
LARGE-STEP MARKOV CHAIN VARIANTS FOR VLSI NETLIST PARTITIONING

Alex S. Fukunaga, Dennis J.-H. Huang and Andrew B. Kahng
UCLA Computer Science Department, Los Angeles, CA 90095-1596 USA

ABSTRACT

We examine the utility of the Large-Step Markov Chain
(LSMC) technique [13], a variant of the iterated descent
heuristic of Baum [2], for VLSI netlist bipartitioning.
LSMC iteratively �nds a local optimum solution according
to some greedy search (in our case, the Fiduccia-Mattheyses
heuristic) and then perturbs this local optimum via a \kick
move" into the starting solution of the next greedy descent.
We empirically evaluate several intuitive types of kick moves
to determine which is best suited to the VLSI netlist biparti-
tioning domain. Experiments show that LSMC with an ap-
propriately chosen kick move can yield results that are com-
petitive with the best known results in the literature. On-
going work examines the variation of the optimal kick move
with the underlying partitioning engine. Since LSMC can
itself be viewed as a \partitioning engine", other research
directions include the use of LSMC within hybrid-genetic
and two-phase approaches.

1. INTRODUCTION

Partitioning optimizations are critical to the synthesis of
large-scale VLSI systems. Designs with several hundred
thousand gates are now common, and entail problem com-
plexities that tax existing back-end physical layout tools.
Thus, partitioning is used to divide the design into smaller,
more manageable components. A standard model for VLSI
layout associates a hypergraph G = (V;E) with the cir-
cuit netlist; vertices in V represent modules and hyper-
edges in E represent signal nets. A bipartitioning of G
divides the vertices in V into disjoint subsets U and W ,
with the cut size, c(U;W), being the number of hyperedges
in fe 2 E j 9u; w 2 e with u 2 U and w 2 Wg. Two
standard partitioning formulations are: min-cut bisection,
which seeks to minimize c(U;W) subject to jU j = jW j, and

minimum ratio cut, which seeks to minimize c(U;W)
jU j�jW j

. Both

of these formulations are NP-complete, and much work has
sought e�ective heuristic solutions. We focus on min-cut
bisection and its relaxation where jU j and jW j can di�er by
up to a prescribed ratio.
Our work yields insight into the class of iterative parti-

tioning approaches, which iteratively perturb a current so-
lution and accept the new candidate solution according to
either a greedy or hill-climbing strategy. Such methods are
widely used because pre-placement constraints, module area
information, and complex objectives can be transparently
integrated. The most widely used iterative algorithm is that
of Fiduccia and Mattheyses (FM) [5]. Wei and Cheng [16]
use an adaptation of [5] to address the ratio cut objective.
The main weakness of FM and its variants is that solu-

tion quality is not \stable", i.e., it is not predictable. Hagen
and Kahng [7] report that the distribution of solution costs
(nets cut) for independent random FM executions on ACM
SIGDA benchmark netlists is approximately normal. This

implies not only that the average FM local minimum is sig-
ni�cantly worse than the best possible FM solution, but
also that FM must be run many times from random start-
ing points to achieve a good result (that is to say, sample
from the tail of this distribution of solution costs). Indeed,
practical implementations of FM use a number of random
starting con�gurations and then return the best result over
all runs in order to attain \stability" [12]: we call this the
random multi-start approach. The number of runs required
to achieve stability via random multi-start grows rapidly
with problem size. Despite these shortfalls, the appeal of
iterative algorithms { and FM in particular { has led to
much research which tries to make such methods more vi-
able in practice.

The LSMC Approach

The Large-Step Markov Chain (LSMC) method of [13] iter-
atively performs a descent using a greedy search engine, and
then perturbs the resulting local optimum via a \kick move"
to obtain the starting solution for the next greedy descent.
We use LSMC to generically encompass earlier \iterated de-
scent" methods, including the Iterated Lin-Kernighan trav-
eling salesman problem (TSP) heuristic of Johnson [10],
which is believed to be the best-performing of all heuris-
tics which obtain near-optimal solutions for the TSP. The
idea of iterated descent seems to have originated with Baum
in 1986 [2], also in the context of the TSP; note that the
particular choice of kick move can strongly in
uence the
perceived utility of LSMC, as can be seen from the con-
trasting results of [2] and [10], as well as the more detailed
kick move studies of LSMC for the TSP in [9]. Figure 1
describes the LSMC approach, following the presentation
in [13] but adapted to the partitioning domain, i.e., the
greedy local optimization procedure is assumed to be the
FM algorithm.1

