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ABSTRACT

It has been six years since an ISPD-2018 invited talk on “Machine
Learning Applications in Physical Design” [25]. Since then, despite
considerable activity across both academia and industry, many R&D
targets remain open. At the same time, there is now clearer under-
standing of where AI/ML can and cannot (yet) move the needle in
physical design, as well as some of the difficult blockers and tech-
nical challenges that lie ahead. Some futures for AI/ML-boosted
physical design are visible across solvers, engines, tools and flows —
and in contexts that span generative Al, the modeling of “magic”
handoffs at flow interstices, academic research infrastructure, and
the culture of benchmarking and open-source EDA.

CCS CONCEPTS
» Hardware — Physical design (EDA); Software tools for EDA.

KEYWORDS
Artificial Intelligence, Machine Learning for EDA

ACM Reference Format:

Andrew B. Kahng. 2024. Solvers, Engines, Tools and Flows: The Next Wave
for AI/ML in Physical Design . In Proceedings of the 2024 International
Symposium on Physical Design (ISPD °24), March 12-15, 2024, Taipei, Taiwan.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3626184.3635277

1 INTRODUCTION

The ISPD-2018 invited paper [25] is one in a trajectory of works
proposing how AI/ML would change physical design.! Six years
after [25], we see that (i) more than half of the research papers
at leading EDA conferences now involve applications of machine
learning; (ii) AI/ML pervades the product offerings of major EDA
vendors; and (iii) the latest wave of large language models and
generative Al is everywhere. With this backdrop, this paper gives
some personal thoughts on near-term futures for AI/ML in physical
design through the lens of “solvers, engines, tools and flows”.

1.1 Looking Back to 2018.

In 2018, a future ecosystem (Figure 1) was envisioned wherein
EDA suppliers would open up their tool knobs, thus enabling new
AI/ML models for tools and designs, alongside discovery of new
optimization objectives for core EDA engines. Designers would

1[25] is complemented by works such as [24] [26] [27] [28] [29] [30].
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identify pain points and supply training and validation data to re-
searchers, who would develop new design-adaptive tool and flow
guidance, along with tool outcome predictors. Improved tools and
private-label AT models would then increase the value of com-
mercial design technology to users. Unfortunately, the envisioned
ecosystem did not materialize, for reasons that include the lack of
(i) accessible EDA tool knobs, and (ii) solutions to the data problem.
Hence, many “target list” items from six years ago [24-26] are still
open.

Improved tools; trained
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Figure 1: 2018 vision of a future Vendor-Designer-Researcher
ecosystem for AI/ML in EDA. From [24].

Also in 2018, Figure 2 from [25] proposed four oncoming stages
of ML insertion into PD tooling. ML developments since then re-
flect this path, and are typically grouped into three main categories:
prediction, optimization and generation [52]. Prediction applies su-
pervised learning to predict design QoR metrics [32], with many
endeavors spanning power prediction [49], timing prediction [16],
congestion prediction [54], etc. Optimization applies Bayesian opti-
mization (BO) or reinforcement learning (RL) to directly optimize
EDA problems. AutoDMP [1] wraps BO around DREAMPlace [43]
to achieve superior macro placement solutions. The earlier work
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Figure 2: ML insertion for PD optimization. From [25].
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Figure 3: Impact of multithreading and GPU, cloud deploy-
ment, and AI/ML across the continuum of solvers, engines,
tools and flows.

[50] applies RL to macro placement. Generation applies generative
models (GANSs or transformers) to directly generate solutions to
EDA problems, e.g., [57] uses GANs to synthesize realistic layout
patterns, and [51] develops a transformer-based gate sizer that
optimizes a given placed and unoptimized netlist. Generative ap-
proaches struggle with consistent delivery of well-formed solutions,
hance are often used to obtain good initial (ballpark, or hint) solu-
tions for traditional methods. At the same time, the rapid advance
in areas such as Large Language Models (LLMs) bring hopes of
widespread application in EDA and design [17].

