On Implementation Choices for Iterative Improvement

Partitioning Algorithms*

Lars W. HagenT, Dennis J.-H. Huang and Andrew B. Kahng

UCLA Department of Computer Science, Los Angeles, CA 90024-1596
T Cadence Design Systems, Inc., San Jose, CA 95134

Abstract

Tterative improvement partitioning algorithms such
as those due to Fiduccia and Mattheyses (FM) [2] and
Krishnamurthy [5] exploit an efficient gain buckel data
structure in selecting modules that are moved from
one partition to the other. In this paper, we investi-
gate three gain bucket implementations and their effect
on the performance of the FM partitioning algorithm.
Surprisingly, selection from gain buckets maintained
as Last-In-First-Out (LIFO) stacks leads to signifi-
cantly better results than selection from gain buckets
maintained randomly (as in [5] [7]) or as First-In-
First-Out (FIFO) queues. Our experiments show that
LIFO buckets result in a 35% improvement over ran-
dom buckets and a {2% improvement over FIFO buck-
ets. Furthermore, eliminating randomization from the
bucket selection is of greater benefit to FM perfor-
mance than adding the Krishnamurthy gain vector. By
combining insights from the LIFO gain buckets with
those of Krishnamurthy’s original work, a new higher-
level gain formulation is proposed. This alternative
formulation results in a further 16% reduction in the
average cut cost when compared directly to the Krish-
namurthy formulation for higher-level gains, assuming
LIFO organization for the gain buckets.

1 Preliminaries

This paper discusses the problem of bipartitioning
a circuit netlist hypergraph G = (V| E), where the
set of modules V is divided into disjoint U and W to
minimize the number of signal nets from E that cross
the cut. In production software for circuit partition-
ing, «terative improvement is a nearly universal ap-
proach, either as a postprocessing refinement to other
methods or as a method in itself. Iterative improve-
ment is based on local perturbation of the current so-
lution and can be either greedy (the Kernighan-Lin
method [3] [9] and its algorithmic speedups by Fiduc-
cia and Mattheyses [2], Krishnamurthy [5] and Dutt
[1]) or hill-climbing (the simulated annealing approach
of Kirkpatrick et al. [4], Sechen [10] and others). Vir-
tually all implementations will also use multiple ran-
dom starting configurations (“multi-start”) [6] [11] in

*This research was supported in part by NSF grant MIP-
9257982 and matching funds from High-Level Design Systems.

order to yield predictable performance (“stability”).

This paper will focus on iterative improvement al-
gorithms which are based on the greedy strategy: start
with a current feasible solution and iteratively perturb
it into another feasible solution, adopting the pertur-
bation as the next solution only if it improves the cost
function. The type of perturbation used determines
a topology over the set of feasible solutions, known
as a neighborhood structure. For the cost function
to be “smooth” over the neighborhood structure, the
perturbation (also known as a neighborhood operator)
should be small and “local”. Usual neighborhood op-
erators for graph/circuit partitioning involve swapping
a pair of modules or shifting a single module across the
cut. Early greedy improvement methods apply such
operators, and quickly find local minima which usually
correspond to poor solutions.

In 1970, Kernighan and Lin [3] introduced what
is often described as the first “good” graph partition-
ing heuristic. The Kernighan-Lin (KL) algorithm uses
pair-swapping, and proceeds in passes. During each
pass, every module is moved exactly once. At the
beginning of the pass, all modules are “unlocked” and
the gain (i.e., the decrease in cut nets that would result
from moving a given module to the other partition) is
calculated for each of the n = |V| modules. Then,
the pair of unlocked modules in U and W with high-
est combined gain is found by searching through the
O(n?) possible pairs. After the selected modules are
swapped, they become “locked” and the algorithm up-
dates both the cost of the new partition and the gains
of the remaining unlocked modules. This process is it-
erated until all the modules are locked, at which point
the lowest-cost partition encountered over the entire
pass is restored and returned. Another pass is then
executed using the result from the previous pass as its
starting point; the algorithm terminates when a pass
fails to improve the cost function. The advantage of
the KL algorithm over greedy pair-swapping is that
it is in some sense able to move out of local minima.
This occurs because the pair of modules with highest
combined gain is always swapped, even if this com-
bined gain is negative. However, if we consider all the

solutions that are reachable within a single pass of the
algorithm to be “neighbors” of the starting solution,
then the KL algorithm is still greedy.