As can be seen from the Figure, LSMC actually performs
simulated annealing over the set of FM local minima, with
f kick move + FMDescent g as its neighborhood opera-
tor. In other words, if a new local minimum has lower cost
than its predecessor, it is always adopted as the current so-
lution; otherwise, its probability of being adopted is given
by the Boltzmann acceptance criterion (Step 2.3 in the Fig-
ure), with the alternative being to retain the previous local
minimum solution as the current solution. Based on exper-
imentally derived intuition, the authors of [13] set the tem-
perature used for Boltzmann acceptance to be zero in most
cases. Similarly, Johnson [10] also used zero-temperature
LSMC. Although our experiments have concentrated only

1An FM descent is a series of FM passes, beginningafter a kick
move perturbation is made and ending when a local minimum is
reached (i.e., no cost improvement is made by a pass).

Algorithm LSMC
Input: Hypergraph bisection instance,

iteration bound M ,
temperature schedule tempi, i = 1; : : : ;M

Output: Partitioning Pbest

1. Generate a random partitioning Pinit;
P1 = FMDescent(Pinit);
Pbest = P1;

2. for i = 1 to M
2.1. Pi

� = kick move(Pi);
2.2. Pi

�� = FMDescent(Pi
�);

2.3. di� = cost(Pi
��) � cost(Pi);

if (di� < 0) Pi+1 = Pi
��;

else f
generate a random number t 2 [0; 1);
if (t < exp(� di� =tempi));

Pi+1 = Pi
��;

else
Pi+1 = Pi;

g
2.4. if (cost(Pbest) >cost(Pi

��)) Pbest = Pi
��;

3. return Pbest;

Figure 1. LSMC algorithm template.

on variants of zero-temperature LSMC, we note that Hong
et al. [9] have recently studied the utility of non-zero tem-
peratures in applying LSMC to the TSP, and have shown
that signi�cant performance improvements can result.
In work related to our present application, [13] brie
y

describes the application of LSMC to graph partitioning
on random geometric graphs, using the so-called clustering
kick move that we describe in the next section. Recently,
Shibuya et al. [15] proposed a method that strongly resem-
bles LSMC, using a \Stable-Net Transition" kick move. In
their method, a net is stable if it remains cut after a min-
cut bisection is found. Since their experiments show that a
high proportion of cut nets are always in the cut set during
min-cut bisection, their method detects stable nets and per-
turbs cells incident to those nets in order to \uncut" these
nets. This is similar to the net removal kick move that we
study below. Finally, Hartoog [8] mentions what seems to
be an early version of the random kick move that we study
below, but does not give any performance results.

2. KICK MOVE STUDIES

Our work studies the performance of LSMC for VLSI netlist
partitioning, with the goal of determining appropriate kick
move strategies for this domain. Thus, we examine relation-
ships between the kick move perturbation that is applied
between successive FM descents and the quality of the �nal
partitioning solution that results. We assume that the par-
titioning objective is min-cut bisection; following the usual
practice, this means that the total module areas in the two
bisections must di�er by at most twice the largest individual
module area in the netlist. We implemented the following
kick moves for our study.

2.1. Multistart Kick Move

The multistart kick move completely randomizes the par-
titioning solution. Thus, it is equivalent to the standard
\random multistart" approach of using multiple indepen-
dent FM calls to yield a \stable" solution. The multistart

kick move provides the baseline against which other kick
moves can be compared.

2.2. Random Kick Move

The random kick move selects from each partition a ran-
dom subset of modules whose total area is MoveSize% of
the total module area in the smaller of the two partitions.
In our experiments, MoveSize is varied between 5-25% of
the total area of the smaller partition. This kick move is
intended to make random perturbations to the current so-
lution, such that the perturbed solution will lie outside the
basin of attraction of the current local minimum. As noted
above, Hartoog [8] �rst reported the use of this technique
as a heuristic for improving FM performance, but no per-
formance data was given.

