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Abstract

Elmore delay has been widely used as an analytical estimate of inter-
connect delaysin the performance-driven synthesisand layout of VLS|
routing topologies. However, for typical RLC interconnectionswith ramp
input, ElImore delay can deviate by up to 100% or more from SPICE-
computed delay since it is independent of rise time of the input ramp
signal. We develop new analytical delay models based on the first and
second moments of the interconnect transfer function whentheinput is
aramp signal with finite rise time. Delay estimates using our first mo-
ment based analytical models are within 4% of SPICE-computed delay,
and models based on both first and second moments are within 2.3% of
SPICE, across a wide range of interconnect parameter values. Evalua-
tion of our analytical modelsis several orders of magnitude faster than
simulation using SPICE. We also describe extensions of our approach
for estimation of source-sink delaysin arbitrary interconnect trees.

1 Introduction

Accurate calculation of propagationdelay in VLSI interconnectsiscrit-
ical to the design of high speed systems, and transmission line effects
now play an important role in determining interconnect delaysand sys-
tem performance. Existing techniquesare based on either simulation or
(closed-form) analytical formulas. Simulation methods such as SPICE
give the most accurateinsight into arbitrary interconnect structures, but
arecomputationally expensive. Faster methodsbased on moment match-
ing techniques are proposed in [12, 13, 14, 17], but are still too expen-
sive to be used during layout optimization. Thus, EImore delay [2], a
first order approximation of delay under step input, isstill the most widely
used delay model in the performance-driven synthesis of clock distri-
bution and Steiner global routing topologies. However, Elmore delay
cannot be applied to estimate the delay for interconnect lines with ramp
input source; this inaccuracy is harmful to current performance-driven
routing methods which try to determine optimal interconnect segment
lengths and widths (as well as driver sizes). Previous moment-based
approaches[12, 14, 17] can compute a response for interconnects un-
der ramp input within a simulation-based methodol ogy, but no previous
work hasgivenanalytical delay estimation modelsbased on thefirst few
moments.

Recently, [3] presented lower and upper bounds for the ramp input
response; their delay model is the same as the EImore model for ramp
input (we refer to this model as analytical ramp input model (Tap) in
this paper). Delay estimates for the analytical ramp input model are off
by as much as 50% from SPICE-computed delays for 50% threshold
voltage, and the analytical ramp input model cannot be used to obtain
threshold delay for various threshold voltages. The authors of [5] used
Elmore delay as an upper bound on the 50% threshold delay for RC in-
terconnection lines under arbitrary input waveforms. However, wefind
that ElImore delay is not at all close to SPICE-computed 50% thresh-
old delay and, depending on the input slew time and driver resistance,
can be either greater or less than SPICE-computed delay (see Section 7
below). This paper gives anew and accurate analytical delay estimate
for distributed RLC interconnectsunder ramp input. To experimentally
validate our analysis and delay formula, we model VLSI interconnect
lines having various combinations of source, and load parameters, ap-
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ply different input rise times, and obtain delay estimates from SPICE,
Elmore delay and the proposed analytical delay model. Over our range
of test cases, ElImore delay estimatescan vary by asmuch as 100% from
SPICE-computed delays. Asthe input rise time increases, ElImore de-
lay deviateseven further from SPICE-computed delays. In contrast, our
single-pole delay estimates are within 4% of SPICE del a%/s and our two-
pole delay estimates are within 2.3% of SPICE delays.* Since our an-
alytical models have the same time complexity of evaluation as the El-
moremodel, we believethat they arevery useful for performance-driven
routing methodologies.

The organization of our paper is as follows. In Section 2 we dis-
cuss delay models which have been previously proposed for intercon-
nect lines under step input. Section 3 presents a new analytical delay
definition for interconnect lines under ramp input. Section 4 discusses
various threshold delay modelsfor single-pole approximation of thein-
terconnect transfer function; Section 5 givesvariousthreshold delay mod-
els for two-pole approximation; and Section 6 extends our delay mod-
eling approach to interconnection trees. Section 7 concludeswith ex-
perimental results for various combinations of input rise times and in-
terconnect parameters.