Overall, the past six years have brought clearer understanding
of where AI/ML can and cannot (yet) move the needle, and of near-
term challenges. Some takeaways:

e Successes include black-box hyperparameter optimization (e.g.,
Cadence Cerebrus and Synopsys DSO.ai), i.e., a form of AI/ML
“around” the tool. ML has also shown promise to speed up anal-
yses that range from routability and congestion to EM/IR and
temperature.

o Disappointments include the increasing difficulty of extracting
runtime data or applying ML inference results, in the regime of an
industry duopoly and closed tool “silos”. Prospects for companies
sharing data, or public foundation models, are poor. Further,
costs of machine learning have turned out to be significant. And,
prediction is difficult.

o Surprises include the rush to LLMs and generative Al, which
aligns with reduced visibility of users into tools.

1.2 A Lens of Solvers, Engines, Tools and Flows.

Figure 3 depicts a hierarchy of design technology elements, along
with the applicability of various boosters such as cloud deployment
or ML “inside”.

o Solvers at the base of the hierarchy typically correspond to combi-
natorial methods (ILP, SAT, DP), often with performance bounds.
An example application is clip-based, optimal place-and-route
[8, 20]. Multithreading, GPU and cloud can slightly advance the
size of solvable instances, but ML (e.g., RL or L20) has not had
impact in practice.

e Engines such as macro placers or global routers typically inte-

grate solvers with metaheuristics (hill-climbing, evolutionary

optimization, multi-start). Multithreading, GPU and cloud can
all improve engine runtime and scalability.

Tools typically orchestrate multiple engines to perform entire

stages (e.g., physical synthesis) of the physical implementation

flow, with extensive scripting interfaces. Outcomes can vary
substantially with random seeds and initial conditions; cloud
deployment enables multi-start and sampling-based approaches

(e.g., black-box hyperparameter autotuning [21, 37]) that improve

quality and stability of outcomes obtained within schedule limits.
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e Flows such as SoC floorplanning invoke multiple tools, often
with feedback loops, to achieve major design goals. Inherent
complexity, long runtimes and chaotic behaviors make flows
resistant to techniques such as reinforcement learning. On the
other hand, improved results can be obtained via sampling and
autotuning with cloud resources.

It is important to consider where ML can be applied — “inside” or
“around” [27]. Figure 3 indicates that ML “around” has applications
across solvers through flows, e.g., by autotuning of hyperparame-
ters, commands and options. ML “inside” has been less tractable,
absent infrastructure that can save and leverage data from past
design experiences or tool/flow runs. Such infrastructure has been
suggested for decades [12, 21, 31], but is blocked by a missing con-
sensus on open standards for data models, naming and APIs.

It is also crucial to comprehend the breadth of challenges and
limits seen today for ML in PD: optimization quality of results; data;
scalability; generalization; validations; and cost. Three of these
stand out: (1) Optimization baselines are strong. ML has struggled
to show benefit for problems that have well-studied formalisms
and combinatorial methods. Metaheuristics such as annealing or
genetic algorithms also give strong baselines. And, humans still
come up with the most useful cost functions. (2) ML has not handled
scale well. For example, RL and L20 have proved too data-heavy
relative to design complexities and resource limits. This heightens
interest in problem decomposition and discovery of useful hierar-
chy, especially at the front end of chip implementation. (3) Chaos
is still with us. E.g., perturbing target clock period by 0.1ps may
change post-P&R netlist area by 10%. Thus, sampling remains a
workhorse for improved solution quality and stability, with little
involvement of ML. (4) Accuracy bars are high for ML-boosted PD
to have value in production.

2 PD CHALLENGES AND LEVERS

This section briefly reviews selected challenges and key levers for
PD (see also [25, 28]).

2.1 PD Challenges.

Floorplanning and placement have become severe pain points
in PD, due to rapid growth of SoC design complexity in concert
with the move to advanced nodes. Some emerging challenges are
as follows.?