2.3. Clustering Kick Move

The clustering kick move is based on the intuition that the
appropriate perturbation of a given solution is to swap clus-
ters of connected modules between the partitions. In other
words, if there are \islands" of tightly clustered modules
in a partition, it is di�cult for FM to move the island one
node at a time because moving any one node of an island
will seem to be a very suboptimal choice.2 The details of
the clustering kick move are given in Figure 2.

Clustering Kick Move
Input: A partitioning solution (A, B)
Output: Two clusters
1. Choose v1 2 A and v2 2 B as seeds,
where v1 and v2 are on two di�erent cut edges.

2. From each of the seeds, grow a cluster subject to
the constraints:
2.1. nodes in the cluster must be on the partition

opposite to the seed node,
2.2. the cluster is grown by �nding neighbors

of the current cluster
2.3. the growth is terminated when the area of the

cluster exceeds MoveSize� SmallerArea
or when one cluster can no longer grow

Figure 2. Clustering kick move template.

In our experiments, MoveSize is varied between 5-25%
of the area of the smaller partition, and the cluster growth
of Step 2.2 is accomplished by breadth-�rst search. The
BFS termination criterion of Step 2.3 forces the swapped
clusters to be of equal area, so that the partitions are always
balanced. This clustering kick move was �rst proposed by
[14]; we have also experimented with a variant which grows
the cluster on the same side as the seed node, but the results
are statistically indistinguishable and we do not report them
here.

2.4. Net Removal Kick Move

Finally, the net removal kick move (Figure 3) is based on the
observation that when a local minimum has been reached
by the FM algorithm, any node belonging to an uncut net
will be frozen in place since moving such a node will likely
increase the cutsize. Thus, to escape from a local minimum
we propose to temporarily \reduce" the netlist by removing
some subset of uncut nets Nu from consideration. This al-
lows nodes that are otherwise immobile to move across the

2This intuition is validated by recent results showing that FM
performs signi�cantlybetter if tie-breaking is resolved so that the
algorithm e�ectively swaps entire clusters during each pass [6].

cut; after performing greedy descent in the reduced netlist,
Nu is restored. The combination of these operations con-
stitutes the kick move. In our implementation MoveSize,
the percentage of uncut nets removed, is varied between
25-75%.

Net Removal
Input: Partition Norig of the netlist,

a fraction MoveSize, 0 < F < 1,
Output: A modi�ed partitioning solution
1. Randomly select a subset nu of the uncut nets, with

jnuj =MoveSize�NumNets, where NumNets
is the number of nets in the original netlist.

2. Reduce the netlist by removing all nets in nu to
obtain Nreduced.

3. Perform a FM descent on Nreduced.
4. Restore the original netlist by adding the nets nu

back into Nreduced.

Figure 3. Net removal kick move template.

3. EXPERIMENTAL RESULTS

We compared LSMC performance using the four kick moves
described above on benchmarks Struct, Primary2, Test2,
Test3 and Biomed maintained by ACM SIGDA. Each entry
in Table 1 is based on 50 runs of LSMC, where the ter-
mination condition for each run was to stop when a local
minimum has been reached and more than 1000 FM passes
have been executed.3 For the net removal kick move, FM
passes based on the reduced netlist and on the full netlist
were weighted equally.4

The third column of Table 1 shows the kick move size.
A \randomized" MoveSize means that every time the kick
move was applied, a random value ofMoveSize was chosen
from a uniform distribution (this value was varied between
0.05 and 0.25 for the random and clustering kick moves,
and between 0.25 and 0.75 for the net removal kick move).
We make the following observations: (1) The random, net

removal, and the clustering kick moves consistently outper-
form the standard random multistart strategy. Thus, the
idea of making local perturbations (as opposed to complete
randomization) seems to be a promising idea. (2) Overall,
the clustering kick move yielded the best performance, fol-
lowed by the net removal kick move. (3) In general, the
larger values of MoveSize resulted in better performance;
the randomized MoveSize performed well overall.
We also compare LSMC with the best previous parti-

tioning results in the literature (e.g., [1, 4, 7]). Table 2 and
Table 3 show the comparison using unit are and actual area
respectively. Each entry is based on 50 runs of LSMC, where

3For the Biomed benchmark in Table 1, our results are based
on 500 passes of FM. Recall that an FM pass is linear-time; it
moves and locks each node exactly once, then adopts the pre�x
of this move sequence with maximumgain in cutsize. We use the
number of FM passes to bound each run, since this should result
in as fair a comparison as possible, and allows experiments to be
run on several di�erent CPUs of varying speeds. As a baseline,
recent e�cient implementations of FM engines by the authors of
[4] can perform a complete FM descent on our largest test case
(Biomed) in only a few seconds on a Sun Sparc-5 machine.

