G’ is an
MSPSA of G. Both the MSA and the MSPSA problems
are NP-hard [13, 2].

The rectilinear version of the MSPSA problem is called
the Minimum Rectilinear Steiner Arborescence (MRSA)
problem. Given a set of terminals N (including the root

r located at the origin), let Gy = (Vany, Lucny) be
the induced Hanan grid graph [11] of N. Tt can be shown
that an MSPSA of (Gyny, N,r)is an MRSA of N. Exact
methods for the MRSA problem can be classified into (1)
dynamic programming, (2) integer programming, and (3)
branch-and-bound/enumeration techniques. The DP-based
approach was first used in the work of Ladeira de Matos
[16], and more recently in the RSA/DP algorithm by Leung
and Cong [18]. Nastansky et al. [20] formulated the MRSA
problem (and its D-dimensional generalization) as an inte-
ger program, and solved it with implicit enumeration tech-
niques. Cong and Leung presented the Atree/BnB [5] and
RSA/BnB [18] algorithms, both of which employ branch-
and-bound techniques to effectively prune the search space.
Finally, Ho et al. [12] gave two exhaustive enumeration al-
gorithms with O(|N|**) (k is the number of “dominating”
layers) and O(|N|23|N|) runtime complexities, respectively.

Rao et al. [21] presented the RSA algorithm, which was
the first known heuristic for the MRSA problem; the RSA
output has length no more than twice optimal, with runtime
being O(|N|log |N|) if all terminals are located in the first
quadrant, and O(|N|?log|N|) in the general case. Run-
time for the general case was improved to O(|N|log |N|) by
Cérdova and Lee [8]. In [6], Cong et al. presented the Atree
algorithm, based on making “safe moves”. Téllez and Sar-
rafzadeh [23] gave the pRDPT algorithm, which is based on
optimally solving a restricted version of the MRSA prob-
lem. More recently, Kahng and Robins gave a simple adap-
tation of their Iterated 1-Steiner algorithm to the MRSA
problem [15]; and Leung and Cong presented the k-IDeA
algorithm whose performance is very close to optimal in
practice [19].

The hypercube version of the MSPSA problem, also
called the Optimal Communication Tree or Optimal Mul-
ticast Tree problem in the literature, has been studied by
Choi et al. [3, 2], Lan et al. [17], and Sheu and Su [22].
The problem is NP-hard [2], and heuristics include the LEN
heuristic [17], the COVER heuristic [2], and the more recent
ShSu heuristic [22].

There has been relatively little research on the general
MSPSA problem. In [1], Alexander and Robins presented
the Path Folding (PFA) algorithm, an adaptation of the
RSA heuristic, and the IDOM algorithm, which iteratively
adds the best Steiner node as a terminal (analogous to the
Iterated 1-Steiner algorithm). They further showed that the
MSPSA problem cannot be approximated within a factor of
O(log | N|) times optimal unless deterministic polylog space
coincides with non-deterministic polylog space.

The MSPSA and the MRSA problems have applications
to performance-driven VLSI physical design. Cong et al.
showed that rectilinear Steiner arborescences outperform
traditional heuristic Steiner minimum trees for delay opti-

mization in submicron process technology [6]. Alexander
and Robins applied the PFA and IDOM algorithms to route
timing-critical nets in FPGAs [1]. Cong and Madden [7]
proposed a multi-source routing algorithm based on con-
structing minimum-cost minimum-diameter arborescences.

In this paper we propose three efficient heuristics for the
MSPSA problem and present applications to VLSI physical
design. The first algorithm, called the RSA/G algorithm, is
based on the RSA heuristic for the MRSA problem. We then
describe the k-IDeA/G algorithm which generalizes the k-
IDeA algorithm [19]. The last algorithm, k-1A/G, improves
upon the complexity of the IDOM algorithm of Alexander
and Robins. Finally, we present experimental results which
show that our algorithms generate near-optimal results and
achieve speedups of several orders of magnitude over exist-
ing arborescence algorithms. Due to space limitations, all
theorems are presented without proof. Readers may refer
to [4] for details.

2. PRELIMINARIES

Given G = (V, E), we define the distance label of v € V, de-
noted A(v), to be the shortest-path distance of v from r in
G. The shortest-path directed acyclic subgraph (SPDAG)
of G is denoted G' = (V' E'), with V' = V and the di-
rected edge (v,v') € E' if and only if (v,v') € F and
A(v') — A(v) = w(v,v"). Clearly, any arborescence of G
is a subgraph of G’, hence we focus on solving the MSPSA
problem on SPDAGs (with proper orientation of the edges).
Given a general graph G, its SPDAG G’ can be constructed
in O(|E| 4 |V|log |V]) time using Dijkstra’s algorithm with
a Fibonacci heap [9]. We rank the nodes of V' in order of
increasing distance labels; and we use v;, 1 < i < |V], to
denote the 7""-ranked node, where vy is the root, and vy is
the farthest node from the root (Dijkstra’s algorithm can be
modified to output this ranking without increasing runtime
or space complexity). The following discussion assumes that
the input graph G is already an SPDAG, and we do not
distinguish between G and G’ unless otherwise noted. For
simplicity, we further assume that v}y| is a terminal (oth-
erwise, we can find the maximum ¢ such that v; € N and
remove nodes v;41,- -, Vv and their incident edges from
G, since none of them are in any source-to-sink shortest
path).