Design partitioning and block shaping. Growing design com-
plexity has collided head-on with superlinear tool runtimes and
tighter design schedules. Designers must partition huge designs into
small (e.g., 1-2 million instances) blocks. The coevolution of a P&R
tool with its typically small-sized R&D regression and customer
benchmark testcases means that the tool ends up being highly tuned
for small blocks. On the other hand, having more small blocks in
the SoC floorplan creates an explosion of complex rectilinear block
shaping, pin/port placement, macro placement (or partitioning),
channel definition, and floorplan brittleness. In the end, whether to
split a design into a smaller number of large blocks with long run-
times, or into a larger number of small blocks with short runtimes,
depends on the P&R tool as well as the design. Corollary challenges

“These challenges involve “co-optimizations” and/or “coevolutions” at interstices of
the PD flow (see Section 3.2), and bring high-value applications for AI/ML in PD.
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include budgeting, assembly, signoff, and even the movement to
2.5D/3D.

Placement-aware hierarchical floorplanning. Placement-aware
(or macro placement-aware) hierarchical floorplanning must also
make decisions based on some underlying model of the placement
tool’s behavior. The placer is exquisitely sensitive to macro loca-
tions, block shaping and boundary terminals, and floorplan con-
straints (fences, regions, guides, (hard/partial/FF) blockages, etc.).
Applying the right floorplan constraints can condition the place-
ment canvas and steer the tool toward dramatic improvements of
solution quality metrics such as timing or congestion. However,
robust methods to synthesize such “magic” floorplans and screens
remain elusive [25].

Datapath-aware floorplanning. In many application markets,
high-performance datapath modules are essential to competitive
success, and layout solutions may be replicated thousands of times
in tiled architectures. As had preceded a 1990s wave of datapath-
focused EDA offerings [28], today’s tools often produce unaccept-
able misalignment and tangling of datapaths in P&R. Datapath-
aware floorplanning entails intelligent pre-placement and fixing of
PPA-critical flip-flops and standard cells — after synthesis and be-
fore placement — again, to properly condition the placement canvas
and steer the tool to good results. How to select and place the fixed
instances in the datapath-aware floorplan has also been elusive.

Drive for area reduction. With the slowdown of scaling and in-
creasing wafer cost per transistor, die utilization is now a permanent
first-class concern. Cost reductions are sought by squeezing white-
space out of the SoC floorplan, but this is challenging since (i) block
shapes interact in the SoC floorplan, and (ii) chaos in the implemen-
tation flow generally worsens with more aggressive PPA targets
(cf. “Sampling for Stability” in the next subsection). Corollaries of
area squeezing include adoption of hybrid cell row architectures
at the foundry 3nm node [28, 67] to enable flexible mixing of drive
strengths (i.e., fin counts). Use of hybrid row heights (e.g., 117, 169,
286nm in a single P&R block) severely challenges the entire PD
flow, from physical synthesis that must predict and manage density
distributions of cell heights, to sizing and ECO optimizations whose
cost landscapes become less smooth.

2.2 Levers to Advance PD.

Four high-impact levers to advance PD are (i) GPU-based speedups;
(ii) use of cloud resources; (iii) use of sampling to gain stability;
and (iv) a “multi-spectral” mindset to obtain more data for ML in a
given time.

GPU-based speedups. Advanced SoCs can contain up to billions
of instances and nets. However, the runtime for P&R and optimiza-
tion can be several days even for a small 2 million-instance block.
Design schedule constraints therefore induce complex design par-
titioning and block shaping challenges. In this context, massively
parallel modern GPUs provide a natural computational substrate
for acceleration of physical design [19, 42, 56]. Table 1 lists efforts
in this direction that span much of the PD flow.

A key goal for GPU-based acceleration of optimization and ML
is to shorten the time to useful PPA feedback, thus enabling faster
and more accurate exploration of architecture and chip floorplan
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Table 1: Examples of GPU-accelerated physical design.

