
(Special Session)

OpenROAD and CircuitOps: Infrastructure for
ML EDA Research and Education

Vidya A. Chhabria1, Wenjing Jiang2, Andrew B. Kahng3, Rongjian Liang4,
Haoxing Ren4, Sachin S. Sapatnekar2, and *Bing-Yue Wu1

1Arizona State University; 2University of Minnesota; 3University of California, San Diego; 4NVIDIA Corporation

Abstract—Traditional electronic design automation (EDA)
techniques struggle to fulfill the stringent efficiency and quick
turnaround demands of complex integrated systems. Machine
learning (ML) strategies for EDA (“ML EDA”) are pivotal in
transforming EDA to address these challenges. However, they
encounter significant obstacles due to inadequate infrastructure,
ranging from datasets to software interfaces. This paper demon-
strates a software infrastructure for ML EDA built on two key
technologies: (i) OpenROAD’s Python APIs, and (ii) NVIDIA’s
CircuitOps, an EDA data representation format tailored for ML,
facilitating ML EDA applications. The paper illustrates three
ML EDA examples that utilize the established OpenROAD and
CircuitOps infrastructure.

I. INTRODUCTION

Traditional electronic design automation (EDA) methods rely
on numerical algorithms and discrete optimization. However,
they are increasingly inadequate for developing future systems
that face tight market deadlines and must meet rigorous per-
formance and power requirements. The adoption of machine
learning (ML) in EDA is poised to revolutionize this field by
significantly accelerating EDA processes [1]–[3]. By enabling
faster ML-powered analyses, it becomes feasible to handle
more complex systems and implement more intricate, possibly
ML-driven, optimizations. This results in not only better circuit
performance but also reduced time frames for design pro-
cesses. The integration of ML into EDA, known as “ML EDA,”
is experiencing rapid growth. By combining ML techniques
with domain expertise, it is possible to extract and reuse
knowledge from data with unmatched efficiency. This trend
is evident in both academia and industry, with a significant
portion of research papers at major conferences focusing on
ML-based EDA approaches; leading EDA tool providers are
quickly developing and releasing new ML-powered tools for
design, verification, and testing, exemplified by products such
as Cerebrus and DSO.ai.

However, despite its promise, ML EDA faces tremendous
barriers to adoption due to limited infrastructure. An ideal in-
frastructure will include access to EDA tools, PDKs, datasets,
trained ML models, and software libraries that enable easy
integration between existing EDA tools and ML frameworks.
Today, we are far from such an infrastructure due to IP-
related challenges and the closed culture of the chip design

*Primary author.

industry. There have been several efforts in the past that
are trying to develop such an infrastructure; these can be
categorized into initiatives for creating datasets [4]–[7], data
representation formats for ML EDA [8], [9], open-source EDA
tool flows and tools, a concept of a one-stop-shop for ML EDA
applications [10], and several individual open-source ML EDA
algorithms [11], [12]. While these are crucial components of
an infrastructure, there has been no prior work that develops
a software infrastructure to enable integration between ML
frameworks and EDA tools.

In this paper, we demonstrate an ML EDA software infras-
tructure that builds on two key technologies: (i) OpenROAD’s
Python interpreter [13] for physical design and (ii) NVIDIA’s
CircuitOps [14], [15] for representing physical design data in
an ML-friendly format. Our infrastructure enables a new re-
search platform for EDA researchers, with three key elements
as shown in Fig. 1.

1) Python APIs in OpenROAD that wrap the underlying
C++ APIs of EDA engines, to enable faster data genera-
tion compared to using commercial tools’ Tcl interfaces.

2) An ML-ready data format, CircuitOps, from NVIDIA
that leverages OpenROAD to model chip data as labeled
property graphs, and pandas data frames.

3) Additional Python APIs in OpenROAD that integrate ML
inference results back into EDA tools, giving a feedback
path from ML algorithms into the OpenROAD platform.

