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Abstract
In this paper, we analyze coupled transmission lines and obtain a re-
lationship between the moments of the coupled transfer functions.
We then derive expressions for the first and second moments of the
coupled transfer function which can be used to compute the response
and threshold delays under various input excitations. We can com-
pute the interconnectdelay under parasitic coupling effects by using
the analytic delay formulas given in [8, 9] for step and ramp inputs.
We also present the analysis to compute the general kth moment for
the coupled interconnect lines.

1 Introduction
With the rapid evolution of VLSI technology,minimum feature size
and the distancebetween interconnectionscontinue to decrease. Thus,
transmission line effects such as crosstalk will play an important
role in determining system performance. Crosstalk effects in volt-
age response are due to mutual capacitances and inductances be-
tween adjacent lines. The coupling between lines increases as the
separation between the lines decreases, as the distance to the ground
plane increases, and as the distance over which the lines neighbor
each other increases. In addition, crosstalk effects increase as char-
acteristic impedance (Z0) increases since capacitance of the line to
the ground plane decreases and the coupling capacitance will have
greater effect on the signal voltage [1]. Numerical methods accu-
rately calculate interconnect capacitancesusing finite element meth-
ods [3, 13], but are too time consuming for performance-driven lay-
out synthesis. Thus, approximate analytical formulas for parallel
plate, fringe, and (lateral) coupling capacitanceshavebeen proposed
by Sakurai et al. [15], Meijs et al. [16] and others. Similarly, Saku-
rai et al. [15] have proposed an analytical formula for the coupling
capacitance between two lines as
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where w is the width of the line, t is the thickness of the line, s is
the space between the two lines, h is the height of the line above the
ground plane, and l is the length of the line. However, such formulas
do not address the estimation of delay due to noise coupling.

Crosstalk noise in coupled lines can either increase or decrease
signal propagation delays. This dependson the line impedancesand
on whether the neighboring lines are driven by the same input volt-
age or different input voltages (for example, one input rising and
the other input falling) or no input voltage (i.e., line is quiet). Many
works deal with the analysis, design, and applications of coupled
microstriplines and transmission lines. Initial analyses of crosstalk
due to capacitive charge sharing between lossless transmission lines
was given in [5, 2]. The analysis was based on odd and even modes
of propagation with separate impedances and propagation speeds,
and the voltage responseof the signal traveling on the coupled trans-
mission lines was expressed as a superposition of these two modes.
Reviews of this method are given in [1]. The effects of crosstalk in
multiconductor lossy transmission lines were analyzedusing Fourier
transform techniques and numerical methods in [17]. Recently, Sri-
ram and Kang [14] proposed a technique which recursively com-
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putes the admittance and coefficients of the coupled transfer func-
tions. All these simulation techniques can be used to calculate the
transient response, but are less applicable to the synthesis of the in-
terconnection topology and layout. Basically, with these methods
the simulation step becomes a bottleneck in the design process (e.g.,
consider multiple nets in a high-density MCM substrate).

In this paper, we analyze the crosstalk between on-chip inter-
connections by modeling each line by an infinite number of RLC
segments. Coupling between lines is similarly modeled as an infi-
nite number of coupled capacitances between pairs of correspond-
ing nodes of each line. We give a relationship between the coef-
ficients of the coupled transfer functions; this reduces the compu-
tation effort for all transfer function coefficients. We then derive
expressions for the first and second moments of the transfer func-
tion, which will be used to compute threshold delay under various
input excitations. Then, analytic delay formulas based on the first
few moments can be applied for step input [8] and for ramp input
[9]. We also discuss crosstalk response computation for a coupled
system. The analysis can be extended to non-identical coupled lines
(e.g., each line having different width, etc.) to derive first and sec-
ond moments of the coupled transfer functions.

2 Analysis of a Single Lossy Transmission Line

Various techniques [10, 12] have been proposed for the simulation
of interconnects modeled as a single lossy transmission line. SPICE
gives the most accurate insight into arbitrary interconnect structures,
but is expensive. Moment based approaches [11, 14] model the in-
dividual interconnects using a large number of uniform RLC seg-
ments; the accuracy of these methods can be close to SPICE, but the
time complexity is too high for iterative layout optimization. Faster
techniques such as the two-pole approach [18, 7] have been used
to calculate the response to reasonable accuracy using the first and
second moments, and [8, 9] developed analytical (closed-form) de-
lay models for both step and ramp input based on the first few mo-
ments of the transfer function. We now briefly review the compu-
tation of transfer function moments (or coefficients), which is basic
to the analysis of coupled transmission lines.

