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Overview

Main Idea: Combine algorithmic insights with neural networks

• Motivation: The rectilinear Steiner minimum tree (RSMT) problem, which is
NP-hard, is fundamental to IC layout design

• Arora’s algorithm for RSMTs achieves state-of-the-art (SOTA) theoretical
guarantees, too costly for practice

• Our approach: NN-Steiner
– Implementation of Arora’s celebrated polynomial-time approximation

scheme (PTAS) algorithm via a mixed-algorithmic-NN approach
– Replaces costly sub-algorithmic components with learning, while

keeping the DP framework
• NN-Steiner advantages:
– Practical while still leveraging algorithmic insights
– Uses bounded-size neural networks, thus efficient and effective to train
– Learned sub-algorithmic components generalize to larger point sets than

seen in training

Rectilinear Steiner Minimum Trees

Problem Statement:
Input: Point set V ⊂ R2

Output: Tree T with vertices U =V ∪S and minimum length under ℓ1 distance
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Arora’s Algorithm

Key components:

L
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Definition. A tree is (m,r)-light if it crosses each side of each quad-tree cell at
most r times, always at an m-regular portal.
Theorem. (m,r)-light trees approximate the length of RSMTs to within
multiplicative-error 4

r +O
(

4logL
m

)
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A configuration 
dictates how 
the portals of a 
cell are 
connected.

Example Configurations

Algorithm [1]:
1. Construct quad tree

2. Base step: compute cost for each configuration of each quad-tree leaf

3. Dynamic programming step: compute the configuration costs for each quad-
tree cell using the costs of its child cells

4. Combine costs at the quad-tree root to find the minimum-cost (m,r)-light tree

Problem: Number of configurations is bounded, but too large in practice
Solution:
• Keep the DP framework
• Replace brute-force computation of poartal configuration costs with neural
networks

NN-Steiner

NN-Steiner is a mixed neural-algorithmic approach based on Arora’s SOTA
algorithm

Four bounded-size NN components, each called multiple times, are used:
• NN-Leaf: a cell’s terminal and portal locations → an encoding of the cell’s
configuration costs

• NN-DP: output of 4 instances of NN-Leaf or NN-DP → an encoding of the
cell’s configuration costs

• NN-Top: output of top-level NN-DP → portal likelihoods
• NN-Retrieve: output of NN-DP and edge portal likelihoods → portal likeli-
hoods

Thresholding the portal likelihoods at t = .95 yields the set of Steiner points S.
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KEY

• NN components do not depend on problem size
• NN-Steiner generalizes to different problem sizes
• We can restrict training to fixed-sized problems!

Experimental Results

Algorithm \ Num. Points 50 100 200 500 800 1000 2000 5000
NN-Steiner 2.10 1.38 0.74 -0.67 -1.11 -1.43 -2.44 -2.99
REST [4] -0.17 1.07 7.40 22.67 35.16 42.52
FLUTE [2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Geosteiner [3] (exact) -0.55 -1.23 -2.25 -3.71 -4.43 -4.78

Results are an average of 100 point sets sampled from a uniform distribu-
tion, and are reported as a percentage length-difference compared to FLUTE.
REST is the SOTA NN algorithm.

Results show NN-Steiner generalizes to large point sets, despite training
on point sets of size 180.
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