Physical Design Flow Related works
RTL Simulation RTLFlow [39]
Logic Synthesis CULS [48]
Macro Placer AutoDMP [1]
Global Placement DREAMPlace [43], Xplace [45]
Detailed Placement ABCDPlace [44]
Global Routing GAMER [40], FastGR [47], GGR [41]
DRC Checker OpenDRC [18]
STA [14], [15]
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Figure 4: Placements from (a) RePlAce, (b) Commercial placer,
and (c) a new academic GPU-accelerated placer.

options. At the same time, classical electrostatics-based global place-
ment engines such as OpenROAD’s RePlAce [9, 63] can miss design-
level perspective. Figures 4(a), (b), and (c) respectively show global
placement results of RePlAce, a commercial placement tool, and a
new GPU-accelerated academic tool for the MemPool Cluster RISC-
V design [5], which has 9.5M instances and nearly 1300 macros in
NanGate45 technology. The new placer substantially reduces run-
time while maintaining solution quality in terms of post-placement
half-perimeter wirelengths, along with early global route (eGR)
wirelength and congestion metrics reported by Cadence Innovus
21.1. Advances in speed, quality and scalability from GPU-based
acceleration can potentially revolutionize architecture, RTL and
floorplan exploration — orthogonally to improvements in ML and
search. Of course, development must focus on where slowdowns
arise in real end-to-end flows, e.g., detailed route search and repair,
DRC fixing, and MCMM design closure.

Cloud. Another lever for PD is the mainstreaming of EDA in the
cloud. Current tools and algorithms follow software patterns op-
timized for single-GPU engineering workstations, leaving huge
opportunities to scale efficiency and capacity. Figure 5(a) shows
how in OpenROAD, distributed incremental detailed routing is sped
up by ~ 100X in the cloud, using 20 16-core workers. Overheads of
serialization and task distribution limit the achievable cloud-based
speedup for this code, as shown in the figure. Figure 5(b) shows
how pin access analysis, which is performed at the start of detailed
routing, is sped up by 30X using cloud instances as opposed to
a single machine. In general, having more machines available to
Al orchestration will enable richer patterns of exploration and ex-
ploitation. Potentially, some optimization threads can explore the
basic flow even as others explore floorplans, cell/corner options,
and other high-impact decision points.

Sampling for Stability. Outcomes of physical design are chaotic,
especially when tools and flows are driven to “try harder” (e.g.,
to achieve higher die utilization in costly advanced nodes). The
chaotic behavior is due to the complex interactions of many inter-
nal metaheuristics [7, 28]. Figure 6(a) shows noise in the output
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Figure 5: (a) Speedup of incremental detailed routing in Open-
ROAD by 100x with 20 16-core workers. (b) Pin access anal-
ysis can be completed 30X faster using cloud instances as
opposed to a single server [38].
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Figure 6: (a) Variation of metrics across 201 output netlists
from logic synthesis, with target clock periods evenly spaced
in a 2ps interval. (b) Variation of metrics across 1005 final
P&R results. Testcase: AES, GF12LP.

netlist metrics of 201 runs of a commercial logic synthesis tool,
for the AES design in a GLOBALFOUNDRIES 12nm (triple-VT)
enablement. Figure 6(b) shows results from 201 P&R runs for each
of five input netlists (i.e., a total of 1005 P&R runs).? Two box and
whisker diagrams show area distributions for two additional sets
of 1005 P&R runs; these sets respectively comprise 201 P&R runs
starting from each of the five lowest-area (respectively, highest-
area) post-synthesis netlists. This confirms large tool noise as well
as relatively poor correlation between the synthesis and P&R flow
steps. To mitigate this and improve stability of PD outcomes, cloud
deployment of optimizers seems inevitable.

Multiple Views in Unit Time: Tomography. In a number of
domains, terms such as “multi-spectral imaging” or “sensor fusion”
refer to the use of multiple views of an object to enhance identifica-
tion or analysis. An analogous term, tomography, involves creating
multiple images to provide detailed insights into the human body
or various solid objects. At UCSD, the idea of tomography in place-
and-route has led to techniques that generate many views of a given
design within the same walltime that is needed for one view — along

3For (a), the target clock period (TCP) constraint in logic synthesis is 280ps; it is stepped
by 0.01ps for 100 steps (positive and negative directions), yielding 201 distinct synthesis
runs that vary only in the SDC constraint, all within a 2ps interval ([279ps,281ps]).
For (b), five input netlists are synthesized with SDC clock periods of {278, 279, 280,
281, 282}ps. For each netlist, 201 P&R runs are made with TCP stepped by 0.01ps in
the interval [279ps,281ps], yielding 1005 total P&R results.
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Figure 7: Congestion report for routing blockages with vary-
ing partial densities and post-route DRC markers.

with use of these many views to achieve better optimization or ML
modeling.