N

N

N N

1

1

Line 1

L1S1

S1

R’

V’N+1 R’ L’ V’

C’   

V’

C’  C

Figure 1: An N-segment RLC model for Line 1 in a system of cou-
pled lines.

The general equivalent circuit with N RLC segments (Figure 1)
can be used to model a distributed RLC line. For Line 1 in a system
of coupled lines, source resistance (i.e., the driving gate resistance)
is represented by R0S1 and the load capacitance (i.e., target gate input
capacitance)isCL1. The distributed line parameters, such as the mo-
ments, can be obtained by setting the number of segments N !∞.



From nodal equations, the voltage V 0

S1 at the source node is
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whereV 0

1(s) is the voltage at the load of Line 1. Without loss of gen-
erality, we represent the ratio of node voltage V 0

i to the load voltage
V 0

1 as a series in s:
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where bi
0 = 1 and HSL

1 (s) represents the reciprocal of the Line 1
transfer function. In general, the kth coefficient of the transfer func-
tion can be obtained by using the recursive equation [7]
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The exact values of the coefficients for the distributed line are ob-
tained by substituting R0j =

R0

N , L0j =
L0

N and C0j =
C0

N and setting
N!∞ [7], where R0;C0; and L0 are the total resistance, capacitance
and inductance of Line 1:
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The Elmore delay for Line 1 is given by the transfer function coef-
ficient b1. The transfer function and Elmore delay for Line 2 alone
are expressed similarly, e.g., HSL

2 (s) denotes the reciprocal of the
uncoupled Line 2 transfer function.

3 Analysis of Lossy Coupled Transmission Lines

We now compute the voltage response and the transfer function for
two coupled interconnects, modeled as shown in Figure 2. We also
derive new Elmore delay expressions for the coupled lines under
various cases of input excitation: (i) one line is active (rising/falling
input) and the other line is quiet, and (ii) the two lines are driven by
opposite inputs.

We write the interconnect parameters for Line 1 as R0j ;C
0

j and L0j
and for Line 2 as R00j ;C

00

j and L00j . Let R0S1 and R00S2 be the respective
source resistances, and let CL1 and CL2 be the respective load ca-
pacitances. The voltages at node j of Line 1 and of Line 2 are V 0

j(s)

andV 00

j (s) respectively.1 Since the interconnects are distributed, the
coupling capacitance (or mutual capacitance) is also distributed in
nature; we model it by N capacitances (Λ j ) between corresponding
node segments of the two lines.

1In general, parameters marked with 0 refer to Line 1, while those marked with 00

refer to Line 2.
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Figure 2: N-segment RLC equivalent circuits for two coupled trans-
mission lines.

Extending the analysis of the previous section, the voltage at the
source node of Line 1 can be expressed using the recursive equation
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Recall from Equation (1) that the ratio of node voltage to target load
voltage can be expressed as an infinite series. For Line 1, we write
V 0
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the node voltages in Equation (4) in terms of these infinite series and
the target load voltages, we have
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Similarly, the voltage at the source of Line 2 is
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Observe that the voltage on Line 1 depends on both sets of line pa-
rameters, the coupling capacitance, and both target voltages. The
polynomial H11(s) represents the reciprocal of the transfer function
of Line 1 with (C+Λ) as the total line capacitance. Note that H11(s)
can be obtained by replacing the capacitance terms C0j by (C0j +Λ j)

terms in the uncoupled Line 1 transfer function HSL
1 (s). However,

the polynomial H12(s), which represents the coupled transfer func-
tion between the lines, is different from the uncoupled polynomial
HSL

2 (s) of Line 2.
Equations (5) and (6) relate the source node voltages to the target
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and inverting this equation allows us to express the load voltages in
terms of source voltages as�
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where jHj= (H11(s)H22(s)�H12(s)H21(s)) denotes the matrix de-
terminant.