The main disadvantages of the KL algorithm, as
presented in [3], were (i) that it only works on graphs
and (ii) that it is computationally expensive. Al-
though the number of passes in most cases is relatively
low, the KL algorithm requires evaluation of O(n?)
swaps before every move, resulting in a complexity
per pass of O(n?logn). Schweikert and Kernighan [9]
extended KL to hypergraphs, but did not improve the
time complexity of the algorithm.!

The FM Algorithm

In 1982, Fiduccia and Mattheyses [2] presented a
KL-inspired algorithm which reduced the time per
pass to linear in the size of the netlist (i.e., O(p)
where p is the total number of pins). The Fiduccia-
Mattheyses (FM) algorithm is very similar to KL: (i)
FM also performs passes within which each module is
moved exactly once; (ii) FM also records all solutions
encountered during the pass and returns the best one;
and (iii) FM also continues to perform passes until a
pass fails to improve the cost function.

The primary difference between the KL and FM
algorithms lies in the neighborhood operator. Instead
of swapping a pair of modules, FM moves a single
module at a time. In other words, the gain lists are
searched for a single module which has highest gain.
This subtle change allows for a significant improve-
ment in runtime with little loss in solution quality.
Fiduccia and Mattheyses amortize the cost of updat-
ing the module gains, such that the total cost of find-
ing the highest-gain module is O(p) per pass. The
enabling data structure is an array of “gain buckets”
which groups the modules of a given partition accord-
ing to their gains.

Krishnamurthy’s Extension to FM

Over the past decade, FM has become perhaps the
single most widely used and cited partitioning algo-
rithm in the VLSI CAD area. Many works have in-
vestigated possible improvements and extensions. One
commonly-cited extension is that of Krishnamurthy
[5], who showed how one could efficiently introduce
“look-ahead” into the FM algorithm to improve tie-
breaking when the highest-gain bucket contains more
than one module. Specifically, Krishnamurthy extends
the gain value of a module into a gain wector which

1 The reduction from O(n®) to O(n?logn) is achieved by
maintaining a sorted list of costs. Recently, Dutt [1] presented
a speedup of the original KL algorithm, called QuickCut, which
uses an improved data structure such that only O (d2) node pairs
need to be examined to find the pair with maximum gain (d is
the maximum node degree). As a result, QuickCut has time
complexity of only O(max(ed, elog(n))), where € is the number
of edges in the graph. QuickCut currently works only on graphs,
but an extension to hypergraphs seems possible.

gives a sequence of potential gain values correspond-
ing to various numbers of moves into the future.

Krishnamurthy defines the binding number Gy (s)
of signal net s with respect to partition U to be the
number of unlocked modules of s in partition U, un-
less there 1s a locked module of s in partition U, in
which case Sy (s) = oo. Intuitively, the binding num-
ber By (s) is a measure of how difficult it is to move
net s out of partition . The binding number B (s) is
similarly defined. The k-th level gain 4 (v;) of module
v; € U is then given by?

Ye(vi) =
[{s € Elv; € 5,8u(s) =k, Bw(s) >0} —
{s € Elv; € s,6u(s) >0, fw(s) =k — 1}

Fach element 73 (v;) in the gain vector corresponds to
the k-th level gain of module v;. Note that the first-
level gain v;(v;) corresponds to the gain used in the
FM algorithm.