2 PreviousDeday ModelsUnder Step Input

The transfer function of an RLC interconnect line with source and load
impedance (Figure 1) can be obtained using ABCD parameters[1] as

1
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where 8 = /(r + 9 )sc is the propagation constant and Zg = |/ BEL

is the characteristic impedance; r = B,1 = k,c = € are resistance, in-
ductance, and capacitance per unit Iength and h isthelength of theline.
The variables by are called the coefficients of the transfer function and
aredirectly related to the moments of the transfer function [8]. Expand-
ing the transfer function into a Maclaurin series of saround s= 0 leads
to aninfinite series, and to compute the responsethe seriesis truncated
to desired order. The method of Padé approximation has been widely
used to compute the response from the transfer function [11, 12]. For
the case of resistive source (Rs) and capacitive load (C ) impedances,
the coefficient of sin the transfer function can be obtained as[8] by =
RsC+RsCL+ B +RCL.

Efficient delay estimatesfor interconnect lines are typically derived
by considering a single interconnect line with resistive source and ca-
pacitive load impedances; delay formulas for an interconnect tree come
from recursive application of the formulafor asingleline. Elmoredelay
[2] isafirst order delay estimate for interconnect lines under step input.
It is equal to the first moment of the system impulse response, i.e., the
coefficient of sor the first moment in the system transfer function H(s).
Applying this definition to H(s) in Equation (1), we seethat the EImore
delay is equal to the coefficient b;.

@

1We use threshold delay to refer to delay measured from the point when the input signal
is zero. To computedelay relative to the input signal, subtract the corresponding threshold

delay of theinputsignal (e.g., for 50% threshold voltage, the delay for theinputrampis 323).



Didtributed RLC line

Figure 1: 2-port model of a distributed RLC line with source
impedance Zg and load impedance Zy.

By considering only one pole in the transfer function, i.e, approx-
imating the denominator polynomial to only the first moment, the sin-
gle pole response can be obtained asin [4, 15]. The single pole of the
transfer functionisequal to theinverse of the EiImoredelay Tgp. Hence,
the delay at arbitrary thresholds of the single pole response can be di-
rectly related to EImore delay (Elmore delay actually correspondsto the
63.2% threshold voltage of the single pole response). For example, de-
lay at 50% threshold voltageis 0.69b4, and delay at 90% threshold volt-
ageis 2.3by. Although Elmore delay hasbeenwidely used for intercon-
nect timing analysis, it cannot accurately estimate the delay for RLC in-
terconnect lines, which are the appropriate representation for intercon-
nects whose inductive impedance cannot be neglected [6].2 More crit-
ically, EImore delay cannot estimate delays when the input signal is a
ramp.

3 Analytical Ramp Delay Definitions

In practice, the input at any gate or root of atree is a ramp with finite
rise (or fall) time, and there are no published analytical delay models
for ramp input. Wenow proposevariousramp delay definitionsand also
computeanalytical delay expressionsusing thefirst oneor two moments
of the transfer function. We discuss delay models for rising ramp input
only, since our analyses can be easily extended for falling ramp input
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Vo Vo

Figure 2: A ramp input function: (a) finite ramp with rise time Tg,
and (b) finite ramp decomposed into two shifted infinite ramps.

Rising Ramp I nput
Thefinite rising ramp input shown in Figure 2 can be expressedin
the time domain as

Vi
Vin(t) = T—O [tU(t) — (t—TRU(t—Tg)] foralt>0
R
whereU (t) denotesthe step function. Thefinite ramp input in thetrans-
form domainisViy(s) = \T’—; . é[l— e~STR]. In the transform domain, the
output responseis
Vo 1 _
Vou(s) = Vin(S)H(s) = = - 5[1— e F]H(s) .
Tr &

2Recently, [8] havedevelopedamoreaccurateanalytical delay model consideringinduc-
tiveeffectsbased on thefirst and second momentsof thetransfer function. Their model gives
accurate estimates compared to SPI CE-computed delays, but is valid only for step inputs.

We now give two distinct derivations of an analytical ramp delay esti-
mate.

Elmore Definition.
Applying ElImore’soriginal definition of delay for stepinput [2] yields
an analytical delay Tap for ramp input, i.e.,

1 00
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where Vi, 4 (t) is the derivative of the output response under finite ramp
input. Taking the Laplacetransform of vj;(t),

Vi (8) = /0 Vg (tdt—s /0 o (t)dt+ ...