Relationship Between Coupled Polynomials
The source voltages and the target load voltages of the coupled lines
are related through the four polynomials given by Equation (7). We
now derive relationships between the coefficientsof the coupledpoly-
nomials. Consider the case when Line 1 and Line 2 have identical
parameters, i.e.,
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R
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C
N
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L
N

; Λ j =
Λ
N

where R;L andC are the total resistance, inductanceand capacitance
of each line and Λ is the total coupling capacitance between the two
lines. The coupled polynomial coefficients and the first moment of
the corresponding transfer function can be obtained by substituting
these parameters into Equations (5) and (6) and letting N!∞. The
coupled polynomial H11(s) is
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Collecting all terms with coefficients of s and s2, we get
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The coupled polynomial H12(s) can be expanded as
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Similarly, the polynomials H21(s) and H22(s) can be expanded as
infinite series. Notice that the polynomials H11(s) and H21(s) have
many terms in common, as do H22(s) and H12(s). The relationship
between the coefficients of polynomials H11(s) and H21(s) are
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The coefficients of polynomials H22(s) and H12(s) are related as
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These relationships between the coefficients of the coupled polyno-
mials can be used to efficiently compute the moments and response
for coupled lines.

4 Configurations of Coupled Lines
We now analyze the coupled interconnect lines to compute the mo-
ments of the coupled system, and to estimate delays and crosstalk
for three cases of input voltages at the source of the lines.

1. Line 1 has an active (rising or falling) source voltage while
the Line 2 source is grounded (i.e., line is quiet). Using this
analysis, a second case of the crosstalk on (quiet) Line 1 can
be computed by applying a rising/falling source voltage to Line
2.

2. The two lines are driven by opposite inputs, i.e., Line 1 has a
rising input and Line 2 has a falling input at the source.

4.1 Active and Quiet Pair of Coupled Lines
Consider a step input at the source of Line 1 and connect the source
of Line 2 to ground as shown in Figure 3. For this configuration the
transfer function can be computedby settingV 00

S2(s) = 0 andV 0
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V0
s in Equation (8):
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Figure 3: Two coupled lines with Line 1 being driven by a step input
and Line 2 source being grounded.

Substituting for each polynomial with an infinite series,
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The first moment (or Elmore delay) of the transfer function is ob-
tained as
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Clearly, the Elmore delay with the adjacent line being quiet is differ-
ent from the Elmore delay of a single uncoupled line (Equation (3)):
the difference between the two delays is that for the coupled line,
the new capacitance is the sum of wire capacitance and all coupling
capacitance. The second moment of the coupled system is
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Recently, it has been observed by many authors [6, 18, 7, 8, 9] that a
few (two or three) dominant poles of the transfer function are suffi-
cient for accurate response computations with most present-day in-
terconnect topologies. To compute threshold delays for the coupled
interconnect system we can use the analytical delay formulas devel-
oped in [8] for step input (i.e., V 0

S1(s) =
V0
s ) and in [9] for ramp input

(i.e., V 0
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TRs2 (1�e�sTR )), where TR is the input ramp rise time.
The other case of an active and quiet pair of coupled lines esti-

mates crosstalk noise at the end of Line 1 when the source of Line 1
is grounded and a step input is applied at the Line 2 source. In this

case, the transfer function V 0

1(s)
V 00

S2(s)
is expressed in terms of the coupled

polynomials and then approximated to the required accuracy.

4.2 Active Coupled Lines with Opposite Inputs
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Figure 4: Two coupled lines with Line 1 being driven by a rising step
input and Line 2 being driven by a falling step input.

Finally, we consider the case where Line 1 is driven by a rising step
input and Line 2 is driven by a falling step input as shown in Fig-
ure 4. The transfer function for this configuration can be calculated
from Equation (8) by settingV 0

S1(s) =
V0
s andV 00

S2(s) =�V0
s =�V 0

S1(s).
The coupled transfer function is
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and the first (Elmore delay) and second moments are
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Again we can compute the threshold delays for the coupled system
using the analytical delay formulas given in [8, 9].

5 Conclusions
We have presented the analysis of coupled transmission lines and
the computation of moments for coupled transfer functions. We also
describe a relationship between the moments of the coupled transfer
functions, and derive expressions for the first and second moments
of the transfer function which can be used to compute threshold de-
lay under step input and ramp input.
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