4Note that FM passes on the reduced netlist are signi�cantly
faster (because the netlist is smaller), causing some disparity in
comparisons between the net removal kick move and the other
kick moves. However, it is not clear how signi�cant this dis-
parity is; our current e�orts are aimed at developing a more
accurate method for equalizing the CPU resources used in our
experiments.

Ex Kick Size Min(avg-Max)(�) #Descents

st m 45.1(41-51)(2.1) 117.7(2.1)
st r 0.05 48.4(41-64)(5.7) 330.7(11.8)
st r 0.125 42.2(39-46)(1.8) 189.0(5.4)
st r 0.25 44.6(42-49)(1.6) 117.4(2.6)
st r rand 41.5(36-45)(2.1) 144.6(3.7)
st n 0.25 53.5(42-69)(7.8) 200.4(60.6)
st n 0.50 55.2(43-79)(9.0) 176.0(54.6)
st n 0.75 60.3(44-98)(12.0) 186.7(43.5)
st n rand 45.4(42-65)(3.8) 163.7(33.2)
st c 0.05 39.8(34-46)(2.4) 277.6(10.3)
st c 0.125 38.5(35-46)(2.2) 219.6(5.1)
st c 0.25 38.7(36-43)(1.5) 185.9(5.5)
st c rand 39.1(36-43)(1.9) 195.7(5.1)

p2 m 257.5(212-293)(15.9) 69.3(2.5)
p2 r 0.05 232.6(148-309)(28.6) 305.7(14.4)
p2 r 0.125 223.3(144-308)(32.4) 146.7(12.6)
p2 r 0.25 259.0(227-281)(13.5) 69.8(2.7)
p2 r rand 231.8(188-255)(13.6) 96.8(5.9)
p2 n 0.25 204.8(136-281)(34.0) 131.3(17.8)
p2 n 0.50 203.3(144-235)(21.3) 104.7(6.3)
p2 n 0.75 185.9(138-230)(20.0) 98.6(8.2)
p2 n rand 186.1(136-226)(25.5) 103.2(7.7)
p2 c 0.05 159.3(136-222)(24.8) 227.2(6.8)
p2 c 0.125 149.1(136-187)(14.3) 197.5(7.0)
p2 c 0.25 146.4(136-178)(10.4) 179.7(6.1)
p2 c rand 146.5(136-176)(10.8) 188.4(5.7)

t2 m 118.0(104-136)(7.9) 132.4(3.5)
t2 r 0.05 98.6(42-131)(11.8) 217.5(8.6)
t2 r 0.125 42.0(42-43)(0.1) 147.6(4.2)
t2 r 0.25 42.0(42-42)(0.0) 141.9(3.4)
t2 r rand 42.0(42-42)(0.0) 152.6(3.3)
t2 n 0.25 131.4(109-169)(13.5) 180.4(26.1)
t2 n 0.50 108.2(93-131)(9.5) 137.4(17.6)
t2 n 0.75 100.5(48-126)(11.2) 110.5(6.5)
t2 n rand 102.6(64-127)(10.3) 126.0(5.6)
t2 c 0.05 84.4(42-107)(13.3) 285.7(22.9)
t2 c 0.125 65.5(42-98)(19.2) 318.2(79.8)
t2 c 0.25 49.6(42-92)(12.7) 375.3(71.6)
t2 c rand 57.6(42-96)(17.2) 347.8(80.5)