Equation (2) then implies that the analytical ramp input delay Tap in
thetime domain is equal to the first moment of the derivative of the re-
sponse. In the transform domain, Tpp is equal to the first moment (or
coefficient of s) of the function wﬂv—f) which isequal to s- \Mvoi The
derivative of the responsein the transform domainis

sTr 1+ a5+ a8%+ ...

Vo(l-—5"+) 14 bys+bys2+ ...

Vou(s) =
Therefore, the analytical ramp input delay is

Ti Ti
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where Tgp isthe EImore delay for a stepinput (i.e., the first moment of
the transfer function). Another definition of delay based on the formula
givenin [10] yieldsthe sameresult of Equation (3) [9].

Group Delay Definition.

The concept of group delay was initially defined for step input by
Vlach et a. [18]. We now give agroup delay definition for computing
ramp input delay similar to that in [18], and show that it convergesto
the same analytical expression of Equation (3).

Recall that group delay is defined asthe negative of therate of change
of the phase characteristic ¢ of the output response Vot (w) with respect

to frequency, at zero frequency, i.e., Tgp = limg_0— g—(‘g. To compute
the phasecharacteristic of the output response, we first compute the out-
put responseVot(S) in the transform domain and then substitute for the
Laplacevariables= jw, i.e,

Vo —1 i
Vou(@) = P 5(1-e) H(w)
Vo |, 0T ’TR , W?TS
= (SR -=R+. - )| H
= 20 My 4 My H(w)
= Tt M2

where My and M, are the real and imaginary parts of the input ramp
function. Writing the transfer function in terms of numerator and de-
nominator polynomials,

(1—ap?+...)+ j(aw—agw®+...) _ Nt N
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Hlw) =

Then, the phase characteristic of the output responseis @= tan—! M—i +
tan~1 ¢ — tan~1 §2. We obtain the group delay as
09
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4 Single-Pole Analysis

If we approximatethe systemtransfer function up to thefirst moment (or
coefficient of s), H(s) = qu Then, the output responseunder infinite

ramp is®

Vo1 1
Trs? 1+sby -

Uout(s) = Yo [i o o ]

TR [ (s+1/by)

with corresponding time-domain response

\Y —t
Uout(t) = T_g [_bl‘|‘t‘|‘bleb1] 4

The time-domain responsefor afinite ramp is therefore
Uout (t) — Uout (t — TR)

Vo ~-Tp)
[TR + blebl — ble by :|
Tr

Vout ()

©)

Notethat ast — oo, Vt(t) tendsto afinal value of \ as expected. [16]
used asimilar single-poleanalysisto computedelay and transition times
solving the above response equations by applying Newton-Raphson it-
eration.

4.1 Analytical Delay Mode

It turns out that using the analytical ramp delay computed using the def-
inition in Section 3 and the output response given in Equations (4) and
(5) leadsto the same resuilt:

1 00
v/ U (t dt—l—\To/TRtv’om(t)dt

?-I-bl

Tap

Threshold Voltage Corresponding To Analytical Ramp Delay.

Section 3 gave two different methods for computing an analytical
ramp input delay from the output response. The threshold voltage cor-
respondingto this analytical delay is not known, and must be computed
by substituting Tap for time in either the infinite or the finite ramp re-
sponses.

Computing the threshold voltagefor the infinite ramp responsein Equa-
tion (4) for by < &, we get
2by

Vo
1
2 T TR

_1
Uout(t = Tap) = (1+ 7R

Inthelimit as Zbl — Othethreshold voltage reducesto gy (t = Tap) =

Y. Hence, for Iarge rise-timesor small first moment of thetransfer func-
tiontheanalytical delay Tap correspondsto 50% threshold voltage. When

by >> 1&, using the finite ramp responsein Equation (5) gives
2

12

Vo |1
0+2

Vout(t =Tap) = (eﬂjl/TR — eml/TR)

Inthelimit as ZT—l;l — oo the threshold voltage reducesto Vot (t = Tap) =

Vo(1-1/e) = 0.632Vp. Hence, for small rise-times or large first mo-
ment of the transfer function the analytical delay Tap corresponds to
63.2% threshold voltage. We see that for any choice of Tr and b; the
threshold voltage corresponding to the analytical delay Tap will be be-
tween 50% and 63.2%.

