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ABSTRACT

We develop an analytical delay model based on �rst and second
moments to incorporate inductance e�ects into the delay esti-
mate for interconnection lines. Delay estimates using our ana-
lytical model are within 15% of SPICE-computed delay across
a wide range of interconnect parameter values. We also extend
our delay model for estimation of source-sink delays in arbitrary
interconnect trees. For the small tree topology considered, we
observe improvements of at least 18% in the accuracy of delay
estimates when compared to the Elmore model (which is inde-
pendent of inductance), even though our estimates are as easy
to compute as Elmore delay. The speedup of delay estimation
via our analytical model is several orders of magnitude when
compared to a simulation methodology such as SPICE.

1. INTRODUCTION

Accurate calculation of propagation delay in VLSI intercon-
nects is critical to the design of high speed systems. Current
techniques are based on either simulation or (closed-form) ana-
lytical formulas. Simulation tools such as SPICE give the most
accurate insight into arbitrary interconnect structures, but are
computationally expensive. Transient simulation of lossy in-
terconnects based on convolution techniques is presented in
[8, 12]. Faster techniques based on moment computations are
proposed in [11, 16, 17]. Since these methods are too expen-
sive to be used during iterative layout optimization, the Elmore
delay [2] approximation (which represents the �rst moment of
the transfer function) is now widely used in the performance-
driven design of clock distribution and Steiner global routing
topologies. However, Elmore delay cannot accurately estimate
the delay for RLC interconnect lines, i.e., the representation for
interconnects whose inductive impedance cannot be neglected
[4, 6]. Typically, the Elmore delay formula gives good estimates
if interconnect lines are RC or overdamped, but gives overesti-
mates for RLC or underdamped interconnects. This inaccuracy
can be harmful for current performance-driven routing methods
which try to optimize interconnect segment lengths and widths
(as well as drivers and bu�ers) based on estimated delays.
This paper gives a new and accurate analytical delay esti-

mate for distributed RLC interconnects which considers the
e�ect of inductance. Previous moment-based analysis of RLC
lines (e.g., [9, 8]) can derive a delay estimate only after simu-
lating the response, rather than from an analytical formula. To
validate our analysis and delay formula, we model VLSI inter-
connect lines having various combinations of source and load
parameters, and obtain delay estimates from SPICE, Elmore
delay and the proposed analytical delay model. The delay es-
timate using SPICE is extracted from a computed response at
the speci�ed node, whereas the other two models are closed-
form expressions. Over our range of test cases, Elmore delay
estimates can be quite far from the SPICE-computed delays,
while our analytical delay model estimates are within 15% of
SPICE delays. We also extend our delay model to estimate
source-sink delays in arbitrary interconnect trees. For the small
tree topology considered, our delay estimates are again within
18% of SPICE-computed delays, while Elmore delay estimates
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vary by as much as 35% from SPICE-computed delays. Since
our analytical model has the same time complexity as the El-
more model, we believe that it can be useful in present-day
performance-driven routing methodologies.

2. PREVIOUS ANALYTICAL DELAY MODELS

The transfer function of an RLC interconnect line with source
and load impedance (Figure 1) can be obtained using the ABCD
parameters [1] as

H(s) =
1

(1 + ZS
ZT

) cosh(�h) + (ZS
Z0

+ Z0
ZT

) sinh(�h)
(1)

where � =
p
(r + sl)sc is the propagation constant and Z0 =p

R+sL
sC

is the characteristic impedance; r = R
h
; l = L

h
; c = C

h
are resistance, inductance, and capacitance per unit length and
h is the length of the line. To compute the RLC line response
from the transfer function, the method of Pad�e approximation
has been used by, e.g., [9, 10]. The output transfer function
is expanded into a Maclaurin series of s around s = 0, and
the series is truncated to desired order. In general, analytical
computation of the exact voltage response is very tedious and
is usually in the form of an in�nite series.
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Figure 1. 2-port model of a distributed RLC line with
source impedance ZS and load impedance ZT .