Our paper illustrates three ML EDA applications using
the infrastructure. The first leverages the Python interpreter
to train a model for IR drop prediction within OpenROAD
and perform inference for IR drop within OpenROAD. The
second leverages the Python interpreter to train a graph
convolutional network (GCN), using a reinforcement learning
(RL) framework for logic gate sizing within OpenROAD.
These two ML EDA applications demonstrate a true “ML
in EDA tool” framework. The third application uses timing
prediction as an example to demonstrate how the CircuitOps
data representation format enables easy data collection. The
example applications presented in this paper using the pro-
posed infrastructure are available on GitHub [16].

II. OPENROAD PYTHON INTERFACE

Although the EDA industry provides the chip design com-
munity with sophisticated tools, these tools must be operated
using a complex, low-bandwidth tool command language979-8-3503-6378-4/24$31.00 ©2024 IEEE

Fig. 1. A software infrastructure for the integration of ML frameworks and EDA tools.

Fig. 2. Interaction between an ML environment and an EDA tool with Tcl
APIs (left) and Python APIs (right).

TABLE I
RUNTIME COMPARISONS BETWEEN PYTHON AND TCL APIS FOR DATA

EXCHANGE BETWEEN ML AND EDA TOOL ENVIRONMENTS.

Design #cells #nets Runtime (s)
Python APIs Tcl w/ file IO

aes 30,202 17,812 12.6 31.5
bp be 141,468 58,464 26.4 103.6
bp fe 96,150 36,388 17.5 62.9

(Tcl). A significant drawback of Tcl is its limited selection of
data structures. For ML EDA applications, Tcl limits (i) the
efficiency of collecting large training datasets from EDA tools
due to scalability issues and (ii) the ability of ML algorithms
to interact with an EDA tool due to the lack of flexibility to
communicate with ML environments (Python).

Fig. 2 shows the interaction of EDA tools with ML environ-
ments using Tcl (left) and Python APIs (right). The Tcl-based
flow relies on file I/Os as the primary means of data exchange
between ML environments and EDA tools, making any iter-
ative loop between ML frameworks and existing EDA tools
prohibitively slow. Table I lists the runtime of a framework
that exchanges data between the ML environment for three
small benchmarks. The Tcl API-based flow is slow and does
not scale to a larger number of iterations and larger testcases.

Our work highlights the Python APIs around OpenROAD
that enable easy interaction between the OpenROAD database
and ML environments. These APIs enable feature extraction
and label annotation into the database (DB) without leaving
the OpenROAD environment. We illustrate two categories of
APIs (flow APIs and DB query APIs) and highlight ML EDA
applications that these APIs enable.

Flow APIs enable the execution of different stages of the
physical design flow through a Python shell. Examples include
performing floorplan, placement, and routing. For instance,
Listings 1 and 2 show code snippets that respectively read
in traditional EDA tool files and perform floorplanning. The
flow API capability streamlines the development of ML EDA
applications, particularly those that predict information of the
next physical design stage at the current stage [17], [18].
i m p o r t openroad as ord
from openroad i m p o r t Tech , Des ign
Read f i l e s
t e c h = Tech ()
t e c h . r e a d L i b e r t y (” l i b f i l e ”)
t e c h . r e a d L e f (” t e c h f i l e ”)
t e c h . r e a d L e f (” l e f f i l e ”)
d e s i g n = Design (t e c h)
d e s i g n . r e a d V e r i l o g (” v e r i l o g f i l e ”)
d e s i g n . l i n k (” d e s i g n t o p l e v e l n a m e ”)

Listing 1. File reading through OpenROAD Python API.
f l o o r p l a n = d e s i g n . g e t F l o o r p l a n ()
S e t t h e f l o o r p l a n u t i l i z a t i o n t o 50%
f l o o r p l a n u t i l i z a t i o n = 50
S e t t h e a s p e c t r a t i o o f t h e d e s i g n (h e i g h t / w i d t h) as 0 . 5
f l o o r p l a n a s p e c t r a t i o = 0 . 5
S e t t h e s p a c i n g be tween d i e and core as 10 microns
f l o o r p l a n c o r e s p a c i n g = [d e s i g n . micronToDBU (1 0) f o r i i n

r a n g e (4)]
f l o o r p l a n . i n i t F l o o r p l a n (f l o o r p l a n u t i l i z a t i o n ,