t3 m 71.8(61-82)(4.7) 106.5(2.5)
t3 r 0.05 71.5(59-104)(11.7) 305.0(10.0)
t3 r 0.125 64.3(60-92)(7.7) 159.1(5.9)
t3 r 0.25 63.8(43-71)(4.4) 132.0(6.7)
t3 r rand 63.1(58-68)(2.3) 134.7(4.4)
t3 n 0.25 82.9(61-121)(13.7) 174.6(27.4)
t3 n 0.50 69.5(55-99)(9.2) 139.0(26.9)
t3 n 0.75 64.2(55-80)(6.0) 115.0(22.8)
t3 n rand 62.8(55-85)(6.4) 122.5(6.2)
t3 c 0.05 56.1(55-75)(3.3) 306.6(11.0)
t3 c 0.125 55.6(43-67)(3.5) 266.0(10.3)
t3 c 0.25 52.3(39-59)(7.0) 208.3(19.3)
t3 c rand 54.6(39-61)(4.6) 235.5(10.1)

bio m 118.3(98-152)(12.2) 27.3(1.5)
bio r 0.05 100.3(86-165)(15.4) 96.4(5.1)
bio r 0.125 99.4(88-119)(7.4) 38.7(2.6)
bio r 0.25 124.9(94-160)(14.1) 27.4(1.8)
bio r rand 104.9(87-139)(9.9) 31.4(2.0)
bio n 0.25 107.4(86-149)(13.5) 91.9(43.4)
bio n 0.50 105.4(87-142)(10.2) 48.6(16.3)
bio n 0.75 105.5(92-126)(8.3) 39.3(3.8)
bio n rand 104.0(85-118)(7.2) 43.7(4.7)
bio c 0.05 96.2(85-143)(10.5) 116.6(7.8)
bio c 0.125 95.0(85-112)(7.4) 84.3(7.7)
bio c 0.25 100.0(86-117)(8.2) 55.8(3.0)
bio c rand 96.4(86-112)(6.0) 66.8(6.1)

Table 1. Comparison of various types of kick moves.
The \Kick" column indicates the kick move type:
multistart (m), random (r), net removal (n), and
clustering (c).

Prev. LSMC
Ex FMx50 Best Min(Avg) #descents CPU(sec)
p1 54 59 53(54.1) 222.2 107
p2 194 154 146(160.5) 200.2 535
st 40 38 34(37.7) 197.0 89
bio 98 88 83(89.4) 120.7 1645
t2 111 91 93(100.6) 208.3 101
t3 69 58 58(61.3) 204.3 61
t4 75 58 51(61.3) 218.5 239
t5 110 82 84(99.2) 193.3 430
t6 68 81 63(66.8) 171.6 234
ind2 649 254 248(313.8) 140.2 1641

Table 2. Comparison of bisection solution quality,
using unit module areas.

each run consists of 1000 passes of FM. LSMC outperforms
the previous best reported results in the literature by 6.4%
for unit area and averages 21.4% improvement over FMx50.
With actual module areas, LSMC is 1% better than previ-
ous results, and averages 36% improvement over FMx50.

Prev. LSMC
Ex FMx50 Best Min(Avg) #descents CPU(sec)
p1 47 47 47(48.1) 224.6 109
p2 212 146 136(145.2) 192.7 430
st 41 36(39.1) 195.7 173
bio 98 86(96.4) 66.8 785
t2 104 42 42(57.5) 347.8 212
t3 61 50 39(54.6) 235.5 178
t4 51 12 13(19.1) 292.8 168
t5 96 24 28(31.8) 229.6 418
t6 62 63 61(64.9) 204.9 155
ind2 508 222(300.4) 135.5 1691

Table 3. Comparison of bisection solution quality,
using actual module areas.

4. CONCLUSIONS AND FUTURE WORK

We have presented an experimental study of several lo-
cal perturbation strategies (kick moves) for the Large-
Step Markov Chain (LSMC) heuristic applied to VLSI
netlist bisection. Our experimental results show that the
LSMC heuristic consistently outperforms the standard ran-
dom multistart strategy, given the same computational re-
sources. The quality of our results compare favorably to
existing published results.
We are currently pursuing the following extensions to our

work:

� [9] showed that for the TSP, the e�cacy of the kick
moves depends on the underlying greedy descent en-
gine. This may be the case for netlist partitioning as
well. We are currently studying whether implementa-
tion details such as lookahead [11] or the gain bucket
tie-breaking scheme used [6] will signi�cantly a�ect the
choice of kick move.

