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Abstract

Top-down partitioning has focused on minimum cut
or ratio cut objectives, while bottom-up clustering has
focused on density-based objectives. In seeking a more
uni�ed perspective, we propose a new sum of densities
measure for multi-way circuit decomposition, where the
density of a subhypergraph is the ratio of the number
of edges to the number of nodes in the subhypergraph.
Finding a k-way partition that maximizes the sum of
k subhypergraph densities is NP-hard, but an e�cient
ow-based method can �nd the optimal (maximum-
density) subhypergraph in a given hypergraph. Based
on this method, we develop a heuristic which in prac-
tice has less than 10% error from an optimal sum
of densities decomposition. Other results suggest that
density-based heuristics can capture cut-based objec-
tives, whereas the converse would seem di�cult.

1 Introduction

A fundamental task in VLSI layout applications is
�nding a \natural" decomposition of the netlist hyper-
graph into k disjoint subsets. Two types of objectives
have been used.

First, minimum cut objectives minimize the total
number of signal nets crossing between di�erent com-
ponents, with possible size constraints on the compo-
nents; the Fiduccia-Mattheyses (FM) heuristic [4] is a
leading example. More recent research has focused on

ratio cut bipartitioning [14], which minimizes C(P1;P2)
jP1j�jP2j

where C(P1; P2) is the number of signal nets crossing
between the two partitions P1 and P2. This metric is
\natural" in that it addresses both the minimum cut
and the partition size balance objectives.

Second, density-based decompositions intuitively
view a cluster as a densely connected group of circuit
elements. The goal is to identify \good" clusters, typi-
cally in bottom-up fashion. To assess whether a cluster
is good, several clustering metrics have been proposed,
e.g., Cong and Smith [3] de�ned a measure of cluster

density as jEj
C(n;2), where jEj is the number of edges and

n is the number of nodes in the cluster. This metric is
biased to small clusters since C(n; 2) increases quadrat-
ically in n (a cluster with one edge and two nodes (i.e.,
a 2-clique) would have high density). Many clustering
objectives are di�cult to evaluate, let alone optimize.

The main theme of our work is that (cut-based) par-

titioning and (density-based) clustering have no obvi-
ous common ground for \middle" values of k � num-
ber of components in the circuit decomposition. Yet,
due to their common application to hierarchical cir-
cuit layout, these approaches arguably should \meet
in the middle" (e.g., in mapping a system design onto
a multiple-FPGA prototyping architecture, or in high-
level synthesis applications).

Thus, we propose a new maximum sum of densities
objective for k-way circuit decomposition. Formally,
the density of a hypergraph H = (V;E) is the ratio
of the number of hyperedges to the number of nodes,

i.e., jEj
jV j . Given a node subset V 0 � V , the density

of the sub-hypergraph H0 = (V 0; E0) induced by V 0

is the number of hyperedges in E that are completely
contained in E0, divided by the number of nodes in V 0.

The main problem that we address is:

The k-way Maximum Sum of Densities (k-MSD)
Problem: Given a hypergraph H(V;E), divide V into
k partitions, P1; P2; : : : ; Pk, such that the sum of the
densities of the induced subhypergraphs is maximum.

In addressing the k-MSD problem, we will also discuss
a more basic problem:

The Maximum Density Subhypergraph (MDS)
Problem: Given a hypergraph H(V;E), �nd a subhy-
pergraph of H with largest density.

( a ) ( b )

min ratio cut min ratio cutmax  sum of densities cut max  sum of densities cut

Figure 1: (a) The minimum ratio cut gives an uneven
partitioning, while the maximum sum of densities cut
gives a more balanced and natural partitioning. (b)
When the circuit structure is changed, the maximum
sum of densities cut shifts accordingly, while the min-
imum ratio cut remains the same.

Our hope is that the k-MSD objective can lead to



\natural" circuit decompositions, i.e., our work is sim-
ilar in spirit to that of Wei and Cheng [14], who in
1989 proposed ratio cut as a \more natural" decom-
position objective (�ve years later, a large fraction of
partitioning research now addresses some form of ratio
cut). There are easy examples for which ratio cut does
not give a \natural" circuit bipartition, while maximiz-
ing the sum of the two partition densities gives a more
natural bipartition. Figure 1 shows that the ratio cut
objective can overemphasize the reduction in net cut,
while ignoring the internal structure of the partitions.
The maximum sum of densities cut will shift as the
internal structure of the graph changes, while the min-
imum ratio cut remains the same.

