
NN-Steiner: A Neural-Algorithmic Approach for the Rectilinear Steiner
Minimum Tree Problem

Andrew B. Kahng, Robert R. Nerem, Yusu Wang, Chien-Yi Yang
University of California San Diego

NN-Steiner: A Neural-Algorithmic Approach for the Rectilinear Steiner
Minimum Tree Problem

Andrew B. Kahng, Robert R. Nerem, Yusu Wang, Chien-Yi Yang
University of California San Diego

Overview

Main Idea: Combine algorithmic insights with neural networks

• Motivation: The rectilinear Steiner minimum tree (RSMT) problem, which is
NP-hard, is fundamental to IC layout design

• Arora’s algorithm for RSMTs achieves state-of-the-art (SOTA) theoretical
guarantees, too costly for practice

• Our approach: NN-Steiner
– Implementation of Arora’s celebrated polynomial-time approximation

scheme (PTAS) algorithm via a mixed-algorithmic-NN approach
– Replaces costly sub-algorithmic components with learning, while

keeping the DP framework
• NN-Steiner advantages:
– Practical while still leveraging algorithmic insights
– Uses bounded-size neural networks, thus efficient and effective to train
– Learned sub-algorithmic components generalize to larger point sets than

seen in training

Rectilinear Steiner Minimum Trees

Problem Statement:
Input: Point set V ⊂ R2

Output: Tree T with vertices U =V ∪S and minimum length under ℓ1 distance

Steiner 
points

Rectilinear Steiner 
minimum tree 

(RSMT)

Arora’s Algorithm

Key components:

L

Level 0 Level 1 Level 2
m-regular portals (m=2)Quad tree

Definition. A tree is (m,r)-light if it crosses each side of each quad-tree cell at
most r times, always at an m-regular portal.
Theorem. (m,r)-light trees approximate the length of RSMTs to within
multiplicative-error 4

r +O
(

4logL
m

)
.

...

A configuration 
dictates how 
the portals of a 
cell are 
connected.

Example Configurations

Algorithm [1]:
1. Construct quad tree

2. Base step: compute cost for each configuration of each quad-tree leaf

3. Dynamic programming step: compute the configuration costs for each quad-
tree cell using the costs of its child cells

4. Combine costs at the quad-tree root to find the minimum-cost (m,r)-light tree

Problem: Number of configurations is bounded, but too large in practice
Solution:
• Keep the DP framework
• Replace brute-force computation of poartal configuration costs with neural
networks

NN-Steiner

NN-Steiner is a mixed neural-algorithmic approach based on Arora’s SOTA
algorithm

Four bounded-size NN components, each called multiple times, are used:
• NN-Leaf: a cell’s terminal and portal locations → an encoding of the cell’s
configuration costs

• NN-DP: output of 4 instances of NN-Leaf or NN-DP → an encoding of the
cell’s configuration costs

• NN-Top: output of top-level NN-DP → portal likelihoods
• NN-Retrieve: output of NN-DP and edge portal likelihoods → portal likeli-
hoods

Thresholding the portal likelihoods at t = .95 yields the set of Steiner points S.

One 
instance of 
NN-Leaf

One 
instance of 
NN-DP

KEY

• NN components do not depend on problem size
• NN-Steiner generalizes to different problem sizes
• We can restrict training to fixed-sized problems!

Experimental Results

Algorithm \ Num. Points 50 100 200 500 800 1000 2000 5000
NN-Steiner 2.10 1.38 0.74 -0.67 -1.11 -1.43 -2.44 -2.99
REST [4] -0.17 1.07 7.40 22.67 35.16 42.52
FLUTE [2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Geosteiner [3] (exact) -0.55 -1.23 -2.25 -3.71 -4.43 -4.78

Results are an average of 100 point sets sampled from a uniform distribu-
tion, and are reported as a percentage length-difference compared to FLUTE.
REST is the SOTA NN algorithm.

Results show NN-Steiner generalizes to large point sets, despite training
on point sets of size 180.

Acknowledgments

This work is partially supported by NSF under grants CCF-2112665, CCF-2217058 and CCF-2310411, and by
DARPA IDEA HR0011-18-2-0032. The authors thank Anastasios Sidiropoulos for helpful discussions during initial
stages of this project. We also thank Qi Zhao for early explorations and inputs to the early writing of this work.

References

[1] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric
problems. Journal of the ACM (JACM), 45(5):753–782, 1998.

[2] C. Chu and Y.-C. Wong. FLUTE: Fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(1):70–83, 2007.

[3] D. Juhl, D. M. Warme, P. Winter, and M. Zachariasen. The GeoSteiner software package for computing Steiner
trees in the plane: an updated computational study. Mathematical Programming Computation, 10(4):487–532,
2018.

[4] J. Liu, G. Chen, and E. F. Young. REST: Constructing rectilinear Steiner minimum tree via reinforcement
learning. In Proccedings of the 58th ACM/IEEE Design Automation Conference (DAC), pages 1135–1140,
2021.