Given (v,v') € E, v is called a parent of v, and v’ a
child of v. We use C; to denote the set of children of v;
in G. That is, C; = {v | (vi,v) € E}. Given two nodes
v,v' €V, we say v’ is reachable from v, denoted v < o, if
and only if there exists a (directed) path in G from » to v',
and v < v’ if and only if v < v’ and v # o', If v < v', then
v ~+ v’ denotes a shortest path from v to »' in G. Unless
otherwise noted, in the following we assume v,v’,v” € V
and 1 <14,5,k <|V].

3. THE RSA/G ALGORITHM

We begin by reviewing the Minimum Rectilinear Steiner
Arborescence (MRSA) problem. Recall that a rectilinear
Steiner arborescence is a Steiner tree in the Manhattan
plane spanning all terminals in N, such that each source-to-
sink path is a rectilinear shortest path. In [21], Rao et al.
presented the RSA heuristic which constructs an arbores-
cence in a bottom-up fashion, starting with |N| subtrees
each consisting of a terminal in N. RSA iteratively merges
a pair of subtree roots v and v’ such that (v,v') is as far
from the source as possible, where (v, v’) is the point on the
bounding box of v and v’ that is closest to r. The algorithm
terminates when only one subtree remains.

A straightforward generalization of RSA to the MSPSA
problem is as follows. Let P be the set of active root nodes
(initially P = N). Then, iteratively find a node v € V such
that (1) there exist v',v"” € P (v # v") with v < v’ and
v < 9" and (2) A(v) is maximized among all such nodes
satisfying (1). Then, for each v’ € P with v < v', construct
a shortest path v ~+ o' and remove v’ from P. Finally,
insert v into P. This process is repeated until P = {r}.
Alexander and Robins gave a straightforward implementa-
tion of this approach, called the Path Folding Algorithm
(PFA) [1]. Because the PFA algorithm requires frequent
computation of the least common ancestor of pairs of nodes
in the SPDAG (up to O(|V||N|?) times), its overall time
complexity is O(|N||E| + |V||N|*log [V]).

We adopt a slightly different approach, visiting the nodes
in V in decreasing rank order (i.e., starting from v}|), and
maintaining a peer set consisting of all the subtree roots
whose ranks are higher than the rank of the current node.
We use P; and A; to respectively indicate the peer set and
the partially constructed arborescence after visiting v; (and
before visiting v;—1). Let X; = {v | v; < v and v € Pi41} be
the subset of P reachable from v;, just before v; is Visited).
There are three possible scenarios:

¢ TERMINAL MERGER OPPORTUNITY (TMO): v; € N

¢ STEINER MERGER OPPORTUNITY (SMO): v; € N and
| X >1

e OTHERWISE: v; € N and |X;| <1

If either TMO or SMO applies, we merge all the nodes
in X; (if any) into v;, and update the peer set and the
arborescence respectively, i.e. P; = Piyq — {X;} + {v:} and
Ai = Aig1 4+ {vi ~ v | v € X;}. Otherwise, P; = Piyq
and A; = Aiq (neither the peer set nor the arborescence
is changed). The algorithm starts with A4, = ¢ and
Pivi41 =0, and terminates once Py and A; are computed;
Az 18 returned. The time complexity depends on how fast
X, is computed, and the following two theorems show that
this can be done efficiently.

Theorem 1 LetY; = {v|v; < v and v € P;} be the subset
of P reachable from v; immediately after v; is visited. Then,
Xi = (Uujec,Y5) 0 Piya. o

Theorem 2 |V;| <1for 1 <: < |V]. m

These theorems lead to a very efficient scheme to de-
termine X;. First, Theorem 2 indicates that Y; has ei-
ther zero or one element. Therefore, we can use constant
per-node memory to store the set Y; at the end of visit-
ing v;. Second, Theorem 1 implies that X; can be com-
puted by first taking the union of Y; for each child wv;
of v;, and then intersecting with P;y1. We can perform
the union and intersection operations in time linear in the
number of children!, and so the complexity of one iteration
of computation is O(|C;|). The overall time complexity is
si=Mo(cil) = o(|B), or O(IE| + |Vlog|V]) includ-
ing Dijkstra’s algorithm, which is significantly better than
the O(|N||E| + |V||N|*log|V]|) complexity of the PFA al-
gorithm [1]. Our algorithm, called RSA/G, is summarized
in Table 1. Note that Table 1 also describes a more gen-
eral version of RSA/G, called RSA/G/ext, which allows some
Steiner nodes to be marked as permanently deleted (dis-
cussed in the next section). The algorithm will not perform
any Steiner merger at such locations. In RSA/G, we simply
set deleted[i] = false for all 1.