E�cient delay estimates for RC lines are typically derived by
considering a single interconnect line with resistive source and
capacitive load impedances; delay formulas for an interconnect
tree entail recursive application of the formula for a single line.
The analytical Elmore delay [2] estimate, Sakurai's heuristic
delay formula [14, 15] and the single pole delay estimates of [3]
have been widely used.

� Elmore delay is de�ned to be the �rst moment of the sys-
tem impulse response, i.e., the coe�cient of s or the �rst
moment in the system transfer function H(s). Applying
this de�nition to H(s) in Equation (1) and considering a
source resistance RS and a capacitive load CT , the Elmore
delay for a distributed RC or RLC line model is

TED = RS(C + CT ) +R(
C

2
+ CT ) (2)

By considering only one pole in the transfer function, i.e,
approximating the denominator polynomial to only �rst
moment, the single-pole response can be obtained as in
[3]. The single pole of the transfer function is equal to
the inverse of the Elmore delay TED . Hence, the delay
at arbitrary thresholds of the single-pole response can be
directly related to Elmore delay (Elmore delay corresponds
to the 63:2% threshold delay of the single-pole response).



For example, delay at 90% threshold voltage is 2:3 � TED ,
i.e.,

T0:9 = 1:15RC + 2:3 (RS(C +CT ) + RCT ) (3)

Below, we use this expression to compute 90% threshold
delay according to the Elmore model.

� Sakurai [14] also gives response and delay calculations for
the distributed RC line. He calculates the time-domain
response from the transfer function using the Heaviside
expansion over poles of the transfer function. Then, he ap-
proximates the response using a single pole and observes
the variation of delay with respect to source and load pa-
rameters; a 90% threshold delay estimate is heuristically
obtained as T0:9(h) = 1:02RC+2:3 (RS(C + CT ) +RCT ),
quite similar to the Elmore delay equation (3).

Since these single pole delay estimates cannot accurately es-
timate delay for RLC interconnects, Zhou et al. [17] proposed
a two-pole approximation for the transfer function to compute
the response at the load for RLC interconnection trees. How-
ever, this technique does not provide any analytical expression
for delay and is too time-consuming to be used in iterative lay-
out optimization. Recently, [7] proposed to improve the Elmore
delay model by using higher-order moments; this work gives a
heuristic delay model equal to the sum of the �rst moment (M1)

and its standard deviation (
p
jM2

1 �M2j).1

3. A NEW ANALYTICAL DELAY MODEL

We now develop a simple closed-form delay estimate, based on
�rst and second moments, which to our knowledge is the �rst
analytical delay model that handles arbitrary threshold volt-
ages and inductance e�ects for a distributed line. We model an
arbitrary interconnect line as follows: (i) the source is modeled
as a resistive and inductive impedance (ZS = RS + sLs), and
(ii) the load at the end of the interconnect line is modeled as
a capacitive impedance (ZT = 1

sCT
). Thus, the transfer func-

tion for the interconnect line of Figure 1 is given by Equation
(1). We truncate this transfer function by expanding the hy-
perbolic functions around s = 0; expansion around s = 1 is
not necessary since we consider only the �rst few coe�cients
of the transfer function. I.e., expanding cosh and sinh as in�-
nite series and collecting terms up to the coe�cient of s2 in the
denominator, we obtain the truncated transfer function

H(s) � 1

1 + sb1 + s2b2

with coe�cients b1 = RSC + RICT + RC
2

+ RCT and b2 =
RSRC

2

6 + RSRCCT
2 + (RC)2

24 + R2CCT
6 +LSC+LSCT + LC

2 +LCT .
Note that the �rst and second moments of the transfer function
can be obtained from the coe�cients b1 and b2, i.e., M1 =
b1 and M2 = b21 � b2. (We use the coe�cient notation b1; b2
and the moment notation M1;M2 interchangeably according to
the simplicity of the expression. ) Depending on the sign of
b21 � 4b2, the poles of the transfer function can be either real
or complex. We separately derive our delay model from the
two-pole response for each of these cases.