A specific example of tomography in P&R uses the Cadence
Innovus early global router (eGR) to generate congestion reports
under various routing blockage conditions. eGR is much faster than
traditional detailed routing (e.g., runtime of < 1 second, versus
1.5 hours), which enables generation of hundreds of congestion
reports for different routing blockages near-instantaneously when
run in parallel. Figure 7 shows seven congestion reports gener-
ated using eGR, each with a different partial density value for the
routing blockage covering the design.* The congestion report has
closest alignment to actual DRC markers when the partial density
value is 75. But, using all of the images in this placement tomogra-
phy improves ML model accuracy in congestion or DRC hotspot
prediction.

3 ELEMENTS OF A NEXT WAVE

This section gives several elements of a “next wave” for AI/ML in
IC physical design. These include the onrush of generative Al, con-
tinuing to seek “magic” conditioning of problem instances at flow
interstices, infrastructure for ML, and overdue culture changes.5

3.1 Generative Al

Across the technology world, generative Al has “taken all of the
oxygen out of the room”, and EDA and IC design are no exception.
Generative Al does not afford solvers or optimizers in the usual
sense: failure rates can be high, so answers require checking and
correction. Nevertheless, GenAl has found use cases where guesses
can be discarded (if wrong) or else improved. It is very likely gen-
erative Al methods - spanning from language to graphs - will
soon be pervasive in PD. Applications include interactive tool help,
design goal-specific tool and flow recipes, script and HDL code
debugging (e.g., [53]) and copiloting, virtual teaching assistants,
and more. ([17] provides a more far-ranging perspective than is
possible here.)

In the near term, EDA and IC design companies will leverage
LLMs along three main vectors. (i) LLM-based design assistants

4The semantics in the P&R tool: A partial density of 70 indicates that only 70% of the
total routing resource is available during global routing.

SA few important elements are not elaborated here. (i) Partitioning engines have
rapidly advanced in the past two years, bringing generalized eigenvalue formulations
and embeddings, cut-overlay clustering, incorporation of multi-dimensional design
and analysis data, and other innovations [4] [3]. Layering of ML on top of these new
engines, starting with autotuning, will likely provide even better and more stable
methods. (i) Clustering and sparsification reduce problem size and “prevent mistakes”,
potentially leading to simultaneous speedup and solution quality improvement [13].
ML may lead to more useful clustering objectives and methods in contexts such as
floorplanning, placement and clock tree synthesis.
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will provide a chat interface to answer various types of designer
queries about the tool, design, or technology. (ii) Prompt-based tool
flows will provide live feedback between the tool and the user us-
ing prompts, leveraging a combination of LLMs and deep learning
models (predictors of downstream flow outcomes, recommenders
for flow recipes, etc.). (iii) Graph generative models will be the
basis for fast, incremental physical synthesis, place-and-route and
optimization that works on the cones of logic affected by incremen-
tal changes to RTL, netlist, constraints or floorplan contexts. The
second and third vectors, if successful, can potentially revolutionize
designer productivity — but perhaps not end quality of outcomes -
in physical design.

Broadly speaking, generative methods (and, Al in general) are
likely to see adoption in contexts where humans are not in competi-
tion with the Al and are happy to be relieved of mundane, tedious
tasks. What humans dislike creating (e.g., documentation, verifica-
tions, and tests) will provide the initial applications for generative
methods. ChipNeMo [46] applies domain adaptation methods to
optimize LLMs for three such tasks — chatbot assistant, tool script
generation, and bug summarization.