3In the transform and time domains, we respectively use U(x,s) and u(x,t) to indicate

theresponse for infinite rampinput, and V (x, s) and v(x, t) to indicatethe responsefor finite
ramp input.

4.2 Threshold Delay Models

Condition for Computing Threshold Delay Using Finite or Infinite
Ramp Response.

The ramp input delay at any threshold voltage can be computed us-
ing the infinite ramp response in Equation (4) if the ramp delay is less
than the rise time Tg, or using the finite ramp responsein Equation (5)
if theramp delay is greater than Tg. For example, the delay at threshold
Thlin Figure 3 is computed using the infinite ramp response, and the
delay at threshold Th2 is computed using the finite ramp response. To
determine when the infinite ramp response should be used, we write the
threshold voltage corresponding to the rise-time Tg in terms of intercon-
nect and rise time parameters:

Voltage

Th2

Thi

Figure 3: Ramp input delay at various threshold voltages.
vi, = [1- 2 (1) ©
Tr

Here, vr, is the threshold voltage at which the delay through the inter-
connectisegual to Tr. Let v, bethethreshold voltage of interest for the
finite ramp response, expressed as a fraction of the steady state voltage
Vo. If vy < v, delay is calculated using Equation (4), and if vip > vy,
delay is calculated using Equation (5).
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Figure4: Variation of threshold voltage at delay equal to rise-time Tr
with respect to the factor %.

Observethat Equation (6) can berearranged to obtain acondition on
% for any given threshold voltage vi,: the condition for delay calcula-
tion using infinite ramp responseis

<(1-wn)

and the condition for delay calculation using finite ramp responseis
by

T
T (1-ev®) >

(1—wvn)



Figure 4 shows the variation of vy, with respect to the factor %. At
b; = Tr the threshold voltage vy, is 0.368Vy, i.e., 36.8%. Since most
sub-microninterconnect networks havesmall rise-times and large prop-
agation delays, the delaysat threshol d voltages of interest (50% or 90%)
will likely be computed by considering the finite ramp response as de-
veloped in Equation (9) below.

Threshold Delay Using I nfinite Ramp Response.

Model 1. For theinfinite ramp response of Equation (4), the threshold
delay is
~TRD1

Tro1+bie  =upTr+by

where Wy, is the threshold voltage of interest for the infinite ramp re-
sponse. We can solve such arecursive equation in less than 10 itera-
tions of simple back-substitution (with Tap asthe starting value) for all
theinterconnect configurationswe considered. To obtain a closed-form
delay formula, we approximate Trp4 in the exponential term with some
f(TAD), whichyields

—f(Tap)

Tro1 = UhTR+by(1-€ ™ ). )

Here, f(Tap) dependson thethreshold voltageand Tap.®> Theabovede-
lay estimate can beimproved by expressing Trp; asUih TR+ Trp1, SiNce
thethreshold delay for theinfiniteramp response Tgp; isgreater thanthe
threshold delay for theinfinite ramp input u, Tr. Making this changein
delay variable in Equation (4), we get

_ 4hTR*TRD1

—b1+trRp1+bie 7 =0

Expandinge B as aTaylor seriesand considering only the first three
termsyields

T T
By + 2by (€75 — 1)Trpy — 2b2(e B —1) =0

Solving for Trp; in the above equation, the threshold delay can be ex-
pressed as

.
Tro1 = UnTr+b1 (1— et /e R — 1) ®)

Using this Trp1 valuefor f(Tap) intheexponential term of the Equation
(7), we obtain delay valuesthat are very closeto the values obtained by
solving the equation through iteration.

Threshold Delay Using Finite Ramp Response.
Model 2. For the finite ramp response of Equation (5),
1 “Tro2 ~(rpo-TR)
Vth = = [TR—|—b1e L —pie ™ :|
Tr

Collecting the threshold delay Tgrp, terms, we obtain

_ by (7R -1)|_ A
TRDZ = bl In (—7) _bl |n(m)‘ (9)

TR (1—Vn)
4At 50% threshold, the condition for delay calculation using infinite ramp response is
lTj—é < 0.625, with delay calculated using finite ramp response otherwise. Similarly, at 90%

threshold, the condition for delay calculation using infinite ramp responseis 'Tj—é <0.1.
SIn[9] thefunction f(Tap) is approximatedby f(Tap) = Tap In( ﬁ),which isthresh-

old delay for the system with analytical delay asthetime constant. Thedelay estimatesusing
this approximation are reasonably close to SPICE-computed delays.

where the factor F, = %(ewlﬂ — 1) can vary between « and 0. With
such alarge variation in Fy, it is very difficult to fit the threshold delay
Trp2 against the corresponding SPICE delay.