Real Poles:
The two-pole methodology [6, 17] yields the following re-

sponse for the case of real poles:

v(t) = V0(1� s2
s2 � s1

es1t +
s1

s2 � s1
es2t)

1In the early drafts of our paper [6] we also considered exactly
the same model; however, we found that it is not as accurate as our
present model for various source and load parameters (see [6] for
details).

RS LS CT SPICE Elmore New Model

 pH pF ps ps ps

50 2.46 0.176 22.33 22.93 22.21
100 2.46 0.176 45.30 45.20 45.70
500 2.46 0.176 224.50 223.50 228.95
1000 2.46 0.176 446.20 446.4 457.46
25 2.46 1.76 107.10 108.40 108.65
50 2.46 1.76 210.10 210.80 214.74
100 2.46 1.76 415.20 415.40 425.10
500 2.46 1.76 2052.60 2053.0 2103.68
1000 2.46 1.76 4099.50 4100.0 4101.30

Table 1. 90% threshold delay estimates for combina-
tions of source and load parameters for which the poles
of the response are real (i.e., overdamped response).
The interconnect line parameters are r = 0:015 
=�m,
l = 0:246 pH=�m and c = 0:176 fF=�m and the length of
the interconnect is 100 �m.

where s1;2 = 2

�M1�
p

4M2�3M2

1

. The condition for the poles to

be real is (4M2 � 3M2
1 ) � 0. Since s2 � s1 = �

p
4M2�3M2

1

M2

1
�M2

is

negative, the coe�cients s2
s2�s1

and s1
s2�s1

are positive. Also,

since the magnitude js2j is greater than js1j, the second term
in the response decreases rapidly compared to the �rst term.
Hence, the two-pole response can be lower-bounded as

v(t) � V0(1� s2
s2 � s1

es1t)

Since the voltage is lower-bounded, the delay obtained is an
upper bound on the actual delay. The delay �r (the subscript
indicates the case of real poles) at threshold voltage vth is

�r =
Kr

js1j = Kr

M1 +
p
4M2 � 3M2

1

2

where Kr is a function of the coe�cients b1 and b2, i.e.,
Kr = ln( 1

2(1�vth)
[1 + b1p

b2
1
�4b2

]). For the wide range of source,

load and interconnect parameter values considered in our simu-
lations (see Table 1), we �nd that Kr for vth = 0:90 is actually
almost a constant, i.e., Kr = 2:36 gives a very strong �t be-
tween SPICE delay values2 and 1

js1 j
[6]. Thus, we use

�r = 2:36 � (M1 +
p
4M2 � 3M2

1 )

2
; (4)

the resulting delay estimates are compared against those of var-
ious other methods in Table 1. Our analytical delay model gives
estimates close to those obtained from SPICE, but Elmore delay
also gives good estimates for this case of overdamped response.

Complex Poles
The condition for complex poles is (4M2 � 3M2

1 ) = (b21 �
4b2) � 0. The time-domain response for complex poles [5] is

v(t) = V0(1�
p
�2 + �2

�
e��t � sin(�t+ �))

where � = M1

2(M2

1
�M2)

; � =
p

3M2

1
�4M2

2(M2

1
�M2)

and � = tan�1( �
�
).

Using the above equation and threshold voltage vth, we get

e��t � sin(� � t+ �) =
1 � vthp
1 + (�

�
)2

: (5)

2SPICE simulation results are obtained using SPICE3 and the
built-in LTRA (lossy transmission line) model, which is based on
convolution techniques [12].