1This is achieved by properly indexing the sinks and Steiner
nodes. Note that this is possible despite the fact that there can
be many more nodes in the peer set than |C;].

Function RSA/G/aux(s,P)
Globals (set by RSA/G/ext() or RSA/G()): G, N,Y, deleted
X — (uvjeclY]) nP;
if ¢ =1 then
return {v; ~v |v € X}
else if v; € N or (|X| > 1 and deleted[i] = false) then
Y — {uiks
{vi~v|ve X+
RSA/G/aux(:— 1,P — X 4+ {v;});

return
else

Vi « X

return RSA/G/aux(: — 1, P);

Function RSA/G/ext(G, N, deleted)

Given an SPDAG G = (V,E) with ranked nodes, a set of
terminals N € V, and the array marking permanently deleted
nodes, return the arborescence according to the RSA/G algo-

rithm with deleted array.
return RSA/G/aux(|V], §);

Function RSA/G(G,N)
Given an SPDAG G = (V,E) with ranked nodes and a set
of terminals N € V, return the arborescence according to the
RSA/G algorithm.

foreach 1 < ¢ < |[V] do deleted[:] — false;

return RSA/G/aux(|V],0);

Table 1. The RSA/G/ext and RSA/G Algorithms.

4. THE K-IDEA/G ALGORITHM

Recently, Leung and Cong presented an exponential-time
branch-and-bound algorithm called RSA/BnB that solves
the MRSA problem optimally [18]. They observed that
the RSA heuristic is suboptimal precisely because Steiner
mergers are greedy and (sometimes) suboptimal. To ob-
tain an optimal solution, they proposed a variant of RSA,
called RSA/BnB, which enumerates all sequence of choices
between merging and skipping at each SMO (when v; ¢ N
and |X;| > 1). RSA/BnB is optimal since either merg-
ing or skipping at an SMO is optimal, and merging at a
TMO is always optimal [18]. The RSA/BnB algorithm was
subsequently generalized to the RSA/BnB/G algorithm for
the MSPSA problem [4]. A heuristic variant of RSA/BnB,
called the k-IDeA algorithm, was presented in [19]. In k-
IDeA; up to & SMOs are skipped along any path in the
branch-and-bound diagram. The best set of skipped nodes
are then marked as permanently deleted and the algorithm
is repeated until there is no further improvement. In prac-
tice, even 1-IDeA or 2-IDeA is essentially optimal [19].

Unfortunately, the k-IDeA algorithm cannot be trivially
generalized as in the RSA/G generalization. This is because
Theorem 2 no longer holds: after an SMO is skipped at v,
(meaning there exist v,v’ € Piy1 with v; < v and v; < v,
but they are not merged at v;), when some parent (say v;)
of v; is visited, both v,v’ can be in the peer set. In such
event, |Y;| > 1.

Given two nodes v,v’ € V, v" € V is called a merging
point (MP) of v and v' if and only if v" < v and »" < ¥’
Furthermore, v” is called a mazimal merging point (MMP)
of v and v’ if and only if v"” is an MP of v and v’, and no
descendant of v" is an MP of v and o’. Note that any pair
of nodes in G has at least one MP. In [4], Leung and Cong
showed the following.

Theorem 3 [4] In an optimal arborescence A.p:, every
Steiner node v (of degree three or more) in Agpr 1s an MMP
of every pair of children of v in Agp; (ignoring all degree-two

Function IDeA/G/aux(s, P, k)
Globals (set by IDeA/G()): G, N, Z, deleted
X — (uvjechJ) nP;
if i =1 then
return ((D’Zvex lv; ~ vl);
else if v; € N then
Zi — {vi};
(D,C) «— 1DeA/G/aux(i— 1, P — X + {v; }, k);
return (D,C + Zvex [vi ~ vl]);
else if | X| > 1 then
if deleted[:] = true then
return IDeA/G/aux(i— 1, P, k);
else if £ > 0 then
Zi — {vi};
(Dm,Cm) — IDeA/G/aux(i— 1,P — X + {v; }, k);
Cm — Cm + ZveX [vi ~ vl;
(Ds,Cs) «— IDed/G/aux(s— 1, Pk — 1);
D, — D U{v; };
return |Cr| < |Cs| ? (Dim, Crm) : (Ds, Cs);
else
Zi — {vi};
(D,C) «— 1DeA/G/aux(i— 1, P — X + {v; }, k);
return (D,C + " [vus ~ v]);

veEX
else

Z; — X;
return IDed/G/aux(i— 1, P, k);

Function IDed/G(G, N, k)
Given an SPDAG G = (V, E) with ranked nodes and a set of
terminals N € V', and the maximum number of nodes k to be
deleted, return the arborescence according to the k-1DeA/G
algorithm.
Obest — 003
foreach 1 < ¢ < |V| do deleted[:] — false;
while true do
(D,C) « 1DeA/G/aux(|V], 0, k);
if C' < Cpeer then
Obest — O;
foreach v; € D do deleted[:] — true;
else
return RSA/G/ext(P, N, deleted);

Table 2. The k-IDeA/G Algorithm.