� Problem reduction techniques can signi�cantly improve
the performance of iterative improvement partitioning
algorithms [7]. In such hierarchical approaches, it is
possible to use LSMC in place of the standard FM al-
gorithm to improve solution quality, at the cost of addi-
tional runtime. For example, in a 2-phase FM approach
[3], the calls to the FM algorithm can be replaced with
calls to LSMC. We are currently experimenting with
this approach; preliminary experiments show that this
is quite promising.

� The LSMC heuristic can be straightforwardly gener-
alized to k-way partitioning (each of the kick moves
described in Section 2 has an obvious k-way gener-
alization). In preliminary experiments, k-way LSMC

with clustering kick move is promising, yielding bet-
ter results than equivalent computational e�orts with
a multistart k-way FM.

� Finally, [9] has shown that more elaborate variants of
LSMC, e.g., using non-zero temperature schedules and
population-based optimization can be e�ective on the
TSP. Similar improvements may be found for netlist
partitioning.

.

ACKNOWLEDGMENTS

This work was supported in part by NSF CDA-9303148 and
NSF Young Investigator Award MIP-9257982.

REFERENCES
[1] C.J. Alpert and A.B. Kahng, \Geometric Embeddings for

Faster and Better Multi-Way Netlist Partitioning", in Proc.
ACM/IEEE Design Automation Conf., Dallas, June 1993,
pp. 743{748.

[2] E. B. Baum, \Iterated Descent: A Better Algorithm for Lo-
cal Search in Combinatorial Optimization Problems", Un-
published Manuscript, 1986.

[3] T. Bui, C. Heighham,C. Jones and T. Leighton, \Improving
the Performance of the Kernighan-Lin and Simulated An-
nealing Graph Bisection Algorithms," in Proc. ACM/IEEE
Design Automation Conf., 1989, pp. 775{778.

[4] S. Dutt and W. Deng, \A Probability-Based Approach to
VLSI Circuit Partitioning", to appear in Proc. ACM/IEEE
Design Automation Conf., June 1996.

[5] C.M Fiduccia and R.M. Mattheyses, \A Linear Time
Heuristic for Improving Network Partitions," in Proc.
ACM/IEEE Design Automation Conf., 1982, pp. 175{181.

[6] L. Hagen, D. J.-H. Huang and A.B. Kahng, \ On Implemen-
tation Choices for Iterative ImprovementPartitioningAlgo-
rithms", Proc. European Design Automation Conf., 1995,
pp. 144{149.

[7] L. Hagen and A.B. Kahng, \Combining Problem Reduc-
tion and Adaptive Multi-Start: a New Technique for Supe-
rior Iterative Partitioning", to appear in IEEE Trans. on
Computer-Aided Design.

[8] M.R. Hartoog, \Analysis of PlacementProcedures for VLSI
Standard Cell Layout", Proc. ACM Design Automation
Conference, 1986, pp. 314-319.

[9] I. Hong, A. B. Kahng and B.-R. Moon, \Improved Large-
Step Markov Chain Variants for the Symmetric TSP",
UCLA Computer Science Dept. Tech. Report UCLA-CSD-
950035, 1995.

[10] D.S. Johnson, \Local Optimization and the Traveling Sales-
man Problem", Proc. 17th Intl. Colloquium on Automata,
Languages and Programming, 1990, pp.446-460.

[11] B. Krishnamurthy, \An Improved Min-Cut Algorithm for
Partitioning VLSI Networks," IEEE Trans. on Computers
33(5) (1984), pp. 438{446.

[12] T. Lengauer, Combinatorial Algorithms for Integrated Cir-
cuit Layout, Wiley-Teubner, 1990.

[13] O.C. Martin, S.W. Otto and E.W. Felten, \Large-step
Markov chains for the traveling salesman problem", Com-
plex Systems, 5(3) (1991), pp. 299-326.

[14] O.C. Martin and S.W. Otto, \Combining Simulated An-
nealing with Local Search Heuristics", to appear in Annals
of Operations Research.

[15] T. Shibuya, I. Nitta and K. Kawamura, \SMINCUT: VLSI
Placement Tool Using Min-Cut", Fujitsu Sci. Tech. Jour-
nal, December 1995.

[16] Y.C. Wei and C.K. Cheng, \Towards E�cient Hierarchical
Designs by Ratio Cut Partitioning," in Proc. IEEE Intl.
Conf. on Computer-Aided Design, 1989, pp. 298{301.