Model 3. Since the threshold delay computed from the finite ramp re-
sponseis greater than Tg, an alternative formula for the threshold delay
can be obtained by expressing Trps @ Trpz = TR+ Trpz- Substituting
into Equation (5) yields

-TR Z'RD3

1 —'RD3
Vth = T_R [TR—|—b1e e bt —bjet :| .

Therefore, the delay is

Troz = Tr+ by

(@)
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The factor F, = % (1— e®7 ) varies between 0 and 1.0 as shown in
Figure 5. For b; = TR this factor is F, = 0.632. For b; > Tg we can
find agood approximationfor F, by fitting against SPI CE-computed de-
lays, since the variation in F, valuesis very small. However, for the
range of interconnect configurations studied both Model 2 and Model
3 gave essentially identical results and hence Section 7 reports results
from Model 2 only.

(10)
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Figure 5: Variation of factor F, = %(1— eb/r ) with respect to %.

5 Two-PoleAnalysis

The two-pole methodology for interconnect response computation un-
der step input has been discussed in [4, 7, 20]. For interconnect trees
(or lines) the transfer function has a special form in which the numera-
tor polynomial isaconstant, i.e., approximating to s2 term yieldsH ()=
m. For the case of resistive source (Rs) and capacitiveload (C, )
impedances, the transfer function coefficients are given by [8]

RC
bi = RCHRLL+—+RC
RsRC? RsRCC. . (RC)2 RCC. | LC
= —+LC (11
b, s tT 2 T st t CL (11)

For thisform of the transfer function, the output response under infinite
ramp input is

Vo 1 1
U(s) = 25—
out(S) TR 2 1+shy 4 sy
. E —_b]_ 1 _ 1+bs, 1 1+bisy 1
T TRl S 2 51— 5—-8 S-% S-S



and the corresponding time-domain responseis

v 1+b 1+b
uom(t):—o[—bl—l—t-l— T1% e, Mt ) (12)

Tr $—S S1—-9

where U(t) is the unit step function. The time-domain response for a
finiteramp is
Uout (t) — Uout (t — TR)
Yo (1+bisp) (et — ea(TR))
Tr (2—3s1)

(14 bysy) (6% — e2(7T))
_|_

(s1-%)

Vour(t) =

Tr+

u(t) (13)

Note that the first and second moments of the transfer function can be
obtained fromthe coefficientsby and by, i.e,, My = by andM, = b% —by.
We use the coefficient notation by, b, and the moment notation M1, M,
interchangeably according to the simplicity of the expression.

5.1 Threshold Delay Models

Depending on the sign of bf — 4b,, the poles of the transfer function
can be either real or complex. However, for most cases of interest the
polesturn out to be real, and we now discuss delay models for the case
of real poles. The condition for the poles to be rea is (bf —4by) =
(4Mz—3M2) > 0. Sincethe magnitude|s,| is greater than |s;|, the sec-
ondterminthetime-domain responsedecreasesrapidly comparedto the
first term. Hence, the two-pole infinite ramp response can be approxi-
mated as

- VO 1+ blSZ Y
Uout(t) = T [—bl—l—t + —52 mry e (14)
and the finite ramp response as
VO 1+ b1$2 t (t—Tr) :|
N — - . 1
Voa(t) & [TR+ s (@ -9

Notethat theresiduek; = % isapositive quantity, and that the pole
s1 hasto be negativein valuefor the responseto converge.

Threshold Delay for I nfinite Ramp Response.
Model 4. The delay Trpg4 @t threshold voltage uyy, can be obtained as

1+b1sp St Troa

Troa +
S/

=UnTr+by

Again, we can solve such arecursive equationin less than 10 iterations
of simple back-substitution (with Tap as the starting value) for al the
interconnect configurationswe considered. Another way to evaluatethe
aboveiterative equation is by substituting some f(Tap) for Trpg inthe
exponential term, which yields

14019 51 (To)

-5 (16)

Trpsa = Un TR+ by —

where f(Tap) dependson the threshold voltage and Tap. For example,
for 50% threshold voltage f(Tap) = Tap and for 90% threshold volt-
age f(Tap) = 2.3Tap. We found that the delay values using Equation
(16) are closeto the values obtained by solving the equation through it-
eration. Similar to the analysis of Model 1, a better approximation for
the f(Tap) term can be obtained by expressing Trpg 8s Uh TR + TrRD4s

since Trpy is greater than the threshold delay for the infinite ramp input
(WnTR)-

Threshold Delay for Finite Ramp Response.