( a ) ( b )

Figure 2: (a) Cut objectives pertain to the cutsize
at the cluster boundary, while (b) density objectives
pertain to the implied area or wirelength inside the
cluster.

A secondary motivation is suggested in Figure 2:
the cut objective has an external view of the circuit
components, while the density objective has an inter-
nal view. Cutsize at the boundary of a component has
been correlated with area and wirelength via the Rent
parameter analysis, but the number of terminals a�ects
area and wirelength only in a probabilistic sense, since
shorter than expected routes may be possible. Density
measures may yield less trivial lower bounds on layout
area and wirelength. A �nal motivation, noted in Sec-
tion 4 below, is that maximizing the sum of densities
can capture both cut-based and density-based objec-
tives, unlike any cut-based formulation.1

2 An Optimal Maximum Density Sub-
hypergraph Solution

Many researchers have solved the maximum den-
sity subhypergraph problem when the input is a graph
[11, 6]; we use MDSG to denote this special case. The
usual transformation is to a series of minimum cut
computations, which are accomplished using maximum
ow techniques. Picard and Queyranne [11] formulated
MDSG as a special case of 0-1 fractional programming,
and used O(n) ow computations to solve the prob-

1There are also super�cial similarities between the k-MSD
and certain cut-based objectives. If the given graph is a com-
plete graph, chain, or cycle, maximizing the sum of densities will
generate the same bipartition as minimizing the ratio cut. If we
restrict the cluster sizes to be all identical, then a maximum sum
of densities solution will also be a minimum cut solution.

lem. Goldberg [6] developed a di�erent solution which
requires only O(logn) ow computations.

In the work which directly led to our approach, Ko-
rtsarz and Peleg [8] solved the MDSG problem for a
graph using the \Provisioning Problem" formulation
of Lawler [9].

The Provisioning Problem: Suppose there are
n items x1; x2; : : : ; xn to select from, with selection of
item xi incurring cost ci > 0 . Suppose there are m sets
of items S1; S2; : : : ; Sm that are known to confer special
bene�ts. A given item may be contained in several
di�erent sets. If all of the items in set Sj are selected,
then a bene�t bj > 0 is obtained. The objective is to
maximize f total bene�t g � f total cost g for the set
of selected items.

Rhys [12] and Picard [10] showed that the Provision-
ing formulation can be transformed into a maximum
ow problem in a network. The network is a bipar-
tite graph with nodes nSi on one side representing the
sets Si, and nodes nxj on the other side representing
the items xj . A directed edge with in�nite capacity is
drawn from nSi to nxj if Si contains xj . The source is
connected to each node nSi by an edge having capac-
ity bi, and the sink has a connection from each node
nxj via an edge having capacity cj . Edges in the min-
imum cut set which are incident from nodes in fnxjg
will correspond to the items selected in the optimum
Provisioning solution.

We may extend the algorithm in [8] to solve the MDS
problem for a hypergraph in polynomial time. The so-
lution of the MDS problem via a series of Provisioning
problem instances is as follows:

1. Let each node be an item, and let each hyperedge
in the netlist be a set containing all items corre-
sponding to its nodes.

2. Suppose we want to check whether there exists a
subhypergraph with density d or higher, i.e., we

seek a node subset U with jE(U)j
jUj

� d (here, jE(U )j

denotes the number of hyperedges completely con-
tained in node set U ). This may be restated as
jE(U )j � djU j � 0.

3. This is exactly the Provisioning formulation with
the cost of each item being d and the bene�t of
each set being 1.

4. Since the di�erence between two distinct densities
is at least 1

n(n�1) [6], we can use binary search to

guess the maximum density. Only O(logn) ow
computations are needed to determine the optimal
solution.