The intuition behind the higher-level gains vy, with
k > 1, is that the positive term counts the number of
nets which will have binding number & — 1 after the
move, while the negative term counts the number of
nets with current binding number & — 1 which will
have binding number equal to co after the move. In
other words, the positive term counts nets with bind-
ing number k£ — 1 that are “created” by the move;
the negative term counts nets with binding number
k — 1 that are “destroyed” by the move. (The created
nets lie on the side that the module is moving “from”,
and the destroyed nets lie on the side that the mod-
ule is moving “to”.) Krishnamurthy’s method uses
lexicographic ordering of the vectors (y1, v2, ¥s, - ..)
to break ties when an FM gain bucket contains more
than one module. Krishnamurthy compared his FM
plus higher-level gain (FM+HL) algorithm with the
original FM algorithm and found that adding second-
and third-level gains improved the average solution
quality, with an added computational expense of only
O(kp), where k is the number of values maintained in
(i.e., the size of) the gain vector. This was confirmed
by Sanchis [7], who extended FM+HL to multi-way
partitioning.

2 Tie-Breaking in the FM Algorithm

During a typical pass in the FM algorithm, there
are usually many ties (i.e., the highest-gain bucket will
contain more than one module). Figure 1 shows the
number of modules in the highest-gain bucket at each
move throughout the first pass of FM for the Primary1
test case (we plot the average and maximum over 1000
runs). This section investigates how the method used

2The notation used for the Krishnamurthy formulae are
adapted from [5]. Note that in order to handle 1-pin nets cor-
rectly, the term By (s) > 0 should to be changed to By (s) > 1.
However, 1-pin nets can also be eliminated while reading in the
netlist, obviating the need for such a change.

to choose a cell (i.e., module) from the highest-gain
bucket, and the method used to add updated cells into
gain buckets, will together affect the performance of
the FM algorithm.

100 | ‘ -
90 *
80 =

| maximum
70

60 [7
50 [B

40 [B
30 — —

20 - average

10+ -
0| \ \ \ [

0 200 400 600 800

Figure 1: Number of modules in the highest-gain
bucket during the first pass of FM for test case
Primaryl. The average and maximum numbers
were generated from 1000 separate FM runs.

2.1 Tie-Breaking Schemes

In the original paper describing the FM algorithm
[2], the gain buckets consist of doubly-linked lists. To
identify the cell to move, Fiduccia and Mattheyses
consider the first cell in the highest-gain bucket of
each partition. Figure 2 reproduces the “MAXGAIN”
bucket used in the algorithm description of [2]; note
that this bucket has only a pointer to the head of the
list. Thus, it is reasonable to infer that when selecting
a cell to move from the highest-gain bucket, Fiduc-
cia and Mattheyses selected the cell at the head of
the list. Such an inference is supported by the fact
that this operation must be performed in O(1) time
in order for the complexity of the algorithm to remain
at O(p). Choosing the first cell in the list satisfies
this complexity requirement. With respect to insert-
ing an updated cell into a new bucket, [2] removes a
cell from its current list and moves it to the head of its
new bucket list. Considering the removal and insertion
procedures together, we see that the gain buckets func-
tion as LIFO stacks (remove at head, insert at head),
but could just as easily function as FIFO queues (re-
move at head, insert at tail) if a pointer to the tail of
the list is incorporated into the data structure. Fiduc-
cia and Mattheyses do not discuss the implications of
the choice of bucket organization on their algorithm’s
performance. However, as we shall show, this choice
has a significant effect.

