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Abstract
With submicron technologies, gate delays are dominated by gate
load delays rather than intrinsic gate delays. While the common ap-
proach for computing gate load delay (or total gate delay) is through
delay tables (or k-factor equations), there are important methodol-
ogy problems associated with the delay table approach. In this pa-
per, we propose a gate driver model with a Thevenin equivalent cir-
cuit consisting of a ramp voltage source whose slew time is obtained
from the gate slew tables, and a driver resistance in series with the
gate load. We then develop analytical gate delay formulas using this
Thevenin driver model and modeling the load with various gate load
models under both rising and falling ramp input.

1 Introduction
With submicron technologies the overall path delay between gates
is dominated by interconnect delays (including both the effect of in-
terconnecton the driving gate and the pure interconnectpropagation
delay), rather than intrinsic gate delays. To compute pure intercon-
nect propagation delay, various techniques based on either simula-
tion [10, 12, 14] or analytical formulas [1, 3, 4] have been proposed.
However, total gate delay between an input and output pin pair must
still be accurately determined. We express this total gate delay (DAB
in Figure 1) as the sum of intrinsic gate delay and gate load delay:
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Figure 1: Total gate delay is the sum of intrinsic gate delay and gate
load delay.

� Intrinsic gate delay is delay due to physicaldevices (e.g., tran-
sistors) in the gate. Intrinsic gate delay can be thought of as
total gate delay with infinite load at the output.

� Gate load delay is the delay due to the load connected to the
output of the gate.

Two popular approaches to gate delay computation are (i) com-
putation of delay through delay tables (or k-factor equations), and
(ii) computation of delay by modeling the gate with a Thevenin equiv-
alent circuit of voltage source and a resistance in series with the gate
load. It turns out that the Thevenin equivalent model is a more ef-
fective delay model when the load is not purely capacitive, since it
naturally captures the interaction of the gate’s output resistance and
the RC/RLC load. However, both models are empirical; in particu-
lar, the Thevenin equivalent model requires empirical fitting [9] to
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approximate the resistance value as a function of input slew rate and
output load.

In practice, total gate delay or gate load delay for various load
values is usually stored for each gate/cell in the library in delay ta-
ble format, which we describe next. The intrinsic gate delay is also
known for each gate/cell in the library. While the delay table format
has become quite popular, note that the total gate delay can also be
computed directly by modeling each gate as a linear resistor with
voltage source and then modeling the (discrete or distributed) load
using various gate load models.
Delay Table Format. Delay tables specify the total gate delay and
the output slew rate (rise and/or fall time) for each gate in the library.
There exists at least one pair of tables (one table for delay, one table
for slew rate) for each cell/gate in the library. Typically, delay tables
are developed/characterized as functions of only the input slew rate
(rise or fall time) and a single capacitance value which represents
the effect of the load. This delay table format is equivalent to the so-
called empirical “k-factor” formulas for delay and output rise time.1

There are important methodology questions associated with the
delay table approach. In practice, delay and rise-times may be ob-
tained by loading the gates with a discrete load capacitor and then
changing both the load capacitanceand input rise-times. But in real-
ity, the output of the gate is connectedvia interconnects to other gate
inputs. Modeling the load at the gate as a single load capacitor may
work well for technologies and designs where the area of intercon-
nect at the gate output is small or the interconnectparameters are not
dominant compared to gate parameters. With sub-micron technolo-
gies the interconnect resistance, capacitance, and inductance must
be considered in the delay table characterization (inductance effects
will definitely be an issue in the next process generation).

Given the disadvantages of the delay table approach, this pa-
per explores the computation of gate delay by modeling the gate
with a Thevenin equivalent circuit of voltage source and a resis-
tance in series to the gate load. We propose a gate driver model with
a Thevenin equivalent circuit of ramp voltage source having slew
time derived from the gate slew tables and driver resistance in se-
ries to the gate load. We then develop analytical gate delay formulas
using this Thevenin driver model in conjunction with various gate
load models.

2 Review of Gate Load Models
Various load models have been proposed for modeling the driving
point admittance at the gate output. The gate delays are estimated
using these models either through the delay table methodology or
through an explicit simulation of the gate with the given load model.
Before we discussour analytical (closed-form) expressions for thresh-
old gate delay, we briefly summarize a range of existing gate load
models.