RS LS CT SPICE Elmore New Model

 pH pF ps ps ps

10 0.0246 0.0176 1.22 0.90 1.30
15 0.0246 0.0176 1.33 1.31 1.38
20 0.0246 0.0176 1.47 1.71 1.51
25 0.0246 0.0176 1.60 2.12 1.64
10 0.0246 0.176 4.50 5.12 4.25
15 0.0246 0.176 5.85 7.32 5.31
20 0.0246 0.176 7.90 9.55 8.60
10 2.46 0.0176 1.31 0.90 1.40
15 2.46 0.0176 1.40 1.31 1.49
20 2.46 0.0176 1.55 1.71 1.59
25 2.46 0.0176 1.63 2.12 1.69
10 2.46 0.176 4.65 5.10 4.30
15 2.46 0.176 5.85 7.33 5.30
20 2.46 0.176 7.98 9.55 8.70
10 24.6 0.0176 1.80 0.90 1.96
15 24.6 0.0176 1.89 1.31 2.06
20 24.6 0.0176 2.00 1.71 2.15
25 24.6 0.0176 2.19 2.11 2.21
10 24.6 0.176 5.65 5.10 5.44
15 24.6 0.176 6.50 7.33 5.95
20 24.6 0.176 7.66 9.55 6.97
25 24.6 0.176 9.47 11.78 9.26

Table 2. 90% threshold delay estimates for combina-
tions of source and load parameters for which the poles
of the response are complex (i.e., underdamped re-
sponse). The interconnect line parameters are r = 0:015

=�m, l = 0:246 pH=�m and c = 0:176 fF=�m and the
length of the interconnect is 100 �m.

The delay at a given threshold voltage can be computed by
solving for time in Equation (5) recursively. One way to solve
the recursive Equation (5) is to approximate the time variable
in the exponential term by Elmore delay, i.e., substitute TED
for time t. Expanding sine as a Taylor series and considering
only the �rst term yields

�c =
Kc

�
= Kc � 2(M2

1 �M2)p
3M2

1 � 4M2

where Kc =
(1�vth)e

��TEDp
1+(�

�
)2

� �. Even though Kc is a function

of b1 and b2, for a wide range of interconnect, source and load
parameters it too is almost a constant, i.e., Kc = 1:66 gives a
good �t between SPICE delay values and 1

�
[6]. In other words,

our 90% threshold delay estimate for complex poles is

�c = 1:66 � 2(M2
1 �M2p

3M2
1 � 4M2

: (6)

Table 2 shows delay values for various combinations of source,
load and interconnect parameters assuming this value of Kc.
The delay estimates using our analytical model are within 15%
of SPICE-computed delay estimates, while Elmore delay esti-
mates vary by as much as 33% from SPICE-computed delays.
Hence, for the case of complex poles (i.e., underdamped re-
sponse), the Elmore model is no longer acceptably accurate.
As detailed in [6], we have also considered the special case

in which poles are equal, i.e., a double pole con�guration.
The delay at 90% threshold for this case can be obtained as
�0:9 = Kd

b1
2 , which gives a recursive equation for Kd, i.e.,

Kd = ln(10(1 +Kd)) from which Kd � 3:9. Thus, in the case
of a double pole we estimate the 90% threshold delay as

�0:9 = Kd � b1
2
= 1:95b1 (7)

which is independent of the inductance value and di�erent from
the Elmore delay expression.
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Figure 2. A simple interconnection tree consisting of
distributed RLC lines.

4. INTERCONNECTION TREES

We conclude with an extension of our analytical model to esti-
mate delays in arbitrary interconnect trees. An RLC network
is called an RLC tree if it does not contain a closed path of re-
sistors and inductors, i.e., all resistors and inductors are oat-
ing with respect to ground and all capacitors are connected
to ground. Consider an RLC interconnect tree with root (or
source) S and set of sinks (or leafs) L = fL1; L2; : : : ; Lng. The
unique path from root S to sink node i is denoted by p(i) and
is referred to as the main path. The edges/nodes not on the
main path are referred as the o�-path edges/nodes. We model
each edge on the main path of the tree using a lumped RLC
segment, e.g., an L, T, or � model. We replace the o�-path
subtree rooted at node j with the total subtree capacitance at
node j. (Figure 3 shows an example of a main path where
each branch in the tree is replaced by RLC segments, and the
o�-path subtrees are replaced by their respective subtree ca-
pacitances.) At any node j, the total capacitance is given by