Interestingly, neither Krishnamurthy nor Sanchis
points out any change in the tie-breaking heuristic
used to select among cells with identical higher-level
gains. The natural inference is that their works also

+pax
 a o R
glxl\l_b Ll | celig]| «L Lo | cell# ‘/,\/ :
- pmax
CELL ./

Figure 2: The gain bucket list structure as shown
in [2].

use a LIFO mechanism, following the original FM al-
gorithm description. However, in the code distributed
by Sanchis [8], it is clear that the highest-gain module
is selected randomly in the event of ties. Sanchis in
[7] never discusses the consequences of this change,
but writes: “We also randomized arbitrary choices
in the algorithm and performed a number of runs on
each network partition at each different level” (page
68, right column, first paragraph). A similar state-
ment is made by Krishnamurthy [5] (page 442, left
column, first paragraph): “We observe that a single
run would not provide sufficient evidence to compare
the results; for each of these algorithms, being heuris-
tic in nature involves making certain arbitrary choices,
usually in the form of selecting any one element from
a set containing more than one element. Thus, we
randomized such arbitrary choices and performed a
number of runs.” That possibly both of these works
introduce random tie-breaking in comparing FM+HL
to the original FM is not trivial. Randomization not
only increases the time complexity of the algorithm
but, more critically, places into question the conclu-
sions drawn from the experimental results.

We have examined how the “obvious” tie-breaking
mechanism proposed by Fiduccia and Mattheyses [2]
compares with alternative schemes. In particular, we
have compared LIFO selection with random selection
(used by Sanchis [7]) and FIFO selection (an alter-
native organization with complexity similar to LIFO).
Our testbed is the code distributed by Sanchis [8] with
appropriate modifications made for handling LIFO
and FIFO selection.

In all of our experiments, we assume each node has
unit area, and we constrain the partition sizes |U| and
|W| to differ by at most 1.

2.2 Experimental Results

The third column of Table 1 clearly shows the ef-
fects of the selection methodology.® Surprisingly, the
FIFO scheme is no better than random selection. The
LIFO scheme gives considerable improvement over
random selection. Omne possible explanation may be
that organizing the buckets such that “most recently
visited” modules are placed near the beginnings of the
gain buckets implicitly causes neighborhoods (or per-
haps clusters) of modules to be moved together. Fur-
thermore, since there are two gain structures, one for
each partition, it is possible for each partition to “pull”
on different clusters while maintaining the balance.
If these clusters are non-interfering, i.e., widely sepa-
rated, more of the early moves will result in positive
gain, enabling the current pass to reach a lower-cost
point in the solution space. In other words, within
each pass the solution cost curve will have a relatively
sharper decline, and stay at lower costs as it returns
back to the initial cost.*

Ckt [# Krishnamurthy levels |
(#nodes) | Method [k=T [k=2 [k=3]Fk=4 |
Prim1l LIFO 83 80 79 80
(833) RAND 108 94 86 84

FIFO 125 97 91 88

struct LIFO 68 66 65 66
(1952) RAND 185 160 163 154
FIFO 202 194 193 181

Prim?2 LIFO 296 281 279 275
(3014) RAND 441 352 314 301
FIFO 507 385 341 315

biomed LIFO 172 181 199 220
(6514) RAND 450 382 374 371
FIFO 503 401 386 381

ind2 LIFO 757 744 775 760
(12637) RAND 1671 1299 1108 977
FIFO 1766 1342 1188 1021

ind3 LIFO 755 799 797 815
(15433) RAND 2382 1164 1012 952
FIFO 3285 1452 1151 1154

avq.sml LIFO 835 911 950 964
(21918) RAND 1507 1403 1384 1388
FIFO 1842 1579 1499 1489

avq.lrg LIFO 1140 971 1012 1030
(25178) RAND 1837 1582 1527 1510
FIFO 2193 1867 1768 1742

% Impr. LIFO 48.3 36.8 30.3 26.4
vs. RAND 0 0 0 0
RAND FIFO -17.1 -12.2 -10.1 -9.7

Table 1: Average cutsize results for 100 runs of
FM (column 3) and Krishnamurthy higher level
gains (columns 4-6) using LIFO (Last-In-First-
Out), random and FIFO (First-In-First-Out) or-
ganization schemes for the gain buckets.

3For space reasons, all tables give average cutsize results over
100 runs. Minimum cutsize results are qualitatively similar and
are separately available.