2.1 Lumped Models
The simplest approximation of the driving point admittance of the
load interconnect tree is the total capacitanceof the tree (Ctot ), which
is a (pessimistic) first-order approximation. The actual delay is much
smaller than that derived from the lumped capacitance model, be-
cause the interconnect resistance acts as a shield to reduce the load
capacitance seen by the gate driver. Another simple approximation

1Standard industry delay calculators use 2-dimensional tables for delay and output
slew rate of gates. Synopsys [15] uses a similar format for characterizing delays during
logic synthesis.



is the lumped RC segment model with resistance equal to the to-
tal interconnect resistance (Rtot ) and capacitance equal to the total
interconnect capacitance (Ctot ). This yields an optimistic delay es-
timate because the total interconnect resistance is lumped together
and shields the total capacitance.2

2.2 O’Brien/Savarino Π Model
With thinner interconnect geometries, the resistive component of
the gate load is comparable to or larger than the gate output resis-
tance, and the gate doesnot “see”all of the capacitance loading since
the metal resistance “shields” some capacitance [11]. For example,
if we increase the interconnect resistance of the load and keep the
gate output resistance constant then the total gate delay at the out-
put will decreasesince the interconnect resistance will tend to shield
some of the load capacitance. (In this case, while the total gate de-
lay decreases, the increase in interconnect resistance would increase
the interconnect propagation delay.)

O’Brien and Savarino [7, 8] proposed using a one-segment Π
model to approximate the load at the gate output while still consider-
ing resistance shielding effects. Their model approximates the load
interconnect at the gate by matching the first three moments of the
driving point admittance of the interconnect load. The disadvantage
of the Π model is that delay tables need to be expanded to four di-
mensions: rise time of input voltage, and the three Π model param-
eters R1;C1;C2.
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Figure 2: One-segment Π model for matching the first three mo-
ments of the driving point admittance of a load interconnect tree.

Let the driving point admittance at the gate output (X) be repre-
sented by

YL(s) =
∞

∑
i=1

Ais
i = sA1 + s2A2 + s3A3 + : : : (1)

The parameters of the equivalent circuit are obtained by matching
the first three moments of the admittance with corresponding coeffi-
cients of the driving point admittance of the Π load model in Figure
2, i.e.,

R1 =
�A2

3

A3
2

C1 = A1�
A2

2
A3

C2 =
A2

2
A3

: (2)

2.3 Effective Capacitance Model
The cell tables (or k-factor formulas) for delay and output rise time
of gates depend only on the input slew rate and a single load capac-
itance, which represents the effect of the load. There are two differ-
ent approaches in the literature for computing such an effective ca-
pacitance: (i) McCormick’s Effective Capacitance Model [6], and
(ii) Pillage et al.’s Effective Capacitance Model [11, 13]. The aim
of each approach is to approximate the load at gate output using a
single effective capacitance.

2.4 Open-Ended RC Π Model
In a pre-routing timing analysis, exact routing topology is not avail-
able. The paper [2] approximates an estimated interconnect tree by

2The lumped capacitance and lumped RC models are referred to as Wire Load
Model1 and Wire Load Model2 in Synopsys manuals [15]. Similar lumped models are
available with other industry timing analysis tools.
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Figure 3: An open-ended RC line to capture an RC interconnect
tree, and the RC Π model.

an equivalent open-ended RC line whose resistance and capacitance
are equal to the (estimated) total interconnect resistance and capac-
itance, as shown in Figure 3. The open-ended RC line approxima-
tion still considers the distributed nature of the load interconnect in
the calculation of model parameters, but is more efficient since only
Rtot and Ctot values are used. The admittance of an open-ended RC

line is Y(s) =
tanh(θ)

Z0
= sCtot � s2 Rtot C2

tot
3 + s3 2R2

totC
3
tot

15 + : : :, where

θ =
p

RtotsCtot and Z0 =
q

Rtot
sCtot

. The three moments of the admit-
tance function when substituted into Equation (2), yield Π model
circuit parameters R1 =

12Rtot
25 ; C1 = Ctot

6 and C2 = 5Ctot
6 . Com-

parisons of the open-endedmodel and various other load models are
given in [5]. The open-ended Π model can be extended to include
inductance effects in the gate load delay computation which will be
an issue in the next process generation.

3 Driver Model
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Figure 4: Driver model with ramp input, whose slew time is ob-
tained from the gate slew tables, and series resistance connected to
the load.