f l o o r p l a n a s p e c t r a t i o , f l o o r p l a n c o r e s p a c i n g [0] ,
f l o o r p l a n c o r e s p a c i n g [1] , f l o o r p l a n c o r e s p a c i n g [2] ,
f l o o r p l a n c o r e s p a c i n g [3])

f l o o r p l a n . makeTracks ()
Place IO p i n s
params = d e s i g n . g e t I O P l a c e r () . g e t P a r a m e t e r s ()
params . se tRandSeed (4 2)
params . s e t M i n D i s t a n c e I n T r a c k s (F a l s e)
params . s e t M i n D i s t a n c e (d e s i g n . micronToDBU (0))
params . s e t C o r n e r A v o i d a n c e (d e s i g n . micronToDBU (0))
Place t h e p i n s on M7 and M8
d e s i g n . g e t I O P l a c e r () . addHorLayer (

d e s i g n . ge tTech () . getDB () . ge tTech () . f i n d L a y e r (”M7”))
d e s i g n . g e t I O P l a c e r () . addVerLayer (

d e s i g n . ge tTech () . getDB () . ge tTech () . f i n d L a y e r (”M8”))
IOPlacer random mode = True
d e s i g n . g e t I O P l a c e r () . run (IOPlacer random mode)

Listing 2. Floorplanning using OpenROAD Python API.

DB Query APIs act as helpers to interact with OpenDB
(OpenROAD’s database). Therefore, they play a crucial role
in feature extraction for ML EDA applications and label
annotation. Listings 3 and 4 illustrate Python APIs to extract
cell, net and pin-related timing properties from the database.
The ability to query such properties directly within a Python

Fig. 3. RL-based gate sizing enabled via OpenROAD Python APIs.

shell, enables easy feature extraction for both training and
inference of several ML EDA algorithms. Using these APIs,
we demonstrate two example ML EDA applications. The first
uses image-like data for IR drop prediction using convolutional
neural networks, and the second uses graphs and graph convo-
lutional neural networks trained using reinforcement learning
(RL) for logic gate sizing.
b l o c k = d e s i g n . g e t B l o c k ()
c o r n e r = t i m i n g . g e t C o r n e r s () [0]
i n s t s = b l o c k . g e t I n s t s ()
f o r i n s t i n i n s t s :

i n s t s t a t i c p o w e r = t i m i n g . s t a t i c P o w e r (i n s t , c o r n e r)
i n s t d y n a m i c p o w e r = t i m i n g . dynamicPower (i n s t , c o r n e r)
i n s t n a m e = i n s t . getName ()
l i b c e l l n a m e = i n s t . g e t M a s t e r () . getName ()
i n s t x 0 = i n s t . getBBox () . xMin ()
i n s t y 0 = i n s t . getBBox () . yMin ()
i n s t x 1 = i n s t . getBBox () . xMax ()
i n s t y 1 = i n s t . getBBox () . yMax ()

n e t s = b l o c k . g e t N e t s ()
f o r n e t i n n e t s :

p i n a n d w i r e c a p = t i m i n g . ge tNetCap (ne t , c o r n e r ,
t i m i n g . Max)

net name = n e t . getName ()
n e t t y p e = n e t . g e t S i g T y p e ()

Listing 3. Querying cell and net properties using OpenROAD Python API.
f o r i n s t i n i n s t s :

i n s t I T e r m s = i n s t . g e t I T e r m s ()
f o r p i n i n i n s t I T e r m s :

i f d e s i g n . i s I n S u p p l y (p i n) :
c o n t i n u e

pin name = d e s i g n . getITermName (p i n)
p i n r i s e a r r i v a l t i m e = t i m i n g . g e t P i n A r r i v a l (p in ,
t i m i n g . R i se)

p i n f a l l a r r i v a l t i m e = t i m i n g . g e t P i n A r r i v a l (p in ,
t i m i n g . F a l l)

p i n r i s e s l a c k = t i m i n g . g e t P i n S l a c k (pin , t i m i n g . F a l l ,
t i m i n g . Max)

p i n f a l l s l a c k = t i m i n g . g e t P i n S l a c k (pin , t i m i n g . Rise ,
t i m i n g . Max)

p i n s l e w = t i m i n g . g e t P i n S l e w (p i n)

Listing 4. Querying pin properties using OpenROAD Python API.
db = ord . ge t db ()
i n s t = b l o c k . f i n d I n s t (” b u f f e r 1 ”)
t a r g e t m a s t e r = db . f i n d M a s t e r (”BUF X1”)
i n s t . swapMaster (t a r g e t m a s t e r)

Listing 5. Performing gate sizing using OpenROAD Python API.