4Note that for bipartitioning, the cost at the end of the pass
is exactly the same as the cost at the beginning of the pass,
meaning that improvement results from an initial decrease in
cost during the pass, followed by a corresponding increase in
cost later in the pass.

Columns 4-6 of Table 1 show the effects of LIFO,
random and FIFO selection on higher-level gains as
defined by Krishnamurthy [5]. Introducing second-
level (k = 2) gain and in some cases third-level (k = 3)
gain seems to improve the solution quality for random
and FIFO selection. For LIFO selection, we note the
following:

e For constant k, the LIFO results are consistently
better than the random or FIFO results.

e For each of the test cases, the £ = 1 (FM) results
using LIFO selection are significantly better than
the results for any k& using random or FIFO selec-
tion. In other words, the gain bucket organization
has a greater effect on solution quality than the
number of Krishnamurthy gain elements consid-
ered.

e For some large test cases (biomed, industry2 and
avq.small), the k = 1 (FM) results are better than
the k& > 1 results under the LIFO scheme. Re-
call that the Krishnamurthy gain formula favors
a module in a net that is locked to the side the
module is moving to, and disfavors a module in an
unlocked net having few modules on the side the
module is moving to. In some sense, the LIFO
organization has a similar function but with no
penalty for moving a module that belongs to un-
locked nets. That Krishnamurthy gains occasion-
ally perform worse than LIFO FM suggests that
following previously moved modules (i.e., moving
to the side to which a net is locked) is more impor-
tant than “staying away from the minority” (i.e.,
not moving to the side having very few modules
of the incident nets).

3 A Krishnamurthy Variant

The above observation — that it may be more im-
portant to move modules which are incident to locked
nets — suggests an alternative multi-level gain formu-
lation. If a net is cut, and only one partition contains
locked modules incident to this net, we will give higher
priority to the modules in the partition with no locked
modules incident to the net. We can implement this
by increasing the gain elements of a module each time
it is incident to a net which becomes locked to the
opposite partition. For instance, assume module a is
being evaluated for a move from partition U to parti-
tion W. If a net which contains module a has at least
one module locked in partition W, and only free mod-
ules in partition U, we will increase all k-th level gains
by 1, where k£ > 2. We avoid changing the first-level
gain since this should always reflect the “actual” gain
resulting from a move of this module. However, we
choose to add 1 to all the other gain levels in order
to make sure that the increased priority will have an
effect on all tie-breaking instances.

Our alternative gain formulation can be expressed
as follows for k > 2:

ve(vi) =
[{s € Elv; € 5,8u(s) =k, Bw(s) >0} —
[{s € Elvi € 5,00(s) >0, Bw(s) =k — 1} +
{s € Elv; € 5,0 < Br(s) < o0, fw(s) = oo}

The first two terms are identical to the formulation
used by Krishnamurthy [5]. The third term is new and
represents the “attraction” to locked modules. Figure
3 compares the Krishnamurthy gain vector with the
gain vector resulting from our new formulation. In the
beginning, an uncut net contains modules @, b, ¢, d and
e and both gain vectors for module e are (—1,0,0,0,1).
After module a is moved to the other partition and be-
comes locked, the gain vector of module e is changed

0 (0,0,0,1,0) in Krishnamurthy’s formulation, but
is changed to (0,1,1,2,1) in our formulation. When
we reach the case where module e is the only remain-
ing module (case 5), the gain vectors are (1,0,0,0,0)
and (1,1,1,1, 1) for Krishnamurthy’s and our formula-
tions, respectively. Note that in this last case, the Kr-
ishnamurthy gain vector will not distinguish between
module e and some other module & having gain vec-
tor (1,0,0,0,0), where none of the nets incident to »
have locked modules. By contrast, our gain formu-
lation distinguishes between modules e and x since
module z will have gain vector (1,0,0,0,0) in our for-
mulation. This is arguably an important difference: in
most cases one would prefer to “uncut” the locked net
incident to module e before committing the unlocked
net incident to module z. Our experimental results
also seem to support this view.