To model the gate driver, a Thevenin equivalent circuit model has
been used with a step input voltage source [6] and a driver resistance
which is computed using the transistor linear region resistance value
[16]. For complex gates, estimating the driver resistance using the
transistor linear region model gives inaccurate delay values. Also,
assuming a step input as the voltage source can introduce consid-
erable error. To eliminate the latter inaccuracy, we propose a new
driver model for the gate with an equivalent circuit consisting of a
linear source resistance (RS) and a ramp input source (vin(t)) whose
slew time is equal to the output slew time from the cell tables; see
Figure 4. (If the model uses gate input slew time as the slew time
for the source voltage, the size of the gate will have no effect on the
gate delay. Hence, we use the output slew time from the cell tables
as the input slew time for the voltage source in the model.) In prac-
tice the driver resistance can be computed to reasonable accuracy
by taking an average over a range of possible input slew times and
effective capacitance values [5].



4 Gate Delay Computation for Lumped Capacitance
Load Model

The simplest approximation models the entire load at the gate out-
put with a single lumped capacitance. The gate is modeled with a
source ramp input of rise time TR and a series source resistance RS
(see Figure 4).
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Figure 5: A ramp input function: (a) finite ramp with rise time TR,
and (b) finite ramp decomposed into two shifted infinite ramps.

Figure 5 shows that a finite rising ramp input can be expressed
in the time domain as

vin(t) =
V0

TR
[tU(t)� (t �TR)U(t �TR)] for all t � 0

where U(t) denotes the step function. The voltage at the gate output
(X) in the transform domain is

VX(s) =
Vin(s)

(1+ sRSCtot)

=
V0

TR
(1� e�sTR )

�
1
s2 �

RSCtot

s
+

RSCtot

(s+1=RSCtot)

�

and the time-domain response is

vX(t) = V0

�
t

TR
� RSCtot

TR
+ RSCtot

TR
e

�t
RSCtot

�
for t � TR

= V0

�
1+ RSCtot

TR
(e

�t
RSCtot � e

�(t�TR )
RSCtot )

�
for t > TR

(3)

The threshold delay is

TRD1 = RSCtot

�����ln
 

1

1+ vthTR
RSCtot

� TRD1
RSCtot

!����� for t � TR

= RSCtot

������ln
0
@RSCtot

TR
� (e

1
RSCtot =TR �1)
(1� vth)

1
A
������

for t > TR (4)

where vth is the threshold voltage at which delay is computed. For
the case of t � TR the threshold delay equation needs to be solved it-
eratively (typically less than 10 iterations of simple back-substitution
are sufficient). Approximate formulas can alternatively be obtained
by substituting an upper bound for TRD1 in the logarithmic expres-
sion and then fitting against SPICE data. The voltage response and
threshold delay expressions given an effective capacitance model
(Ce f f ) have the same form; simply replace Ctot by Ce f f .

5 Gate Delay Computation for Π Load Model
A second approximation models the entire load at the gate output
with the Π model of [7], which captures the load admittance up to
the third moment. The driver is again modeled with a Thevenin equiv-
alent circuit consisting of a source ramp input with rise time TR and
a series source resistance RS. Recall that the parameters of the Π

equivalent circuit can be expressed in terms of the driving point ad-
mittance at gate output as given in Equation (2). The voltage at the
gate output (X) in the transform domain is

VX(s) = Vin(s)
(1+ sR1C2)

1+ s(RSC1 +RSC2 +R1C2)+ s2RSR1C1C2

=
V0(1� e�sTR )

TR

�
1
s2 �

RS(C1 +C2)

s

+
(1+ s1R1C2)

b2s2
1(s1� s2)

1
(s� s1)

� (1+ s2R1C2)

b2s2
2(s1� s2)

1
(s� s2)

#

where b1 = RS(C1 +C2)+R1C2 ; b2 = RSR1C1C2 ;and

s1;2 =
�b1�

q
b2

1�4b2

2b2

The time-domain response for t � TR is

vX(t) =
V0

TR

"
t�RS(C1 +C2)+

(1+ s1R1C2)

b2s2
1(s1� s2)

es1t

� (1+ s2R1C2)

b2s2
2(s1� s2)

es2t

#

and the response for t > TR is

vX(t) =
V0

TR

"
TR +

(1+ s1R1C2)(1� e�TR s1 )

b2s2
1(s1� s2)

es1t

� (1+ s2R1C2)(1� e�TR s2 )

b2s2
2(s1� s2)

es2t

#

Depending on the sign of (b2
1�4b2) the poles will be either real or

complex. We derive threshold delay formulas for the case of real
poles only. Using

b2
1�4b2 = R2

S(C1 +C2)
2 +R2

1C2
2 +2RSR1C2(C2 �C1)

We see that the load admittance parameters should satisfy (C2�C1) =
(2A2

2�A1A3)� 0 for the poles to be real.3 Since the magnitude js2j
is greater than js1j, the second term in the time-domain response de-
creases rapidly compared to the first term. Hence, for the threshold
delay computation we neglect the es2t term in the response. There-
fore, an approximation for threshold delay is