(1) IR drop prediction A large body of work has used ML
for IR drop prediction [11], [12], [19], [20]. These works
map the IR drop prediction problem into an image-based ML
task. We demonstrate how our APIs enable IR drop prediction
using these techniques in [16]. We use the Python APIs to
query instance locations and instance power to create power

maps. Similarly, we create golden IR drop maps. The power
maps serve as features, and the IR drop maps serve as labels.
These maps are available in the same Python shell as the EDA
database, eliminating the need for file I/Os. Similarly, we can
perform ML inference within the same Python shell, enabling
a true “ML inside EDA tool” framework.
(2) RL-based logic gate sizing [21], [22] A typical RL
framework involves an iterative flow where an agent from
a particular environment state explores a solution space by
performing actions, and estimates a reward for an action
performed from that state. The action results in the agent
transitioning from one state to a next state. In the context
of logic gate sizing, the state is the current set of logic gate
sizes within the netlist, the action is a change in the size of
a particular logic gate, and the reward is the reduction in the
weighted sum of the slack, power, and area [21]. Without
the Python APIs, a framework such as this would require the
iterative exchange of data (action, state, and reward) between
the Tcl APIs and the RL environment in Python via file I/Os
(as shown in Fig. 2). However, with the enablement of the
Python APIs in OpenROAD, we can train the agent within
the same Python shell of the EDA tool, allowing incremental
timing updates for reward calculation, updates to the database
for the action, and feature extraction for the state and next
state transition. The APIs used for the RL framework are
shown in Fig. 3. Listing 5 shows how the swapMaster Python
API can modify the netlist for gate sizing.

III. CIRCUITOPS

One of the critical bottlenecks for ML EDA development
is the lack of publicly available ML-friendly datasets due
to intellectual property concerns. Additionally, current EDA
data collection methods face several challenges. (i) Most EDA
tools require knowledge of the underlying data structure to
interact with them, either in Python or Tcl, which creates
a barrier to entry for non-expert users. (ii) Querying EDA
information requires iterative looping (even with the Python
APIs described in Section II), resulting in low parallelizability,
extensive runtimes and poor scalability. (iii) Many tailor-made
datasets must be extracted from the EDA platform to facilitate
ML EDA research across a range of problems in EDA. Each
dataset building requires custom scripts for data extraction,
resulting in engineering overhead. However, some of the EDA
information is shared across different ML EDA problems, e.g.,
the location of cell placement is used in a number of image-
based ML EDA applications.

CircuitOps [14] serves as a common data representation
format for ML EDA. It provides a low user barrier, as
users can access the EDA information through CircuitOps
using popular Python-based ML packages such as pandas,
NumPy and PyTorch. This helps bypass the need for EDA tool
knowledge or the Python APIs to operate EDA platforms such
as OpenROAD. These ML packages further enable paralleliza-
tion capability for ML EDA dataset generation. Furthermore,
users can manipulate the metadata using popular Python-based
graph libraries such as graph tool and DGL. The above-

mentioned Python-based libraries are already widely used in
ML EDA applications, making CircuitOps compatible with
ML EDA development. CircuitOps streamlines the engineer-
ing effort required to build datasets for various ML EDA
applications by storing the metadata for VLSI designs in a
graph-based data representation format called labeled property
graphs (LPGs), where each node in the graph is backed by an
intermediate representation (IR) table entry (Fig. 1). LPGs and
IR tables are the two main components of CircuitOps.
(1) LPG is a graph-based representation format that stores the
relationships between nodes, i.e., pins and cells, and edges.
(2) IR tables store the corresponding node properties pre-
sented in LPG, i.e., library cell information, instance infor-
mation, pin timing information, net information, etc.