This sequence of steps immediately yields ourHyper-
MDS algorithm for the MDS formulation. Figure 3
shows the transformation from a hypergraph to a ow
network instance. Note that the signal nets N1; : : : ; N4
correspond to the \sets".
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Figure 3: An example of a hypergraph (a) and its
corresponding ow network instance (b). The hy-
pergraph contains 6 nodes and 4 signal nets N1 =
fx1; x2; x4g, N2 = fx1; x5g, N3 = fx2; x4; x5g, and
N4 = fx3; x5; x6g. We assign a \guess" density d
to all edges incident from the nodes in the right side.

When d = 3
4 , the edges f

�!

sN4;
�!
x1t;

�!
x2t;

�!
x4t;

�!
x5tg will be

in the minimum cut set, implying that the maximum
density subhypergraph is over nodes fx1; x2; x4; x5g.

3 The k-Way Maximum Sum of Densi-
ties (k-MSD) Problem

In this section, we �rst show that the k-MSD prob-
lem is NP-hard. We then present a greedy heuristic
for this problem which has performance ratio of 2 for
the 2-MSD problem, and k for the k-MSD problem, but
which in practice returns solutions that are remarkably
close to optimal.

3.1 K-MSD is NP-Hard

Lemma 1 The 2-MSD problem is NP-hard.

Proof : The 2-MSD problem has equivalent complex-
ity to minimizing the sum of 2 cluster densities (2-
MinSumD). This is because the 2-MSD solution for a
given graph G will be the same as the 2-MinSumD so-
lution in the complement graph G. To con�rm that
the 2-MSD problem is NP-hard, we show that Simple
Max Cut2 [5] reduces to 2-MinSumD.

Given graph G(V;E), construct G�(V �; E�) with 2n
nodes that contains G and a separate isomorphic copy
G0(V 0; E0) of G. Every edge in E[E0 has unit capacity.
Add one edge in G� with capacity M between each
corresponding pair (vi 2 V , vi0 2 V 0). Note that for
su�ciently largeM , a 2-MinSumD partitioning (X; �X)
in G� must have jXj = j �Xj with either vi 2 X and
vi0 2 �X , or vi 2 �X and vi0 2 X, for all 1 � i � n: only
such a partitioning can have 2-MinSumD value as small

as 2jEj
n
. A partitioning (X; �X) that solves 2-MinSumD

in G� will have sum of densities = 2jEj�2k
n

, where k is

the value of a maximum cut of G, and (X \ V; �X \ V )

2Simple Max Cut is stated as follows. Instance: Graph G =
(V;E), positive integer K. Question: Is there a partition of V
into disjoint sets V1 and V2 such that the number of edges in E
having one endpoint in V1 and one endpoint in V2 is at least K?

will be a maximum cut in the original graph G. (See
Figure 4.)

G

M

G’
2-MinSumD  Cut

Figure 4: The construction of G�

Theorem 1 The k-MSD problem is NP-hard for all
�xed k � 3.

Proof : For any k � 3 and any given graph G, we
construct a graph G� containing G and k � 2 clusters
which each have very high density D. For su�ciently
large D, the k-MSD solution for G� must contain the
k� 2 dense clusters and two clusters from G. We thus
obtain a reduction from the 2-MSD problem.

3.2 A Good k-MSD Heuristic

A simple heuristic algorithm for the k-MSD problem
is as follows.

� First, we obtain a decomposition into up to k
clusters via a scheme called MDS Peeling(Figure
5), which iteratively applies the Hyper-MDS algo-
rithm. The idea is to peel o� a maximum-density
cluster k� 1 times, or until all nodes in the graph
have been exhausted.

� Second, we compute a linear ordering of the ver-
tices of G, based on the � k clusters obtained from
MDS Peeling. Essentially, we place these k clus-
ters in the order that they were found, and apply
the WINDOW ordering of [2] within each cluster
to place each node into the overall ordering.

� Third, we apply dynamic programming to e�-
ciently split the linear ordering into a k-way par-
titioning that is optimal, subject to the constraint
that each cluster is contiguous in the ordering [1].

We thus obtain our MDS Peeling+DPRP algo-
rithm. As we shall see, this method implicitly gives
an upper bound for the k-MSD solution, and has good
performance in practice.