C 0
j
= Cj if no o�-path subtree at node j
= Cj +CT (j) if node K has o�-path subtree T (j)

where Cj is the capacitance at the node and CT (j) is the o�-

path subtree capacitance at node j. The kth coe�cient bk of
the transfer function for the general RLC circuit of Figure 3
can be expressed using the following recursive equation [5]:

bMk = RM�1

M�1X

j=1

C 0
j � bjk�1 + LM�1

M�1X

j=1

C 0
j � bjk�2 + bM�1

k (8)

where bMK refers to the coe�cient of sk in the transfer function
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Figure 3. Representation of the main path in the
tree, where each distributed line is modeled using
RLC segments.

between node M and node 1. Note that bj0 = 1, bj�1 = 0 for all

j and b1k = 0 for all k. Using the above recursive equation the
expressions for the �rst and second coe�cients of the transfer
function at the root can be derived as

bN+1
1 = RN

NX

j=1

C 0
j + bN1 =

NX

i=1

Ri

iX

j=1

C 0
j



bN+1
2 =

NX

j=2

C 0
j

NX

l=j

Rl

j�1X

i=1

C 0
j

j�1X

d=i

Rd +

NX

j=1

C 0
j

NX

l=j

Ll (9)

For any given source and sink pair the coe�cients b1 and b2
can be computed in linear time by traversing the main path
and using the above recursive equation. Using the analytical
delay model developed in the previous section, we can obtain
an analytical delay estimate for RLC interconnect trees using
the �rst and second coe�cients. Thus, the 90% threshold delay
at a given sink i, depending on the value of (4M2 � 3M2

1 ), is

TND(i)

= Kr � (M1+
p

4M2�3M2

1
)

2 for Real poles

= Kc � 2(M2

1
�M2)p

3M2

1
�4M2

for Complex poles

= Kd � M1

2 for Double poles

(10)

where the �rst and second moments are expressed as M1 = b1
and M2 = b21 � b2. The coe�cients of the transfer function are
obtained from Equation (9). By contrast, 90% threshold delay
according to the Elmore model is simply TED(i) = 2:3 �M1.
We evaluate our analytical model by considering the simple

interconnection tree shown in Figure 2. We consider the sink
node N4 for delay estimation. Each edge on the main path
between the root and node N4 is replaced by a two-L seg-
ment model.3 We then apply the above recursive coe�cient
computation for the resultant RLC circuit of the main path.
The 90% threshold delays according to both the Elmore model
and our new analytical model (Equation (10)) are then com-
puted. We also compute the delay at the given sink node using
SPICE3e, where each edge of the tree is modeled using the
LTRA (Lossy Transmission Line) model (with SPICE, we �rst
compute the response at the sink node and then �nd the delay
for 90% threshold voltage). Table 3 compares delay estimates
over a range of interconnect parameters, driver resistance val-
ues, and sink load capacitance values: Elmore delay varies by
as much as 35% from the SPICE-computed delay, but our new
model is within 18% of the SPICE delay for all examples. Note
that our delay estimates also require three orders of magnitude
less computation than SPICE, since they have the same time
complexity as the Elmore delay estimate.

5. CONCLUSIONS

Fast delay estimation methods, as opposed to simulation
techniques, are needed for incremental performance-driven lay-
out synthesis. Elmore delay based estimation methods, al-
though e�cient, cannot accurately estimate the delay for RLC
interconnect lines. We have obtained an analytical delay model,
based on �rst and second moments of RLC interconnection
lines, which considers the e�ect of inductance. The resulting
delay estimates are signi�cantly more accurate than Elmore
delay estimates We also extend our delay model to estimate
source-sink delays in arbitrary interconnect trees. For the small
tree topology considered, we observe improvement of at least
18% in the accuracy of our delay estimates, compared to the
Elmore model. Since our model has the same time complexity
as the Elmore model, we believe it can be valuable in modern
iterative layout synthesis methodologies. Ongoing work applies
our analytical model to delay-driven routing tree construction,
zero-skew routing, and delay estimation in nets spanning mul-
tiple routing layers (i.e., with modeling of vias).
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