Steiner nodes). m|

A generalization of Theorem 3 states that if a Steiner
node v; (of degree three or more) in a (possibly suboptimal)
arborescence A is not an MMP of some pair of children of
v in A, say v and v’ (ignoring all degree-two Steiner nodes),
then there exists a node v; such that v; < v; and v; < v and
v; =< v'. The new arborescence A’ = (A — {v; ~ v,v; ~+
T+ {01~ 03,0, ~ 0,0, ~ '}, with [A'] = 4] = Jo; ~
v;| < |A], yields a reduction in total tree length. Therefore,
it suffices to consider Steiner mergers at MMPs only. Let
Z; be the subset of ¥; such that v; is an MP of some pair of
nodes v, v’ € Z; if and only if v; is also an MMP of v and
v'. Then, we have the following theorem:

Theorem 4 [4] |Z;| <1 for 1 < < |V]. m

In other words, we can simply use Z; instead of Y; in the
algorithm, and the computation of X; will still take O(|C;])
time. Our algorithm, called k-IDeA/G, is described in Ta-
ble 2. At the end of each iteration, the set of < k skipped
nodes resulting in the lowest tree length is marked as per-
manently deleted (a deleted node remains deleted through-
out, and the < k SMOs skipped in the current iteration

Function 14/G/0(:, P)
Globals (set by IA/G()): G, N,dmin
C «— 0y
foreach v € P do C — C + diin(v);
foreach v; € N,1 < j < ido C «— C + dpmin(vj);
return (§,C);

Function I4/G/aux(s, P, k)
Globals (set by IA/G()): G,N,R
X —R;NnPF;
if £ =0 then
return IA/G/0(7,P);
else if ¢ =1 then
return ((D’Zvex lv; ~ vl);
else if v; € N then
(S,C) — 18/G/aux(i—1,P — X 4+ {v;}, k);
return (S,C 4+ Zvex [vi ~ vl]);
else if |k > 0| then
(Sm,Cm) — I8/GJaux(i—1,P — X + {v; },k — 1);
(Sm,Cm) — (Sm U{vi},Com + ZveX [us ~ v]);
(
r

Ss,Cs) «— IA/G/aux(i — 1, P, k);

eturn [Cr| < |Cs| 7 (Sm, Cm) : (S5, Cs);
else

return I4/G/aux(i—1,P, k);

Function I4/G(G, N, k)
Given an SPDAG G = (V,E) with ranked nodes, a set of
terminals N € V, a root » € N, and the maximum number
of Steiner merger k, return the arborescence according to the
k-1A/G algorithm (with the side effect that IV also contains
the Steiner nodes at the end).
compute R,dpin;
qust = 05
while true do
(S,C) < 18/6/aux(|V],{v|n| }, k);
if O < Cpegt then

best <~ 3
foreach v € Sdo N — N U {v};

update R,dmin;
else
return RSA/G(G, N);

Table 3. The k-1A/G Algorithm.

do not include previously deleted nodes). The process is
repeated until no further improvement is obtained. Finally,
RSA/G/ext() is called (with the set of permanently deleted
nodes) to return the arborescence.

We showed in [4] that the function IDeA/G/aux() (one

iteration of the k-IDeA algorithm) has O(| E||N|*) runtime
complexity, where k is the number of allowed deletions. In
practice, k-IDeA/G almost always terminates after only a
few iterations, hence its practical time complexity is also

O(|E||NT").

5. THE K-IA/G ALGORITHM

The IDOM heuristic of Alexander and Robins [1] iteratively
finds a node v € V — N maximizing |MSpA(G,N,r)| —
IMSpA(G, N U{v},r)|, where [MSpA(G, N, r)| is the length
of the minimum spanning arborescence of N in G rooted
at 7. N is then replaced by N U {v} in the next iteration,
until no further improvement is possible. The algorithm is
a straightforward adaptation of the Iterated 1-Steiner ap-
proach [14] to the graph arborescence problem, and the run-
time complexity is O(|N||E| + |V||N]?).

We now propose a heuristic inspired by the above ap-
proach, with a strategy similar to k-IDeA/G. Recall that

k-1DeA/G can be viewed as a restricted version of the
RSA/BnB/G algorithm in which at most k Steiner merg-
ers are skipped. Our proposed algorithm, called k-IA/G, is
a symmetrical restricted version of RSA/BnB/G in which at
most k Steiner mergers are allowed. More precisely, k-1A/G
also visits the nodes in decreasing rank order. If the current
node v is a TMO, the terminal merger is always performed.
If v 1s an SMO, both merging and skipping are tried unless
k Steiner mergers have already been performed along the
path, in which case the SMO is skipped.