Experimental Results

We tested our new gain formulation using the same
LIFO, random and FIFO selection schemes described
in Section 2. The results are shown in Table 2. Note
that the third column (pure FM) results are the same
as in the third column of Table 1 since our new for-
mulation does not affect the first-level gain. As was
observed with the Krishnamurthy formulation, the re-
sults using a LIFO selection scheme with our new for-
mulation are significantly better than the results us-
ing random or FIFO selection schemes. However, the
second-level gain results (column 4) using random and
FIFO selection schemes show significant improvement
over the pure FM results (column 3) with our new for-
mulation. This is in sharp contrast to the results using
the Krishnamurthy formulation, which did not show
much improvement with higher-level gains using either
random or FIFO selection. It may be that our new
formulation tends to compute higher-level gains more
carefully, thus obviating the need for a “good” selec-
tion scheme (i.e., the results for random and FIFO will
more closely mirror the results of LIFO as the length
of the gain vectors increases). Also, our new formu-
lation explicitly gives higher priority to the neighbors

Gain vector of module e :
in in our

case1: Krishnamurthy new formulation
@ (-1,0,0,0,1) (-1,0,0,0,1)
case 2:
(0,0,0,1,0) 0,1,1,2,1)
case 3:
. ' . D (0,0,1,0,0) 0,1,2,1,1)
case 4 :
c b a
(X (0.1,0,0,0) 021.1,1)
case5:
ﬂm’ (10000 (111D

Figure 3: Evolution of the gain vector for mod-
ule e according to the Krishnamurthy level gain
formulation and our new gain formulation.

of moved modules, which is similar to the effect of the
LIFO selection scheme.

Table 3 compares LIFO results using our new for-
mulation against LIFO results using the original Kr-
ishnamurthy formulation. In some cases our formula-
tion leads to substantial reduction in the size of the
cuts found.

4 Conclusion

We have found that implementation choices play
an important role for both the FM [2] and Krishna-
murthy [5] algorithms. In particular, selection from
gain buckets based on the implicit ordering of a linked
list representation is highly advantageous, and results
in improved partitioning solutions. We find that elim-
inating randomization from the bucket selection not
only improves the solution quality, but has a greater
impact on FM performance than adding the Krish-
namurthy gain vector. Organizing the gain buckets
as LIFO (Last-In-First-Out) stacks leads to a 35%
improvement versus random bucket organization and
a 42% improvement versus FIFO (First-In-First-Out)
queues. We have also presented an alternative higher-
level gain formulation, based on Krishnamurthy’s ap-
proach, which incorporates some of the intuition be-
hind the LIFO organization. This alternative formu-
lation results in a further 16% reduction in the av-
erage cut cost when compared directly to the Krish-
namurthy formulation for higher-level gains, assuming
LIFO organization for the gain buckets.

We believe that a much more detailed study is nec-
essary to better understand the effect of “obvious”
choices in the FM implementation on the solution

‘ Ckt [# Krishnamurthy levels |
(#nodes) | Method [k=1 k=2Tk=3Tk=4]
Prim1l LIFO 83 76 75 74
(833) RAND 108 78 76 78

FIFO 125 81 78 77

struct LIFO 68 65 59 61
(1952) RAND 185 55 57 56
FIFO 202 60 55 57

Prim?2 LIFO 296 261 257 259
(3014) RAND 441 262 256 260
FIFO 507 283 267 267

biomed LIFO 172 157 156 165
(6514) RAND 450 199 179 183
FIFO 503 180 180 172

ind2 LIFO 757 619 623 623
(12637) RAND 1671 809 683 692
FIFO 1766 786 722 668

ind3 LIFO 755 703 722 711
(15433) RAND 2382 740 707 680
FIFO 3285 750 712 743

avq.sml LIFO 835 631 653 658
(21918) RAND 1507 786 799 780
FIFO 1842 863 824 815

avq.lrg LIFO 1140 684 752 700
(25178) RAND 1837 964 1035 951
FIFO 2193 1114 1135 1054