Whether GenAlI can overcome well-recognized blockers remains
to be seen. Data for model training must rely on a mix of real and
synthetic data; it is unclear whether synthetic data that safeguards
IP rights can be produced using real samples as seeds, and then
released into the wild. Generalization will depend on data quality
and whether general methods — as opposed to models specialized
to a few canonical types of IC designs and design styles — are
needed. Cost will presumably be attacked using pre-trained models
plus fine-tuning, as well as model compression and sparsification.
Debugging and diagnosing the inevitable incorrect predictions and
hallucinations will require task-specific checkers and debuggers.
Other application domains will also develop methods to detect and
prevent hallucinations.

Notwithstanding the above, other factors may lead to less rosy
futures for generative Al in PD and chip implementation. Three
examples: (i) insufficient training data for the ML models that un-
derlie EDA flow control; (ii) data poisoning and improper use of
copyrighted materials that increase cost and risk of GenAl models;
and (iii) LLM successes seen only in applications for which large
amounts of public data are available for training (e.g., small PyTorch
scripts, Copilot for Verilog coding).

3.2 ML at Interstices.

[25] and contemporaneous works set out a number of R&D
targets for ML and physical design. In the arena of predictive mod-
eling of tools and designs, these were often referred to as “magic”
- netlists, floorplans, corners and constraints, etc. For example, it
was observed that a single netlist is handed off from logic synthesis
to place-and-route, and that a challenge for AI/ML was to generate
“magic” recipes to produce a best-possible netlist at this handoff
point.

The left side of Figure 8 lists a number of coevolutions and co-
optimizations that correspond to interstices between flow steps.
There is opportunity for “magic” at these interstices because the
tools and corresponding flow steps are typically developed and
executed “at arm’s length”.
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Figure 8: Coevolution of optimizers and opportunities for
“magic” at interstices.

Recent years have made it clear that “prediction is difficult”: the
field has not achieved usable predictors of subflow outcomes, such
as post-route design rule violations from a global placement, given
the high cost of prediction errors. Work at UCSD instead seeks
methods to condition the problem instance that is passed forward
at a given interstice between flow steps. As noted in the discussion
of placement-aware hierarchical floorplanning, a placement prob-
lem instance can be conditioned by adjusting target density and
cell padding, and/or by adding placement and routing blockages.
Relatively simple adjustments of target density at the start of place-
ment can yield substantial improvements of post-route-opt wire-
length, total power, WNS and TNS metrics. Or, for a fixed placement,
proper conditioning of the routing problem with routing blockages
(per-region and per-layer; recall Figure 7) can dramatically reduce
post-route DRCs. We refer to such routing and placement block-
ages as “magic screens”. An important goal is to develop ML-based
generation of magic screens that will reduce design iterations while
improving PPA.

3.3 Infrastructure for ML.

OpenROAD and CircuitOps. While ML - including various forms
of generative Al - has been a rapidly growing field of EDA research,
this area still lacks dedicated research infrastructure: (i) Python
APIs in EDA tools for faster data generation, (ii) a standard format
for data representation and data sharing, and (iii) a Python inter-
face with EDA tools to enable a feedback path from ML algorithms
back into the EDA platform. As shown in Figure 9 the OpenROAD
project [2] and NVIDIA’s CircuitOps [36, 61] have recently made
progress together in addressing these challenges.® This has enabled
a new, open-source “playground” for ML-EDA researchers. Specifi-
cally, (i) Python APIs in OpenROAD wrap the underlying C++ APIs
of its EDA engines, which enables faster data generation compared
to using commercial tools’ TCL interfaces. (ii) NVIDIA’s CircuitOps
leverages OpenROAD to model chip data as labeled property graphs,
and uses pandas data frames to store graph properties as features.
(iii) CircuitOps further leverages recently-added Python APIs in
OpenROAD as a feedback loop to interact with the ML algorithms.
The recent ASP-DAC 2024 tutorial [59] demonstrates a reinforce-
ment learning-based gate sizer which uses this feedback loop in
OpenROAD to perform gate sizing.”

®Figure provided by Professor Vidya Chhabria, with portions from [6, 36].