Like the RSA/G and the k-IDeA/G algorithms, k-IA/G
first computes X; when node v; is visited, then takes ap-
propriate action based on X;. With RSA/G and k-1DeA/G,
the bounds on |Y;| and |Z;| respectively shown in Theo-
rems 2 and 4 allow X; to be computed efficiently in O(|C;|)
time using O(|V|) space. Unfortunately, for k-1A/G no
similar theorem applies. Instead, for each v, € V, let
us use R; to denote the subset of sinks in N interested
in merging into v; if v; is a Steiner node. Given a node
v € N, let dmin(v) = mingen o v’ ~ v|. Then,
Ri={v|v € N,vi <o, and |v; ~ 2| < dmin(v)}. In
other words, a terminal v is interested in merging into a
“downstream” potential Steiner node v, (such that v; < v)
if v; is closer to v than any of »’s potential parents in N.
The dmin’s and R;’s can be computed and maintained in
O(|E||N|) time and O(|V'||N|) space; a given X; can then be
computed by taking the intersection of R; and P;y1, which
requires O(|P|) time.

The complete k-IA/G algorithm is described in Table 3.
k-1A/G calls the function IA/G/aux() to find the best (maxi-
mum reduction in tree length) set of < k Steiner nodes, and
adds them to the terminal set N. When k£ = 0, the func-
tion IA/G/0() is called instead of IA/G/aux(); this function
simply computes the sum of the distances between each
remaining terminal or Steiner node and the closest “down-
stream” terminal. Note that IA/G/0(:, P) can be imple-
mented to run in O(d) time (we consider all the remaining
sinks to be deleted after returning from IA/G/0()). IA/G()
calls TA/G/aux() repeatedly until no further reduction in
tree length is obtained. Finally, RSA/G() is called to return
the arborescence; at this point, N includes all the Steiner
nodes.

We showed in [4] that the IA/G/aux() function (one it-
eration of the k-IA/G algorithm) has O(|V|*|N|) runtime
complexity, where & is the number of allowed Steiner merg-
ers. As a result, the overall complexity of the k-1A/G al-
gorithm is O(|E[|N| + i|[V[¥|N|), where 7 is the number of
iterations. The extra O(|E||N|) complexity is due to the
one-time computation of dn;n and R and the subsequent
updates. Since 1 = O(|N|) in the worst case (the average
case is also O(|N|) as shown in the next section), we have an
overall runtime complexity of O(|E||N| 4+ |V|*|N|?). This
compares favorably with the IDOM algorithm of Alexander
and Robins, which has a complexity of O(|E||V|+|V[|N|?).

6. EXPERIMENTAL RESULTS

6.1. Comparison I

We implemented the RSA/G, k-IDeA/G, and k-1A/G algo-
rithms using GNU C++ in the SUN Unix environment,
and compared against the PFA and IDOM algorithms of
Alexander and Robins [1]. All experiments were performed
on a SPARC-5 and all CPU times are for this machine. We
performed experiments in the style of [1], whose goal was
to compare the runtime and solution quality of different
Steiner and arborescence algorithms on a typical FPGA
routing instance with various levels of congestions. Rout-

(% snks | IKMB | IZEL | PFA | IDOM | RSA/G | 1-1A/G | 1-IDeA/G | RSA/BnB/G |

No congestion (no pre-routed nets)

6 (11.38) 0.00 (12.07) -0.05 1.75 1.75 1.75 1.75 1.75 1.75

8 (25.10) 0.00 (24.69) -0.19 4.21 4.30 4.16 4.49 4.00 3.91

10 (31.00) 0.00 (30.36) -0.49 5.76 5.61 5.71 5.61 5.37 5.37

12 (27.79) 0.00 — 7.05 6.85 6.84 6.89 6.30 6.30
Low congestion (10 pre-routed nets)

6 (26.11) 0.00 (21.95) -0.42 14.72 14.57 14.57 14.57 14.57 14.57

8 (35.12) 0.00 (28.20) -0.56 | 20.17 20.10 20.09 20.05 19.91 19.91

10 (32.34) 0.00 — 21.92 21.89 21.92 21.89 21.85 21.85

12 (37.68) 0.00 — 23.67 23.63 23.77 23.67 23.57 23.53

Medium congestion (20 pre-routed nets)

6 (29.17) 0.00 (28.10) -0.20 | 25.27 25.27 25.52 25.27 25.27 25.27

8 (33.99) 0.00 (29.99) -0.32 26.78 26.94 26.78 26.94 26.74 26.74

10 (52.07) 0.00 — 28.72 28.72 28.72 28.72 28.72 28.72

12 (52.23) 0.00 — | 35.57 35.46 35.54 35.48 35.43 35.43

Table 4. Average tree length (as % above that of IKMB) for three different congestion levels. The numbers
in parentheses (IKMB and IZEL only) are the average maximum source-to-sink pathlengths (as % above the
optimal). The data for IZEL is incomplete due to runtime exceeding the maximum allowance of 100 seconds

per net.