The generic CircuitOps data representation format enables
easy dataset generation for a variety of ML EDA applications:
by applying different filters to the graph, different sub-datasets
can be instantly generated. These filtering operations and
data queries are performed by in-built Python libraries. We
demonstrate CircuitOps using the work in [17] for a timing
prediction problem. Listing 6 shows an example of building
a dataset for this problem from an underlying LPG and IR
table instance. The listing distills the properties and generates
a dataset consisting of only pins, i.e., pin slack, pin rising
arrival time, and pin falling arrival time, and only preserving
the edges between pins by applying the filter using graph tool.
This is completely free of any EDA tool knowledge as the data
is stored in general graph format (an instance of graph tool)
and the features are queried using graph tool APIs.

The graph-based data representation provided by CircuitOps
perfectly matches the use cases for netlist-based ML EDA
applications, such as ML algorithms for gate-sizing and buffer-
ing. For geometry-based ML EDA applications, the paral-
lelizability provided by CircuitOps increases the efficiency of
dataset building as well. OpenROAD has enabled CircuitOps
to convert EDA file data into the CircuitOps data representa-
tion format with the scripts and flows available in [16].
from g r a p h t o o l . a l l i m p o r t *
Genera te graph
g = Graph ()
Add v e r t i c e s t o t h e graph
V e r t i c e s i n c l u d e p ins , c e l l s , and n e t s
g . a d d v e r t e x (” # v e r t i c e s i n t h e d e s i g n ”)
v ty pe = g . new vp (” i n t ”)
v ty pe . a [0 : ” # p in ”] = 0 # p i n
v ty pe . a [” # p in ” : ” # p in ”+” # c e l l ”] = 1 # c e l l
v ty pe . a [” # p in ”+” # c e l l ” :] = 2 # n e t
Add edges t o graph
e d g e d f i s t h e pandas . DataFrame f o r m a t o f t h e

I n t e r m e d i a t e R e p r e s e n t a t i o n (IR) Tab le
edge df [” e t y p e ”] = 0 # p i n p i n
edge df . l o c [” # p i n p i n ” : ” # p i n p i n ”+” # c e l l p i n ” , [”

e t y p e ”]] = 1 # c e l l p i n
edge df . l o c [” # p i n p i n ”+” # c e l l p i n ” : ” # p i n p i n ”+” #

c e l l p i n ”+” # n e t p i n ” , [” e t y p e ”]] = 2 # n e t p i n
edge df . l o c [” # p i n p i n ”+” # c e l l p i n ”+” # n e t p i n ” : ” #

p i n p i n ”+” # c e l l p i n ”+” # n e t p i n ”+” # n e t c e l l ” , [”
e t y p e ”]] = 3 # n e t c e l l

edge df . l o c [” # p i n p i n ”+” # c e l l p i n ”+” # n e t p i n ”+” #
n e t c e l l ” : ” # p i n p i n ”+” # c e l l p i n ”+” # n e t p i n ”+” #
n e t c e l l ”+” # c e l l c e l l ” , [” e t y p e ”]] = 4 # c e l l c e l l

e t y p e = g . new ep (” i n t ”)
g . a d d e d g e l i s t (edge d f . v a l u e s . t o l i s t () , e p r o p s =[e t y p e])
Add p i n f e a t u r e s t o t h e graph
p i n d f i s t h e p i n p r o p e r t i e s IR t a b l e

v s l a c k = g . new vp (” f l o a t ”)
v r i s e a r r = g . new vp (” f l o a t ”)
v f a l l a r r = g . new vp (” f l o a t ”)
v s l a c k . a [0 : ” # p in ”] = p i n d f [” s l a c k ”] . to numpy ()
v r i s e a r r . a [0 : ” # p in ”] = p i n d f [” r i s e a r r ”] . to numpy ()
v f a l l a r r . a [0 : ” # p in ”] = p i n d f [” f a l l a r r ”] . to numpy ()

Genera te pin −p i n graph
g p in = GraphView (g , v f i l t =(v ty pe . a ==0) , e f i l t =(e t y p e . a

==0))

Listing 6. Distilling pin properties (slack and arrival times) from the LPG.