Model 5. Thedelay Trps at threshold voltage v, can be obtained from
the response as

1
VihlR=Tr— —+ b1 (e_SlTR — 1) g1 Tros
-5

Since the value of the pole s; is negative, the quantity (€S~ — 1) is
positive and the residue % isalso positive. Thus, the delay expres-

sion reducesto
1 Fs
Trps = — |In| ——
RDS |51|‘ ((1_Vth))‘

where the factor F3 = %

17)

can vary widely.

Model 6. Since the threshold delay computed from the finite ramp re-
sponseis greater than Tg, an alternative formula for the threshold delay
can be obtained by assuming the form Trpg = TR+ Trpe. Substituting
into Equation (15) yields

VinTr = Tr— 10 (1—exTR)ghros
-5

Therefore, the delay is

Tros (18)

1 Fs
T; +—‘In(7)‘ .
R 0sl |\ (1= win)

wherethefactor Fy = % variesover only asmall range.

For the range of interconnect configurations studied both Model 5 and
Model 6 gave essentially identical results, and hence Section 7 reports
results from Model 5 only. [9] gives a detailed discussion of two-pole
models for the case of complex poles.

6 Interconnection Trees

Finally, we describehow to extend our analytical modelsto estimate de-
laysin arbitrary interconnect trees. An RLC network is called an RLC
treeif it doesnot contain aclosed path of resistorsand inductors, i.e., al
resistors and inductors are floating with respect to ground, and all capac-
itors are connected to ground. Consider an RLC interconnect tree with
root (or source) Sand set of sinks (or leaves) {1,2,...,n}. The unique
path from root Sto the sink nodei is denoted by p(i) and is referred to
as the main path. The edges/nodesnot on the main path are referred to
as the off-path edges/nodes. We model each edge on the main path of
the tree using alumped RLC segment, e.g., an L, T, or tmodel.®

We approximate the off-path subtree rooted at nodei with its admit-
tance. At any nodei, the admittance; isequal to (i) the capacitance of
nodei (G) if there is no subtree at nodei, or (ii) to the sum of the ca-
pacitance of nodei (C;) and the subtree admittance YT(i) otherwise. In
other words,

Ci
it Yrg)

if nodei has no off-path subtree
if nodei has an off-path subtree

Yi

With this approximation, the main path reducesto an RLY equiva-
lent circuit. Only two admittance moments need to be computed for an
exact transfer function moment computation for the main path. The ki

80ur model is not limited to traditional segment models, and accuracy of our results
would likely improveif we use non-uniform segment models[7, 19] designed to perfectly
match the low-order momentsof the distributed RLC line.



1
:

Figure 6: Representation of the main path in thetree, where each dis-
tributed lineismodeled using RLC segments. Y; indicatesthe off-path
subtree admittance at nodei.

coefficient by, of thetransfer function for the general RLY circuit of Fig-
ure 6 can be obtained using the recursive equation givenin [7]. Thefirst
and second coefficients of the transfer function are

N N

b = RsY Yij+Ry Y Yij+bY
=1 =1
< N . N N .
by = RsY Yij-bj+Rsy Yaj+RyY Yij-b
=1 j=1 =1

N N

+RN Y Yo i+Lin Y Yoj+by (19)
=1 =1

Thefirst and second moments are expressed in terms of coefficients as
M1 =bs and M, = b% — by. For any given source-sink pair the coeffi-
cients by and b, can be computed in linear time by traversing the main
path and using Equation (19) to obtain transfer function coefficients.

7 Experimental Results

We evaluate the above models by simulating various RLC interconnect

lineswith different source/loadimpedancesand different input risetimes.