TRD2 � 1
js1j

�����ln
 

(1+ s1R1C2)

b2s2
1(s1� s2)(vthTR +RS(C1 +C2)�TRD2)

!�����
for t � TR

� 1
js1j

�����ln
 
(1+ s1R1C2)(e

TR js1 j�1)

b2s2
1(s1� s2)(1� vth)TR

!�����
for t > TR (5)

6 Gate Delay Computation for Open-Ended Π Load
Model

Most generally, we can model the load at the gate output by a driving-
point admittance YL, then approximate the first few terms of the in-
finite series expansion depending on the accuracy required, YL(s) =
sA1 +s2A2+ : : :+skAk + : : :where Ak is the kth moment of the load
admittance at gate output (see Figure 6). For the open-ended RC Π
model the first three moments of the driving point admittance are ex-
pressed in terms of the total resistance and capacitance of the load
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Figure 6: Ramp input and series resistance connected to a general
admittance load model.

network. We now use these moments to compute an analytical for-
mula for gate load delay using the same driver model as above.

The voltage at the gate output (X) for a finite rising ramp input
is written in the transform domain as

VX(s) = Vin(s)
1

1+RSYL

=
V0(1� e�sTR )

TR

�
k1

s� s1
+

k2

s� s2
+

k3

s
+

k4

s2

�

where s1 and s2 are the poles of the transfer function. Solving for
all the variables, the time-domain response is

vx(t) =
V0

TR

�
�b1 + t +

1+b1s2

s2� s1:
es1t +

1+b1s1

s1� s2
es2t
�

for t � TR

=
V0

TR

"
TR +

(1+b1s2)(e
s1t � es1(t�TR))

s2� s1

+
(1+b1s1)(e

s2t � es2(t�TR))

s1� s2

#
for t > TR (6)

Depending on the sign of (b2
1 � 4b2) the poles will be either real

or complex. We now derive threshold delay formulas assuming the
poles are real (if the poles are complex, a similar analysis can be
applied [3]). Again, js2j> js1j allows us to neglect the es2t term in
the response, and an approximation for threshold delay is

TRD3 =
1
js1j

����ln
�

(1+b1s2)

(s2� s1)(b1 +uthTR�TRD3)

�����
for t � TR

=
1
js1j

�����ln
 
(1+b1s2)(e

js1 jTR �1)
(s2� s1)TR(1� vth)

!�����
for t > TR

For t � TR the threshold delay equation must again be solved iter-
atively. However, approximate formulas can be obtained by sub-
stituting an upper bound for TRD3 in the logarithmic expression and
then fitting against SPICE data. Since the threshold delay computed
from the case t > TR is greater than TR, an alternative formula for the
threshold delay can be obtained as TRD4 = TR + τRD4. Substituting
into Equation (6), the threshold delay is

TRD4 = TR +
1
js1j

�����ln
 
(1+b1s2)(1� e�js1 jTR )

(s2� s1)TR(1� vth)

!����� :
Our approach can be applied to compute delay for falling ramp

input for all the cases above. For the present load model, the finite
falling ramp input can be expressed in the time domain as

vin(t) =
V0

TF
[TFU(t)� tU(t)+ (t �TF)U(t �TF)] for all t � 0

3For most practical cases the value of C2 is greater than C1 (refer to [2]) and hence
the poles are real. Also, C2 > C1 in the open-ended load model of [2] for the driving
point admittance.

where TF is the fall time. The voltage at the output node of the gate
(X) for falling ramp input in the transform domain is

VX(s) =
V0

TF

�
TF

s
� 1

s2 (1� e�sTF )

�
1

1+ sb1 + s2b2

Neglecting the term with pole s2, we obtain threshold delay

TFD3 � 1
js1j

����ln
�

1+b1s2 +TF s2

(s1� s2)(vthTF �b1�TF +TFD3)

�����
for t � TF

� 1
js1j

����ln
�

TFs2 +(1+b1s2)(1� e�s1 TF )

(s1� s2)vthTF

�����
for t > TF (7)

7 Conclusions
We have proposed a new gate driver model using a Thevenin equiv-
alent circuit consisting of ramp voltage source with slew time ob-
tained from gate slew tables, and driver resistance in series with the
gate load. We have also developed analytical gate delay formulas
using this Thevenin driver model and modeling the load with vari-
ous gate load models. These analytical gate delay formulas can be
used at various stages of the synthesis/layout optimization loop to
speed up the delay analysis and provide insight on how gates and
interconnects together determine performance.
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