% Impr. LIFO 48.3 10.4 77 6.6
vs. RAND 0 0 0 0
RAND FIFO -17.1 -4.5 -2.9 -2.3

Table 2: Average cutsize results for 100 runs of
our new multi-level gain formulation (columns 4-
6) using LIFO, random, and FIFO organization
schemes for the gain buckets.

quality and runtime. Thus, our future work inves-
tigates not only further tie-breaking mechanisms, but
also interesting effects that result from the order im-
posed by the netlist representation and the list of free
modules.® Studies of the LIFO organization scheme
in multi-way partitioning and in more sophisticated
partitioning approaches such as the two-phase FM
methodology are also under investigation.

References

[1] S. Dutt. New faster kernighan-lin-type graph-
partitioning algorithms. In Proc. IEEE Intl.
Conf. Computer-Aided Design, pages 370-377,
1993.

[2] C. M. Fiduccia and R. M. Mattheyses. A linear
time heuristic for improving network partitions.
In Proc. ACM/IEEFE Design Automation Conf.,
pages 175-181, 1982.

[3] B. W. Kernighan and S. Lin. An efficient heuris-
tic procedure for partitioning graphs. Bell Syst.
Tech. J., 49(2):291-307, 1970.

5The input format of a netlist is typically a function of how
the other development tools represent and output the circuit,
and may group related nets or modules together or far apart.
This relatedness/unrelatedness will in turn be reflected within
the data structures used by FM to store the netlist information.

‘ Ckt [# Krishnamurthy levels |
(#nodes) | Method [k=1] k=2 k=3[k=4
Prim1l Ours 83 76 75 74
(833) Krish. 83 80 79 80
struct Ours 68 65 59 61
(1952) Krish. 68 66 65 66
Prim2 Ours 296 261 257 259
(3014) Krish. 296 281 279 275
biomed Ours 172 157 156 165
(6514) Krish. 172 181 199 220
ind2 Ours 757 619 623 623
(12637) | Krish. 757 744 775 760
ind3 Ours 755 703 722 711
(15433) Krish. 755 799 797 815
avq.sml Ours 835 631 653 658
(21918) Krish. 835 911 950 964
avq.lrg Ours 1140 684 752 700
(25178) Krish. 1140 971 1012 1030
[% Impr. over Krish. | 0] 145] 162] 194 |

Table 3: Results comparing our new multi-level
gain formulation with Krishnamurthy’s multi-
level gain formulation using LIFO organization
for the gain buckets. Averages are based on 100
runs.

[4] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vec-
chi. Optimization by simulated annealing. Sci-

ence, 220:671-680, 1983.

[5] B. Krishnamurthy. An improved min-cut algo-
rithm for partitioning VLSI networks. IEEE
Trans. on Computers, 33(5):438-446, 1984.

6] T. Lengauer. Combinatorial Algorithms for Inte-
g
grated Circuit Layout. Wiley-Teubner, 1990.

[7] L. A. Sanchis. Multiple-way network partitioning.
IEEE Trans. on Computers, 38:62-81, 1989.

[8] L. A. Sanchis, personal communication, March

1994.
[9] D. G. Schweikert and B. W. Kernighan. A proper

model for the partitioning of electrical circuits.
In Proc. ACM/IEEFE Design Automation Conf.,
pages b7—62, 1972.

[10] C. Sechen. Placement and Global Routing of Inte-
grated Circuits Using Simulated Annealing. PhD
thesis, Univ. of California, Berkeley, 1986.

[11] Y.-C. Wei and C.-K. Cheng. Towards efficient
hierarchical designs by ratio cut partitioning. In
Proc. IEEE Intl. Conf. on Computer-Aided De-
sign, pages 298-301, 1989.