7Several closed efforts also seek to enable standard APIs and data/ML platforms for
EDA. Sources span consortia (Si2 SPEED API), EDA companies (Cadence JedAI and
Synopsys DesignDash), and academia (Drexel University EDA-Schema).
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Figure 9: OpenROAD as a new EDA playground for ML researchers.
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Figure 10: (a) Autotuning of ASAP7 enablement to match the
PPA hockey stick of foundry 7nm enablement. (b) Autotun-
ing of NanGate45 enablement to match ASAP7 enablement.

Proxies for Open Data. Progress of ML for EDA continues to
be hindered by the lack of open data for research and education.
Today, the data produced by commercial tools in academic contexts
is blocked from dissemination, sharing, or use in ML model (e.g.,
LLM) training. This is a consequence of tool documentation, Tcl
command names and reports, and tool outputs all being proprietary.
Efforts to develop open proxies (PDKs, design enablements, tools
and designs) seek to remove this obstacle [22].

For example, when creating a proxy design enablement the
design- and research-relevant characteristics of a source technology
should match the corresponding characteristics of a target PDK. In
Figure 10(a), source is the ASAP7 academic research PDK, while
target is a commercial 7nm foundry technology. The plot shows the
Power versus Effective Clock Period “hockey stick” for ten target
clock periods. Simple scaling of ASAP7 delay and power can bound
(red, purple) outcomes from the foundry 7nm enablement (green).
Autotuning with Ray/Tune [37, 65], using simple tuning parameters
(delay, pin capacitance, internal/switching power, setup/hold times)
and a loss function of Mean Absolute Percentage Error across the 10
target clock periods, yields the blue hockey stick with loss function

value of 11%. Figure 10(b) demonstrates how autotuning can bridge
technologies (from NanGate45 to ASAP7).

Open design testcases, along with infrastructure for proxy cell
library creation and design-technology co-optimization [11, 64] and
artificial-but-realistic netlist generation [33, 58], are rapidly coming
online. There is also opportunity for ML to take us deeper in the
context of proxies and matching. For example, sufficient analysis
data might enable deeper ML-based approximation of the design
enablement — down to BSIM models, RC extraction techfiles, and
even etch and CMP models. Indeed, this may be inevitable, as there
is an “analog hole” for design analysis information, and because
“it’s just physics” after all.

3.4 Overdue Culture Changes.

Among the hallmarks of a mature technical field are that (i)
reported results are reproducible, and (ii) progress can be clearly
measured — because we “Measure, to Improve”. To enable repro-
ducibility of their reported results, PD researchers can now post
Tcl scripts for research purposes, with proper acknowledgment
of the interests of the tool suppliers. This has been an amazing
breakthrough, and kudos are due to the EDA vendors for mak-
ing this policy change [23]. However, as a community, we do not
yet require papers with code or award badges for excellent open-
source collaterals. And, benchmarking of commercial EDA remains
forbidden.

Can we accelerate culture changes that move the research leading
edge toward benchmarking and open source? There is no question
that benchmarking and benchmarks will accelerate the (transparent,
reproducible) improvement of optimizers, baselines, and in-context
assessments. Similarly, there is no question that open infrastructure,
open proxies, and open-source EDA will accelerate data generation
that feeds the learning of objectives and the discovery of more
impactful AI/ML methods (cf. the “Al flywheel”). This would be
true for AI/ML both “inside” EDA and “around” EDA, with the
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Figure 11: (a) The iEDA infrastructure [34]; (b) physical de-
sign steps and coverage by iPD tools [35].

former potentially being infeasible for researchers unless they work
with open-source codes.?

Toward these ends, added impetus is likely to come from the
recent iEDA [34] and iPD [35] efforts. iEDA (“intelligent EDA”, Fig-
ure 11(a)) is rapidly growing open-source EDA infrastructure that
seeks to facilitate development of more valuable EDA tools and al-
gorithms, while attracting R&D contributors from diverse academic
disciplines and closing gaps between industry and academia. iPD
(“intelligent Physical Design”, Figure 11(b)) is an open-source physi-
cal design toolchain built on iEDA infrastructure; it has already sup-
ported SoC tapeouts in commercial nodes down to 28nm. Notably,
in contrast to OpenROAD, the iPD toolchain has adopted a more
decoupled software architecture, aiming for faster development of
more extensive and varied EDA research tools and algorithms.

