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Abstract
Recent years have witnessed rapid advances in the use of
neural networks to solve combinatorial optimization prob-
lems. Nevertheless, designing the “right” neural model that
can effectively handle a given optimization problem can be
challenging, and often there is no theoretical understanding
or justification of the resulting neural model. In this paper,
we focus on the rectilinear Steiner minimum tree (RSMT)
problem, which is of critical importance in IC layout design
and as a result has attracted numerous heuristic approaches
in the VLSI literature. Our contributions are two-fold. On
the methodology front, we propose NN-Steiner, which is a
novel mixed neural-algorithmic framework for comput-
ing RSMTs that leverages the celebrated PTAS algorithmic
framework of Arora to solve this problem (and other geomet-
ric optimization problems). Our NN-Steiner replaces key al-
gorithmic components within Arora’s PTAS by suitable neu-
ral components. In particular, NN-Steiner only needs four
neural network (NN) components that are called repeatedly
within an algorithmic framework. Crucially, each of the four
NN components is only of bounded size independent of in-
put size, and thus easy to train. Furthermore, as the NN com-
ponent is learning a generic algorithmic step, once learned,
the resulting mixed neural-algorithmic framework general-
izes to much larger instances not seen in training. Our NN-
Steiner, to our best knowledge, is the first neural architec-
ture of bounded size that has capacity to approximately solve
RSMT (and variants). On the empirical front, we show how
NN-Steiner can be implemented and demonstrate the effec-
tiveness of our resulting approach, especially in terms of gen-
eralization, by comparing with state-of-the-art methods (both
neural and non-neural based).

1 Introduction
Given a set of points V in Rd, a Steiner tree spanning V
is a tree whose vertex set is V together with a set of ad-
ditional points S ⊂ Rd called Steiner points. A rectilinear
Steiner tree is a Steiner tree where all edges are axis-parallel.
Given V , the rectilinear Steiner minimum tree (RSMT) prob-
lem aims to compute the rectilinear Steiner tree spanning V
with smallest possible cost, defined as the total length of all
edges in the tree. The RSMT problem has fundamental im-
portance in VLSI physical design, as minimum wiring is cor-
related with key figures of merit including dynamic power,
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congestion, and timing delay. Hence, RSMT constructions
have been well-studied for interconnect planning and esti-
mation, timing estimation, global routing, and other appli-
cations (Kahng et al. 2022).

The existence of an optimal RSMT whose Steiner points
are restricted to the Hanan grid, which is formed by intersec-
tions of all axis-parallel lines passing through points in V ,
was established in (Hanan 1966). The RSMT problem was
subsequently shown to be NP-complete (Garey and Johnson
1977). It was proved by (Hwang 1976) that the rectilinear
minimum spanning tree gives a 3/2-approximation. Results
leveraging Zelikovsky’s method led to a 5/4-approximation
(Berman et al. 1994). Theoretically, the best known approx-
imation algorithm for RSMT in fixed-dimensional space
is obtained via the PTAS (polynomial-time approximation
scheme) proposed by Arora (Arora 1998). Arora’s method
provides a (1 + ε)-approximation for a range of problems,
such as the traveling salesperson problem, in addition to
RSMT. Unfortunately, while this algorithm runs in time
polynomial in the number of points, its time complexity de-
pends exponentially on 1

ε and, consequently, the method has
yet to find use in practice.

On one hand, given the importance of the RSMT prob-
lem in chip design and its intractability, a large number of
heuristics have been developed in the VLSI CAD commu-
nity, aiming to improve the quality of RSMT computation
with practical running time, e.g., (Kahng, Măndoiu, and Ze-
likovsky 2003; Liu, Chen, and Young 2021; Hu et al. 2006;
Fallin et al. 2022; Wang et al. 2005; Cinel and Bazlamaçci
2008). The current state-of-the-art (SOTA) heuristic algo-
rithm is FLUTE (Wong and Chu 2008; Chu and Wong 2007,
2005; Chu 2004). FLUTE constructs a lookup table encod-
ing optimal RSMTs for all instances smaller than 10 and
then constructs RSMTs for larger pointsets by partitioning
the input pointset into subsets of size q or smaller, and com-
bining the optimal trees over these subsets. FLUTE has been
shown to be very close to optimal for small pointsets and
is widely used in practice in VLSI CAD. GeoSteiner (Juhl
et al. 2018) is the SOTA algorithm for exact RSMT compu-
tation, and is an integer linear programming approach.

On the other hand, with recent success of deep neural net-
works (NNs) in many applications, there has been a surge
in use of NNs to help tackle combinatorial optimization
problems (Bengio, Lodi, and Prouvost 2021; Khalil et al.