We consider typical interconnect parametersencountered in single-chip
interconnects [8], with the length of the interconnect being 2000 pm.
The sourceresistanceis varied between 100 to 1000 Q and the load ca-
pacitanceisvaried from 0.1t0 1.0 pf. Wealso consider 100 ps and 500
psrise times for the input ramp.

For all our experiments, we compute exact 50% and 90% delays
from the response at the load using the SPICE3e simulator. The step
input delay is computed using the Elmore delay formula and then mul-
tiplying it with the appropriate constant for the given threshold voltage.
For example, Elmore delay at 50% threshold voltage is 0.69b; and at
90% threshold voltage is 2.3b;. Unlike [5], we find that ElImore delay
isnot at al close to SPICE-computed 50% threshold delays and, de-
pending ontherise time of the sighal and driver resistance, can be either
greater or lessthan SPICE-computed delays (e.g., whentherisetime is
500 psthe EImore delay isfor most caseslessthan the SPICE-computed
delays). Also, increased rise time of the input signal causesthe Elmore
delay to deviatefurther from SPICE-computed delays(see Tables 1 and
3).

For comparison, wealso present delay estimatesusing theanalytical
ramp delay model Tap. Whentherisetime of theramp input isincreased
from 100 psto 500 psthe SPICE delays at 50% threshold areincreased
by approximately 200 ps, which suggests that delay at 50% threshold
voltage is proportional to T—ZR This effect of the rise time is well mod-
eled in the analytical ramp delay model Tap. To compute ramp input
delays using the single-pole methodol ogy we use either the Model 1 or
Model 2, depending on the value of the first moment by and the thresh-
old voltage of interest. Similarly, to compute ramp input delays using
the two-pole methodology we use either Model 4 or Model 5, again de-
pending on the value of b, and the threshold voltage of interest. (If the
delay is computed using the infinite ramp response then we mark those

delaysinthe Tablewith (*).) Tables1 and 2 give 50% and 90% delay es-
timates for ramp input with 100 psrise time. Tables 3 and 4 give 50%
and 90% delay estimates for ramp input with 500 ps rise time. Over
our range of test cases, EImore delay estimates can be as much as 100%
away from the SPICE-computed delays. In contrast, our single-polede-
lay estimates are within 4% of SPICE delays and the two-pole delay es-
timates are within 2.3% of SPICE delays.

8 Conclusions

Fast delay estimation methods, as opposedto simulation techniques, are
needed for incremental performance-driven layout synthesis. Estima-
tion methods based on EImore delay for astep input, although efficient,
cannot accurately estimate the delay for RLC interconnect lines. We
have obtained new analytical delay models under ramp input, based on
the first and second moments of RLC interconnection lines. The result-
ing delay estimates are significantly more accurate than EImore delay
estimates. We also describe how to extend our delay modelsto estimate
source-sink delaysin arbitrary interconnect trees.
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Interc. Driver Load SPICE Elmore | Analy. Single Two
para. Res. Cap. Delay | Delay Pole | Pole Interc. | Driver | Load | SPICE | Elmore | Analy. | Single | Two
r,lc Rs Cr 0.693b, Tap para. Res. Cap. Delay Delay Pole | Pole
/um Q pf ps ps ps ps ps r,l,c Rs Cr 0.693b; Tap
0.0015Q /um Q pf ps ps ps ps ps
0.176 f f 100 0.01 83 25 87 83* 84* 0.00150
0.246 ph 0.176 f f 100 0.01 287 25 287 287+ | 287*
v 500 0.01 178 126 232 178 178 0.246 ph
" 1000 0.01 302 251 413 302 303 ” 500 0.01 2413 126 432 415% 415%
" 100 0.1 90 32 96 90" 92" " 1000 0.01 529 251 613 530 530
" 500 0.1 209 157 277 209 209 ” 100 0.1 296 32 296 296" 296*
" 1000 0.1 364 314 503 365 365 i 500 0.1 445 157 477 445° 449°
" 100 1 150 96 189 149 151 " 1000 0.1 586 314 703 587 587
" 500 1 522 471 730 522 522 ” 100 1 380 96 389 380* 381*
" 1000 1 989 939 1406 990 990 " 500 1 736 471 930 736 737
00150 " 1000 1 1197 939 1606 1197 1198
0.176 f f 100 0.01 87 29 92 87* 88* 0.015Q
0.246 ph 0.176 f f 100 0.01 291 29 292 202 | 292*
v 500 0.01 181 129 237 182 182 0.246 ph
" 1000 0.01 305 255 418 306 307 ” 500 0.01 416 129 437 419* 419*
" 100 0.1 96 37 103 96" EI& " 1000 0.01 532 255 618 533 534
" 500 0.1 214 162 284 214 215 ” 100 0.1 303 37 303 303* 303*
" 1000 0.1 369 319 510 370 371 i 500 0.1 450 162 484 455° 455*
" 100 1 172 118 220 171 173 B 1000 0.1 501 319 710 501 592
" 500 1 543 493 761 544 545 " 100 1 405 118 420 406* 408*
B 1000 1 1010 961 1437 1012 1013 7 500 1 757 493 961 758 759
B 1000 1 1217 961 1637 1219 1221