ing was done on a 20 x 20 grid graph, wherein edge weights
model the congestion induced by previously routed nets.
Three different levels of congestion were modeled: (a) no
congestion (no pre-routed nets), (b) low congestion (10 pre-
routed nets), and (c) medium congestion (20 pre-routed
nets); see [1] for more details. For each net size (6, 8,
10, and 12), 50 random nets were generated and routed
on the weighted graph that modeled the given congestion
(congestions were newly generated for each net). We com-
pared the IKMB and IZEL Steiner algorithms (the two best-
performing graph Steiner algorithms in the literature) and
the PFA and IDOM arborescence algorithms from [1], the
optimal RSA/BnB/G algorithm from [4], and our algorithms
RSA/G, 1-IDeA/G, and 1-1A/G. For each net, we normal-
ized the tree length produced by each heuristic to that
of IKMB, and the maximum source-to-sink pathlength of
each heuristic was normalized to optimal. Table 4 gives
the average tree length (as % above that of IKMB) and the
average maximum source-to-sink pathlength (as % above
optimal). When the congestion level is low, arborescences
and Steiner trees have very similar total tree length. How-
ever, as the congestion level increases, arborescences tend
to have longer tree length but shorter maximum source-
to-pathlength when compared to Steiner topologies. All
of the six arborescence algorithms we tested (PFA, IDOM,
RSA/BnB/G, RSA/G, 1-IDeA/G, and 1-1A/G) gave similar
routing quality. In fact, the comparison with the optimal
solutions generated by RSA/BnB/G (which is exponential-
time but fast enough to generate data for this experiment)
shows that all of the heuristics are near-optimal for this
application.

6.2. Comparison II

We further compare the several arborescence algorithms on
larger examples. Specifically, we used the same 20 x 20
grid graph setup as in the previous comparison, with the
congestion level set to low (10 pre-routed nets). For each
net size from 3 to 34, 50 random nets were generated
and routed using each arborescence heuristic (PFA, IDOM,
RSA/G, 1-IDeA/G, 2-1IDeA /G, and 1-1A/G), with the optimal
RSA/BnB/G algorithm used for comparison.

Figures 1(a) and 1(b) show the average and maximum
deviation of tree length from the optimal (RSA/BnB/G) so-
lution for each algorithm, and Figure 1(c) shows the per-

centage of trials when each algorithm is optimal. As be-
fore, all arborescence algorithms tested are very close to
optimal. However, 1-IDeA/G and 2-1DeA/G clearly stand
out according to all three measures — average deviation,
maximum deviation, and % optimality. Note that PFA and
RSA/G gave slightly different results since they have differ-
ent tie-breaking schemes (similarly for IDOM and 1-1A/G).
Figure 1(d) shows the runtimes in CPU seconds; we see
that RSA/G, 1-IDeA/G, and 1-IA/G are significantly faster
than PFA and IDOM while giving the same or better so-
lution quality. This is also depicted in Figure 1(e) and
Figure 1(f), which show the average speedup of RSA/G,
1-IDeA/G, 2-1DeA /G, and 1A/G over PFA and IDOM, respec-
tively. Our algorithms are orders of magnitude faster than
PFA and IDOM even on instances of modest size (for ex-
ample, 1-IDeA/G averages 46X and 217X faster than PFA
and 691X and 2830X faster than IDOM, on 15-sink and
30-sink instances, respectively). Thus, substantial runtime
improvement over existing PFA- and IDOM-based FPGA

routing algorithms is expected with our new heuristics.

6.3. Comparison III

We also “stress tested” our algorithms by running them on
a grid that is four times larger (40 x 40), with a medium
congestion level (20 pre-routed nets). The size of the nets
tested ranges from 40 to 150, and for each net size, 50 ran-
dom nets were generated and routed by PFA (only up to 34
nets), RSA/G, 1-1A/G, 1-IDeA /G, and 2-1DeA/G. This com-
parison highlights runtime and solution quality when the
problem size is large.

For a given routing instance, an algorithm is called a
winner if it generates a solution with the lowest tree length
among all algorithms tested. Figure 2(a) shows the per-
centage of trials when each algorithm is a winner; 1-1DeA/G
and 2-IDeA/G are consistently as good as or better than the
other algorithms. Runtimes are shown in Figure 2(b). Our
algorithms are extremely fast when compared to IDOM and
PFA; average CPU times for both 1-IDeA/G and 1-1A/G
were less than one second, and for 2-1IDeA/G were less than
four seconds, even for the largest test cases.

We also observe that 1-IDeA/G is superior to 1-1A/G in
both quality and runtime. Figure 3 shows that on average 1-
IDeA/G requires significantly fewer iterations than 1-1A/G;
1-1DeA/G finished in six iterations or less (practically con-

0.6

PFA —<—
IDOM —+—
05 RSAIG *— i
— IAIG -—
g 1-IDeA/G &—
= 2-IDeA/G »—
Q
° 04 R
£
g
'
2
B 03} |
>
Q
o
3
5 0.2 | i
g
g
<
0.1 4
0
0 5 10 15 2 25 30 35
terminals
100
95 - 1
@ 90 g
2
3
3 85 - g
<
£
5 80 - 1
5 IDOM
< RSA/G
@ 75 IAIG —-— |
=3 1-IDeA/G -B—
] 2-IDeA/G »—
2 70+ E
65 - B
60 I I I I I I
0 5 10 15 20 25 30 35
terminals
1000
RSA/G vs PFA —+—
IA/G vs PFA —-—
1-IDeA/G vs PFA &—
< 2-1DeA/G vs PFA
w
a
9]
=3
=
Q
S
3 100 - 1
@
Qo
@
@
o
@
g
<
10 I I I I I I
0 5 10 25 30 35