2017; Li, Chen, and Koltun 2018; Selsam et al. 2018; Gasse
et al. 2019; Sato, Yamada, and Kashima 2019), such as
traveling salesperson or other routing-related problems, us-
ing reinforcement learning (RL) (Vinyals, Fortunato, and
Jaitly 2015; Bello et al. 2017; Deudon et al. 2018; Prates
et al. 2019). Recently, REST (Liu, Chen, and Young 2021)
achieved the first NN-based approach for RSMT by find-
ing so-called rectilinear edge sequences using RL. (Chen
et al. 2022) designed an RL framework to find obstacle-
avoiding Steiner minimum trees. Significant challenges in
neural combinatorial optimization (NCO) remain. NNs are
often used in an ad-hoc manner with limited theoretical un-
derstanding of the resulting framework. It is also often not
known if machine-learning pipelines have the capacity to
solve a given combinatorial optimization problem, or how
network-architecture design could leverage problem struc-
ture to design more effective and efficient neural models.

One potential way to inject theoretical justification into
the design of neural approaches for combinatorial problems
is to leverage the vast literature on approximation algo-
rithms. In particular, instead of using one NN to solve an
optimization problem in an end-to-end manner, one can use
neural components in a high-level algorithmic framework.
An exemplary thread of works uses NNs to learn variable-
selection decisions in branch-and-bound frameworks solv-
ing mixed-integer linear programming problems (Gasse
et al. 2019; Gupta et al. 2020; Nair et al. 2020). (McCarty
et al. 2021) propose a mixed neural-algorithmic framework
NN-Baker to solve problems such as maximum independent
set in the geometric setting by using Baker’s technique to
decompose problems into small instances of bounded size,
and then training a single NN to solve these instances.

This Work. In this paper, we develop an approach to
compute RSMTs in Rd. (While we use R2 and Manhattan
geometry, the framework extends to Rd for any constant
value of d.) Specifically, we develop NN-Steiner1, a mixed
neural-algorithmic framework that leverages the ideas be-
hind Arora’s PTAS for RSMT (Arora 1998).

At a high level, Arora’s PTAS partitions the input do-
main in a hierarchical manner, then solves the problem via a
bottom-up dynamic programming (DP) procedure. One key
result of (Arora 1998) is that each DP subproblem is of only
bounded size, and thus, can be solved in time independent
of the number of input points. However, the complexity of
this DP step is prohibitive in practice.

In Section 3, We develop a mixed neural-algorithmic ap-
proach to simulate Arora’s PTAS; Fig. 4 gives a high-level
illustration. The costly DP step is replaced by a single NN
component that outputs a learned embedding of the solutions
to the DP subproblems. This single NN module is called re-
peatedly within the algorithmic framework. Other NN com-
ponents simulate the backward retrieval of Steiner points in
a top-down manner. As each of the four NN components is
of size independent of input problem size, the model com-
plexity of each component is bounded.

1Code is open-sourced at https://github.com/ABKGroup/NN-
Steiner.

On the theoretical front, we show in Theorem 3.1 that
this framework has the capacity to produce approximate
RSMTs using only NNs of bounded complexity. On the
practical front, NNs replace a key but costly component
in Arora’s PTAS, leading to an efficient architecture. Fur-
thermore, since the neural component only needs to handle
fixed-size instances, training is easier. Once trained, NN-
Steiner generalizes well to problems of much larger sizes
than seen in training, as we demonstrate in Section 4. In-
deed, extensive experimental results show that NN-Steiner
achieves better performance than NN-based and non-NN-
based SOTA methods for sufficiently large problem sizes.
NN-Steiner outperforms the existing RL-based neural ap-
proach significantly for large pointsets. As input size in-
creases, the RL-based policy must handle a larger action
space, which makes it challenging both to learn the policy
and to generalize. NN-Steiner learns an algorithmic compo-
nent of fixed size, leading to superior generalization.

In summary, we propose NN-Steiner, a novel neural-
algorithmic framework for the RSMT problem, which lever-
ages the algorithmic idea of Arora’s PTAS (which is the
theoretical best approximation algorithm for this problem).
NN-Steiner is, to our best knowledge, the first neural archi-
tecture of bounded size that has capacity to approximately
solve the RSMT problem. Moreover, the algorithmic align-
ment of NN-Steiner leads to better practical performance
than existing SOTA methods for large instances. While we
focus on the RSMT problem in this paper due to its prac-
tical importance in VLSI, the versatility of Arora’s frame-
work means our methodology can be potentially applied to
other geometric optimization problems, such as the obstacle-
avoiding RSMT problem (Ajwani, Chu, and Mak 2010).

Our work is one of the first NCO frameworks to use algo-
rithmic alignment to remove dependence on problem size.
To our best knowledge, the only other work in this direc-
tion is NN-Baker (McCarty et al. 2021), which is limited
to a very simple algorithmic setup (a flat partitioning of the
input domain). The dynamic programming (DP) framework
we consider is much more general: for example, a similar
DP framework exists for many optimization problems (e.g.,
max independent set) for graphs with bounded tree width
(Cygan et al. 2015).