A final, cautionary note: Transparency and reproducibility are
not a substitute for research integrity, and can still be swamped by
marketing hype and other “noise”. Rigorous empirical evaluation -
using public data - of claimed improvements to solvers, engines,
tools and flows is increasingly important to preserve a healthy
research ecosystem in PD and EDA [10]. Fortunately, such empirical
evaluation is embarrassingly parallel and amenable to automation.

4 CONCLUSIONS

Over the six years since ISPD-2018 and [25], researchers have in-
corporated AI/ML methods into nearly every core area of physical
design. EDA vendors have achieved commercial successes, notably
with hyperparameter optimization (autotuning) around SP&R, but
also in verification, PCB and advanced packaging layout, and other
areas as well. Interestingly, the “half a node’s progress” [60] from
wrapping an autotuner around digital SP&R lends support to long-
standing claims that commercial EDA had left over a node of opti-
mization QoR scaling on the table. AI/ML will play an important
part in clawing back semiconductor value via “the last scaling levers”
of quality, cost and schedule.

80ne might ask: Will ISPD-2030 have a papers-with-code requirement, and award
a prize for best-curated open-source repository? By 2030, will there be a journal of
open-source design and design automation - or, of confirmation studies? And, will
there be a neutral organization that measures and reports on the progress of EDA
technology?
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The adoption of AI/ML in PD has generally followed the taxon-
omy and sequencing proposed in [24-26] (Figures 1, 2). However,
blockers have emerged from the closed nature of commercial tool
silos, and from the lack of open infrastructure, data and sharing
mechanisms that would enable an “Al flywheel” for the PD research
community [62]. For target list items proposed in 2018, compar-
atively more progress has been made on estimations of physics
analyses (delay, crosstalk, power, IR, thermal), while less progress
has been made on predictors of syntheses and optimizations (par-
ticularly, extremal criteria such as worst path timing or overcon-
gestion in routing hotspots). Many of the target list items remain
open today.

The context for research going forward includes basic realiza-
tions: (i) optimization baselines are hard to beat (and accuracy bars
are high), so ML will take aim at new, less-formal and/or mechani-
cal challenges; (ii) ML has not scaled well to large instances; and
(iii) best-performing metaheuristics are chaotic at their QoR limits.
Some challenges, such as predicting outcomes of long multi-stage
subflows, or reusing training data and models across designs, tools
and foundry nodes, will likely prove quite stubborn. Following are
just a few out of many threads to watch for in the coming years.

e ML-boosted automations in production for lower-hanging fruits:
floorplan squeezing, datapath-aware floorplanning, and small-
scale end-case optimizations (e.g., detailed placement for routabil-
ity, post-route-opt DRC fix, gate sizing).

o Production-worthy ML methods to condition problem instances
with “magic” screens, corners, and/or constraints at one or more
interstices of the flow (Figure 8).

o Critical mass, usability and sustaining mechanism for an open
ML EDA infrastructure that provides researchers with a spinning
Al flywheel (i.e., running “on the exhaust of data”) and reference
ops pipelines.

e Advancement of open-source EDA and proxy research enable-
ments through efforts such as OpenROAD [2], iEDA [34], Cir-
cuitOps [61] and the IEEE CEDA DATC [65].

e Commercial success — based on dominating QoR, cost, and run-

time — of generative Al methods for prompt-based flow control

and for incremental PD optimizations.

Industry acknowledgment of the value of sampling and cloud

scaling — and of the much greater resources that are needed to

unlock AI/ML benefits with these levers.

e Widespread adoption of generative Al-infused training modules
across levels (high school through re-skilling and up-skilling) for
IC physical design and design automation.

e Advancement of culture in a healthy PD research community, to
seek and reward transparency, reproducibility, and benchmarking
to measure progress.
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