15 20
terminals

Maximum % deviation from optimal

Average runtime (CPU seconds)

Average speedup over IDOM

1000

100

10

0.1

0.01

100000

10000

1000

100

10

PFA
IDOM
RSA/G
IA/G
1-IDeA/G
2-IDeA/G

Ftere

T
PFA
IDOM
RSAIG
IAIG
1-IDeA/G
2-IDeA/G

fFrtere

15 20 25 30 35
terminals

RSA/G vs IDOM

IA/G vs IDOM —-—
1-IDeA/G vs IDOM &—

2-IDeA/G vs IDOM

5 10

15 20 25 30 35
terminals

Figure 1. Comparison Il — (a) The average % deviation of the solution from optimal. (b) The maximum %
deviation. (c¢) The % of trials when the routing solution is optimal. (d) The runtime in CPU seconds. (e)

The speedup over PFA. (f) The speedup over IDOM.

Average winner %

1 1 1
100 120 140 160

0 ! ! ! !

80
terminals

100 T T T T T T T

1-IDeA/G &—
2-IDeA/G ~—

10 | El

Average runtime (CPU seconds)

0 20 40 60 80 100 120 140 160
terminals

Figure 2. Comparison IIT — (a) The % of trials when
the routing solution is optimal. (b) The average
runtime in CPU seconds.

stant) on all our test cases, while 1-IA/G requires a nearly
linear number of iterations. This is not surprising since the
number of iterations of 1-IA/G is one plus the number of
(degree three or higher) Steiner nodes in the arborescence,
which is a linear or near-linear function of |N|. Hence, the
effective runtime complexities of 1-IDeA/G and 1-I1A/G are
O(|E||N|) and O(|E||N| + |V||N|?), respectively.

From these experiments we conclude that RSA/G and 1-
IDeA/G are the two best arborescence algorithms to use in
terms of runtime and solution quality.

6.4. Comparison IV

Finally, we also studied graph-based routing in a regime
that models the presence of obstacles. In a layout region
of size 4000 x 4000, we randomly generate a set of n ter-
minals N, and a set of 2n rectangles R (length and width
are both within [400,600]). We then construct the Hanan
grid graph G n g induced by the points and the corners of
the rectangles, then construct a new graph G by deleting
any edges of Gg g that lie within rectangles in R. For each
n, 3 < n < 10, 10 random examples with all terminals
reachable from each other were generated and routed using
IKMB, RSA/G, 1-IDeA/G, and 1-1A/G. Figure 4 shows the
average tree length as a percentage above that of IKMB,
along with the runtime (in CPU seconds) for each of the
four algorithms. The arborescences are on average 6% to
17% longer than the Steiner trees constructed by IKMB, but
have much smaller maximum source-to-sink pathlengths;
runtimes are orders of magnitude smaller. Finally, Figure 5

70 T T T T T T T

60 -

50

30

iterations

20 -

10 |

0 L= = ? ! ! ! ! ! !
0 20 40 60 80 100 120 140 160
terminals

70 T T T T T T T

iterations as a % of # terminals

0 ! ! ! ! ! ! !

0 20 40 60 80 100 120 140 160
terminals

Figure 3. Comparison III — (a) The average number
of iterations for 1-IDeA/G, 2-IDeA/G, and 1-1A/G. (b)
The average as % of the number of terminals.

shows a 30-terminal, 30-rectangle example and the solution
generated by 1-IDeA/G in 0.49 CPU seconds.

7. CONCLUSION

We have presented several efficient heuristics for the
MSPSA problem, improving upon previous work in both
runtime and solution quality. We have also presented de-
tailed complexity analyses as well as extensive experimental
results that suggest our algorithms will be more effective
in practice than other arborescence algorithms. We be-
lieve that applications to performance-driven global rout-
ing, FPGA routing and non-VLSI domains such as multi-
cast routing are all promising.

ACKNOWLEDGMENTS

The authors are grateful to Professors Michael J. Alexander
and Gabriel Robins for providing the IKMB, IZEL, PFA, and
IDOM source codes. Jason Cong was partially supported by
NSF Young Investigator Award MIP-9357582.

REFERENCES

[1] M. J. ALEXANDER AND G. RoBINs, “New Performance-
Driven FPGA Routing Algorithms”, IFEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, 12 (1996), pp. 1505 — 1517.

[2] H. A. CHot AND A. H. ESFAHANIAN, “A Message-Routing
Strategy for Multicomputer Systems”, Networks, 22 (1992),
627-646.

% above IKMB

Average runtime (CPU seconds)

4 ! ! ! ! ! !