Table 1: The length of the interconnect line in these experiments is
alwaysh = 2000 um. The rise time of the input ramp is 100 ps. For
single-pole delay estimateswe use Model 1 or 2 and for two-pole es-
timates we use Model 4 or 5, depending on whether the delay point
fallsinto the infinite ramp response range or the finite ramp response
range. The delay estimates refer to 50% threshold voltage. (*) in-
dicates that the delay is computed using the infinite ramp response
models.

Table 3: The length of the interconnect line in these experimentsis
alwaysh = 2000 pum. Therise time of the input ramp is 500 ps. The
delay estimates refer to 50% threshold voltage. (*) indicatesthat the
delay is computed using infinite ramp response models.

Interc. Driver Load SPICE Elmore | Analy. Single Two
Interc. | Driver | Load | SPICE | Elmore | Analy. | Single | Two para. Res. Cap. Delay | Delay Pole | Pole
para. Res. Cap. Delay Delay Pole Pole r,lc Rs Cr 0.693b, Tap
rlc Rs Cr 0.693b; Tad /um Q pf ps ps ps ps ps
/pm Q pf ps ps ps ps ps 0.0015Q
0.0015Q 0176 f f 100 0.01 487 85 287 487+ | 487+
0176 ff 100 0.01 141 85 87 145 143 0.246 ph
0.246 ph 7 500 0.01 720 418 432 722 721
v 500 0.01 468 218 232 270 269 v 1000 0.01 1110 835 613 1113 | 1113
v 1000 0.01 882 835 413 886 885 i 100 0.1 496 106 296 496" | 496"
v 100 0.1 161 106 96 165 161 v 500 0.1 814 522 477 816 816
v 500 0.1 572 522 277 574 573 v 1000 0.1 1312 1042 703 1315 | 1315
v 1000 0.1 1090 1042 503 1094 | 1093 i 100 1 633 319 389 638 634
v 100 1 366 319 189 372 366 v 500 1 1826 1563 930 1830 | 1828
v 500 1 1612 1563 730 1615 | 1614 v 1000 1 3374 3118 1606 3379 | 3378
v 1000 1 3167 3118 1406 3172 | 3170 00150
0.015Q 0176 f f 100 0.01 491 96 292 492% | 492+
0.176 f f 100 0.01 150 96 92 156 151 0.246 ph
0.246 ph 7 500 0.01 727 430 437 732 730
v 500 0.01 476 430 237 482 279 v 1000 0.01 1116 846 618 1124 | 1122
v 1000 0.01 889 846 418 898 895 i 100 0.1 503 123 303 504 504
v 100 0.1 174 123 103 181 175 i 500 0.1 825 539 484 832 833
v 500 0.1 583 539 284 591 587 B 1000 0.1 1322 1059 710 1332 | 1329
v 1000 0.1 1100 1059 510 1111 | 1107 i 100 1 687 392 420 700 692
v 100 1 429 302 220 245 235 v 500 1 1882 1636 961 1902 | 1896
v 500 1 1668 1636 761 1688 | 1682 v 1000 1 3425 3191 1637 3452 | 3446
v 1000 1 3218 3191 1437 3245 | 3238

Table 2: The length of the interconnect line in these experiments is
alwaysh = 2000 um. Therise time of theinput ramp is 100 ps. The
delay estimates refer to 90% threshold voltage.

Table 4: The length of the interconnect line in these experimentsis
alwaysh = 2000 pum. Therise time of the input ramp is 500 ps. The
delay estimates refer to 90% threshold voltage.