Observation 1 Given a hypergraph H(V;E), let D
be the density of the maximum density subgraph of
H found by the MDS Peeling phase. Then, an upper
bound on the sum of densities S in the optimal k-MSD
solution is S � kD, and this bound is tight.



MDS Peeling Algorithm
Input : Hypergraph H(V; E), and k

Output: k clusters cluster1; cluster2; : : : ; clusterk
i = 0;
while (E is not empty) and (i < k) do

Find the maximum density subhypergraph
U(V 0; E0) of H

Let E00 be the hyperedge cut set of (V 0; V � V 0)
E = E � E0 �E00;
clusteri = V 0

V = V � V 0

i = i+ 1;
if E is not empty then

clusterk = V

Figure 5: MDS Peeling algorithm to generate clusters.

Proof : The maximum-density cluster of H has den-
sity D, so the sum of densities of k clusters can be at
most kD. If H consists of k disjoint clusters each with
density D, this upper bound is tight.

Observation 2 The MDS Peeling+DPRP has perfor-
mance ratio 2 for the 2-MSD problem.

Proof : Let D be the density of the maximum-density
cluster of H, and let D0 be the density of the re-
maining cluster. The sum of densities returned by
MDS Peeling+DPRP is � D+D0

2D = 1
2 +

D0

2D � 1
2 .

In general, MDS Peeling+DPRP has a tight perfor-
mance ratio of k for the k-MSD problem. However, its
performance seems much closer to optimal in practice.

3.3 Results for MDS Peeling + DPRP

We have found heuristic k-MSD solutions using
both MDS Peeling+DPRP as well as the obvious vari-
ant of the Fiduccia-Mattheyses (FM) method. Our
test cases consist of standard partitioning benchmarks
maintained by ACM SIGDA. Our FM variant, which
we call Density-FM, is standard k-way FM with gains
updated based on the sum of densities metric; our
implementation adapts code from [13]. Table 1 com-
pares MDS Peeling+DPRP against the best result of
10 Density-FM runs. MDS Peeling+DPRP averages
5.29% improvement over Density-FM.

We also note that MDS Peeling+DPRP can perform
quite well when judged against the theoretical upper
bound on the sum of densities. Table 2 gives a more
careful study of MDS Peeling+DPRP results for k-way
clustering of the Primary1 and Primary2 benchmarks
with a range of k values; we compare the sum of den-
sities with the theoretical upper bound for the k-MSD
solution. (Recall that the upper bound is k times the
largest subgraph density.) Although MDS Peeling has
a worst-case performance ratio of k for k-MSD, the re-
sults show that it can actually be very close to optimum
in practice. (For three test cases with very small, very
dense subhypergraphs { Test02, Test04, Test05 { this
analysis fails since kD is a very loose upper bound.)

4 Density-Based Ratio Cuts
We close by noting a variation of Hyper-MDS which

yields good 2-way ratio cut solutions. Such a result is

Upper MDS Peeling % of
Ckts #Clusters Bound + DPRP optimum

8 10.00 9.32 93.20%
10 12.50 11.27 90.16%

Prim1 15 18.75 16.09 85.81%
20 25.00 20.49 81.96%
8 8.06 7.80 96.77%
10 10.08 9.65 95.73%
15 15.11 14.65 96.96%
20 20.15 19.31 95.83%

Prim2 25 25.18 23.96 95.15%
30 30.22 28.55 94.47%
35 35.26 33.01 93.62%
40 40.30 37.38 92.75%

Table 2: Comparison of sum of cluster densities in
the MDS Peeling+DPRP solution versus the theoreti-
cal k-MSD upper bound, for large values of k. The 20-
way clustering for Primary1 (833 nodes) requires 110
seconds and the 40-way clustering for Primary2 (3014
nodes) requires 968 seconds on a Sun SPARC-10. Note
that we only need to run MDS Peeling+DPRP once to
obtain results for all values of k.

interesting because it shows that \density can capture
cut", while the converse would seem di�cult.

Recall that the Hyper-MDS algorithm will return
the densest subhypergraph of the netlist hypergraph,
where each signal net has \credit" = 1, and each node
has \cost" = 1. This has the following weaknesses with
respect to minimizing the ratio cut:

� the method concentrates on collecting many
smaller nets into the cluster, and ignores result-
ing growth of the cluster boundary (i.e., nets cut).