3 4 5 6 7 8 9 10
terminals
100 T T T T T T
IKMB —+—
RSAIG ——
10 b AIG -—

1-IDeA/G

0.01 B

0.001 ! ! ! ! ! !
3

6 7
terminals

Figure 4. Comparison IV — (a) Average tree length
(as % above that of IKMB). (b) Average runtime in
CPU seconds.

(3]

(4]

H. A. CHor, A. H. Esrananian, anD B. C. Houck, “Opti-
mal Communication Trees with Application to Hypercube
Multicomputers”, Proc. Sizth Int’l Conf. on the Theory and
Application of Graph Theory, 1988, pp. 245 — 264.

J. Cong, A. B. Kaunag, anD K. S. LEUNG, “Efficient Al-
gorithms for the Minimum Shortest Path Steiner Arbores-
cence Problem with Applications to VLSI Physical Design”,
Manuscript, 1997.

(http://ballade.cs.ucla.edu/ "ksleung/manuscript /ispd97.ps)

J. ConGg anND K. S. LEUNG, “On the Construction of Opti-
mal or Near-Optimal Steiner Arborescence”, UCLA Com-
puter Science Tech. Report CSD-960033, 1996.

J. Conag, K. S. LeEunG, aNnD D. Zuou, “Performance
Driven Interconnect Design Based on Distributed RC De-
lay Model”, Proc. ACM/IEEE Design Automation Conf.,
1993, pp. 606 — 611.

J. ConG AND P. H. MADDEN, “Performance Driven Routing
with Multiple Sources”, Proc. Int’l Symp. on Circuits and
Systems, 1995, pp. 1157 — 1169.

J. Corpova AND Y. H. LEE, “A Heuristic Algorithm for
the Rectilinear Steiner Arborescence Problem”, University
of Florida CIS Department Tech. Report TR-94-025, 1994.
T. H. CorMEN, C. E. LEISERSON, AND R. L. RIvEsT, In-
troduction to Algorithms, MIT Press, 1990.

M. X. GoEMANs AND Y. S. MyuNG, “A Catalog of Steiner
Tree Formulations”, Networks, 23 (1993), pp. 19 — 28.

M. HaNAN, “On Steiner’s Problem with Rectilinear Dis-
tance”, STAM Journal of Applied Mathematics, 14 (1966),
Pp. 255 — 265.

J. M. Ho, M. T. Ko, T. H. Ma, anD T. Y. Sung, “Al-
gorithms for Rectilinear Optimal Multicast Tree Problem”,

]
ND
'

— I

Figure 5. An 30-terminal 30-rectangle example and
the 1-IDeA/G solution.

(13]

(14]

15]
(16]

(17]

18]

(19]

(20]

(21]

(22]

(23]

Proc. Int’l. Symposium on Algorithms and Computation,
1994, pp. 106 — 115.

F. K. Hwang, D. S. RICHARDs, AND P. WINTER, The
Steiner Tree Problem, North-Holland, 1992.

A. B. KauNGg AND G. RoBINs, “A New Class of Itera-
tive Steiner Tree Heuristics with Good Performance”, IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 11 (1992), pp. 893 — 902.

A. B. KAHNG AND G. ROBINS, On Optimal Interconnections
for VLSI, Kluwer Academic Publishers, 1995.

R. R. LADEIRA DE MaTOS, “A Rectilinear Arborescence
Problem”, Dissertation, University of Alabama, 1979.

Y. Lan, A. H. EsFaHANIAN, AND L. M. N1, “Multicast in
Hypercube Multiprocessors”, Journal of Parallel and Dis-
tributed Computing, 8 (1990) 30-41.

K. S. LEUNG aND J. CoNngG, “Fast Optimal Algorithms for
the Minimum Rectilinear Steiner Arborescence Problem”,
UCLA Computer Science Tech. Report CSD-960037, 1996
(extended abstract to appear in Proc. IEEE Symp. on Cir-
cuits and Systems, 1997).

K. S. LeunGg aAND J. Cong, “IDEA: An Efficient Near-
Optimal Algorithm for the Minimum Rectilinear Steiner
Arborescence Problem”, Manuscript in Preparation.

L. NasTAaNsKY, S. M. SELKOw, AND N. F. STEWART, “Cost
Minimal Trees in Directed Acyclic Graphs”, Zeitschrift fir
Operations Research, 18 (1974), pp. 59 — 67.

S. K. Rao, P. Sabpavappan, F. K. HwanG, aAND P. W.
SHOR, “The Rectilinear Steiner Arborescence Problem”, Al-
gorithmica, 7 (1992), pp. 277 — 288.

J. P. SHEU AND M. Y. Su, “A Multicast Algorithm for
Hypercube Multiprocessors”, International Conference on
Parallel Processing, 3 (1992), pp. 18 — 22.

G. E. TELLEZ AND M. SARRAFZADEH, “On Rectilinear
Distance-Preserving Trees” Proc. IEEE Symp. on Cuircuits
and Systems, 1 (1995), pp. 163 — 166.