IV. CONCLUSION

Our work showcases an ML EDA infrastructure employing
OpenROAD Python APIs and the CircuitOps data represen-
tation format. It highlights how these technologies facilitate
the integration of ML frameworks with EDA tools via Python
APIs and simplify dataset generation for ML EDA applications
through CircuitOps. The example ML EDA applications that
use this infrastructure have been demonstrated at ASP-DAC
2024 as a tutorial and are accessible to the community in [16].

REFERENCES

[1] G. Huang, et al., “Machine Learning for Electronic Design Automation:
A Survey,” ACM TODAES, vol. 26, no. 5, pp. 1–46, 2021.

[2] H. Ren and J. Hu, Machine Learning Applications in Electronic Design
Automation. Cham, Switzerland: Springer, 2022.

[3] B.-Y. Wu, et al., “SpeedER: A Supervised Encoder-Decoder Driven En-
gine for Effective Resistance Estimation of Power Delivery Networks,”
in Proc. MLCAD, 2022.

[4] J. Jung, et al., “METRICS2.1 and Flow Tuning in the IEEE CEDA
Robust Design Flow and OpenROAD ICCAD Special Session Paper,”
in Proc. ICCAD, 2021.

[5] Z. Chai, et al., “CircuitNet: An Open-Source Dataset for Machine
Learning in VLSI CAD Applications with Improved Domain-Specific
Evaluation Metric and Learning Strategies,” IEEE TCAD, vol. 42, no. 12,
pp. 5034–5047, 2023.

[6] V. A. Chhabria, et al., “BeGAN: Power Grid Benchmark Generation
Using a Process-portable GAN-based Methodology,” in Proc. ICCAD,
2021.

[7] “VerilogGeneration.” https://github.com/shailja-thakur/VGen, 2024.
[8] P. Shrestha and I. Savidis, “EDA-ML: Graph Representation Learning

Framework for Digital IC Design Automation,” in Proc. ISQED, 2024.
[9] P. Shrestha, et al., “EDA-schema: A Graph Datamodel Schema and Open

Dataset for Digital Design Automation,” in Proc. GLSVLSI, 2024.
[10] “SLICE.” https://slice-ml-eda.github.io/, 2024.
[11] V. A. Chhabria, et al., “Thermal and IR Drop Analysis Using Convolu-

tional Encoder-Decoder Networks,” in Proc. ASP-DAC, 2021.
[12] V. A. Chhabria, et al., “MAVIREC: ML-aided Vectored IR-drop Esti-

mation and Classification,” in Proc. DATE, 2021.
[13] “OpenROAD.” https://github.com/The-OpenROAD-Project/

OpenROAD, 2022.
[14] R. Liang, et al., “CircuitOps: An ML Infrastructure Enabling Generative

AI for VLSI Circuit Optimization,” in Proc. ICCAD, 2023.
[15] “CircuitOps.” https://github.com/NVlabs/CircuitOps, 2022.
[16] “ASP-DAC24-Tutorial.”

https://github.com/ASU-VDA-Lab/ASP-DAC24-Tutorial, 2024.
[17] E. C. Barboza, et al., “Machine Learning-Based Pre-Routing Timing

Prediction with Reduced Pessimism,” in Proc. DAC, 2019.
[18] V. A. Chhabria, et al., “A Machine Learning Approach to Improving

Timing Consistency between Global Route and Detailed Route,” ACM
TODAES, vol. 29, no. 1, 2023.

[19] G. S. P. Kadagala and V. A. Chhabria, “2023 ICCAD CAD Contest
Problem C: Static IR Drop Estimation Using Machine Learning,” in
Proc. ICCAD, 2023.

[20] Y. Zhong and M. D. F. Wong, “Fast Algorithms for IR drop Analysis
in Large Power Grid,” in Proc. ICCAD, 2005.

[21] V. A. Chhabria, et al., “IR-Aware ECO Timing Optimization Using
Reinforcement Learning,” in arXiv preprint arXiv:2402.07781, 2024.

[22] Y.-C. Lu, et al., “RL-Sizer: VLSI Gate Sizing for Timing Optimization
using Deep Reinforcement Learning,” in Proc. DAC, 2021.