� the method does not distinguish between credit for
nets with high degree and credit for nets with low
degree; however, a high-degree net will potentially
cause more cuts.

� the method does not distinguish between cost of
nodes with high degree and cost of nodes with low
degree; however, a high-degree node will poten-
tially cause more cuts.

To create a bias against nets and nodes with large
degree, we can adjust the net credit for each net and
the node cost for each node. Details of the resulting
heuristic, and experimental results showing that the
density-based approach is very competitive with the
best known ratio cut methods, are given in [7].

5 Conclusions
We have introduced a new sum of densities objec-

tive that can lead to more natural circuit decomposi-
tions than previous objectives. Our objective can fur-
thermore be used to unify top-down cut-based parti-
tioning with bottom-up density-based clustering. We
have given an optimal Provisioning-based ow solution,
called Hyper-MDS, for the MDS problem; we have also
proposed the MDS Peeling + DPRP heuristic for the
k-MSD problem. Related density-based formulations
which may be of future interest include the following.



Test Algorithm Sum of Densities Average
Cases k = 2 k = 3 k = 4 k = 8 k = 10 k = 15 k = 20 Improvement
Prim1 MDS Peeling+DPRP 2.31 3.50 4.69 9.32 11.27 16.09 20.49 4.98%

Density-FM 2.31 3.33 4.51 8.68 10.16 15.36 19.95
Prim2 MDS Peeling+DPRP 1.88 2.80 3.80 7.80 9.65 14.65 19.31 2.15%

Density-FM 1.96 2.87 3.95 7.25 9.25 13.57 18.30
Test02 MDS Peeling+DPRP 15.49 29.95 31.15 35.55 37.60 42.53 47.23 0.93%

Density-FM 15.49 29.95 31.07 35.17 37.24 41.74 46.17
Test03 MDS Peeling+DPRP 4.47 5.97 7.46 12.59 14.83 19.85 24.76 23.51%

Density-FM 2.54 3.69 7.11 12.07 13.57 19.06 23.78
Test04 MDS Peeling+DPRP 15.55 27.01 28.33 33.47 35.82 41.47 46.73 1.62%

Density-FM 15.55 27.01 28.31 32.56 34.72 40.07 45.91
Test05 MDS Peeling+DPRP 16.53 30.01 31.45 36.99 39.57 45.50 51.06 3.66%

Density-FM 15.51 30.01 31.30 35.72 37.58 42.46 48.98
Test06 MDS Peeling+DPRP 1.89 2.85 3.77 7.57 9.41 13.82 18.27 0.22%

Density-FM 1.90 2.90 3.82 7.56 9.19 13.52 18.20
avq.small MDS Peeling+DPRP 2.17 3.22 4.18 7.97 9.91 14.61 19.19 |

Density-FM N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Table 1: Comparison of sum of cluster densities for MDS Peeling+DPRP and for the best of 10 Density-FM runs.
Results for avq.small benchmark using Density-FM would require many days of SPARC-10 time.

� Bounded Size Maximum Density Subhyper-
graph (BMDS) problem : Given a hypergraph
H(V;E) and an integer B, �nd the subhypergraph
of H with maximum density and size � B.

While MDS was polynomial time solvable, BMDS
is shown NP-complete by reduction from Maxi-
mum Clique.

� Max-Density Subhypergraph with Pre-
scribed Node problem : Given a hypergraph
H(V;E) and a prescribed node p, �nd the max-
imum density subhypergraph which contains node
p.

This can be solved using the 0� 1 fractional pro-
gramming technique in [11] by assigning the vari-
able corresponding to p to 1, and transforming the
resulting fractional expression to a series of ow
computations.

� Max-Density Subhypergraph with Ex-
cluded Node problem : Given a hypergraph
H(V;E) and a prescribed node p, �nd the max-
imum density subhypergraph which does not con-
tain node p.

This problem can be solved in the same time com-
plexity as the MDS problem. We can remove node
p and all edges incident from p, and solve the MDS
problem in the remaining hypergraph.
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