Removing problem-size dependence is important, as size
generalization is a fundamental obstacle in NCO (Garmen-
dia, Ceberio, and Mendiburu 2022) that is challenging to
overcome (Liu et al. 2022). Training on large instances is
prohibitively expensive: for supervised learning this requires
computation of exact solutions to large instances, and for RL
and unsupervised learning, training becomes exponentially
more challenging as size increases. Thus, size generaliza-
tion is essential for performance on large instances. In some
cases, such generalization is even provably hard (Yehudai
et al. 2020). Notably, our experiments show NN-Steiner ex-
hibits strong size generalization on a hard optimization prob-
lem that has practical implications.

2 Preliminaries
We now introduce the RSMT problem, then briefly describe
Arora’s PTAS for this problem (Arora 1998). For simplicity,



we henceforth treat the case where input points lie in R2.
Our definitions and Arora’s algorithm can both be extended
to Rd, as well as to the standard Euclidean Steiner minimum
tree problem (without rectilinear constraints).
Definition 1 (RSMT). Given a set of points V ⊂ R2, the
rectilinear Steiner minimum tree (RSMT) for V is a tree T
with vertex set V ∪ S ⊂ R2 with minimum total edge length
under the ℓ1 norm. The set S is the set of Steiner points.

Figure 1: (L) Rectilinear spanning tree of input (blue) points.
(R) Rectilinear Steiner minimum tree (red points are Steiner
points).

Arora’s PTAS
We now describe the high-level idea behind Arora’s
polynomial-time approximation algorithm, which we refer
to as Arora’s PTAS. For simplicity, we assume that the input
points V ⊂ R2 have integral coordinates, and are contained
in a bounding box of side length L = O(n) with n = |V |.
A perturbation process given in (Arora 1998) rounds input
coordinates so that this assumption holds without changing
theoretical guarantees for the algorithm.

Step 1: Construct a shifted quadtree. First, we pick in-
tegers a, b ∈ [0, L) uniformly at random and then translate
the input pointset by the vector (a, b). We then construct a
quadtree, where the splitting of quadtree cells terminates if
a cell contains 1 or 0 points. The quadtree is a tree Q where
each internal vertex has degree 4. The root has level 0, and is
associated with a cell of side length L. Any vertex v ∈ Q at
level i is associated with a cell Av of size (i.e., side length)
L
2i . Bisecting a level-i cell Av with a horizontal line and with
a vertical line decomposes it into four level-(i + 1) child
cells, each of size L

2i+1 , corresponding to the four children of
v ∈ Q. As the side length of the bounding box is L = O(n),
and points have integral coordinates, the height (max-level)
of the quadtree is at most O(logL) and the total number of
vertices in Q (and thus the number of cells across all levels)
is O(n logL) ⊆ O(n log n).

Terminals
Level-1 portals
Level-2 portals

Figure 2: (a) A two-level quadtree over the input points
(black dots), where each side of a quadtree cell has 4 por-
tals. (b) An example of a (2, 1)-light rectilinear Steiner tree.

We now consider a special family of Steiner trees for
which the crossing of quadtree cells is constrained.

Definition 2. Let m, r be positive integers. The m-regular
set of portals is the set of points such that each cell has a
portal at each of its 4 corners, and m other equally-spaced
portals on each of its four sides. A Steiner tree is (m, r)-
light if it crosses each edge of each cell at most r times and
always at a portal.

Note that if a side of a cell S is contained in the sides of
multiple cells, then the portals on S are spaced according to
the cell with side containing S that has the lowest level i. We
say that the portals on S have level i. See Fig. 2 for an exam-
ple of quadtree decomposition and a (2, 1)-light rectilinear
Steiner tree.

Step 2: Dynamic programming. The following theorem
guarantees that the minimal (m, r)-light rectilinear Steiner
tree is an approximate RSMT (Arora 1998). A proof is given
in the supplemental (Kahng et al. 2023).

Theorem 2.1 (Structure Theorem). If shifts 0 ≤ a, b < L
are chosen uniformly randomly in [0, L), then with probabil-
ity at least 1/2, the minimum-length (m, r)-light rectilinear
Steiner tree has length at most

(
1 + 4

r + O( 4 logL
m )

)
OPT,

where OPT is the length an RSMT.

Hence, our goal is to compute a minimum (m, r)-light
rectilinear Steiner tree. In particular, Arora proposed to use
DP in a bottom-up construction. We sketch the idea here.

We process all quadtree cells in a bottom-up manner. For
a fixed quadtree cell A, consider an (m, r)-light Steiner tree
T restricted to A; this gives rise to some Steiner forest TA

in A, which can exit this cell only via portals on sides of A.
In particular, the portion of the Steiner tree outside A can
be solved independently as long as we know the following
portal configuration: (i) the set of exiting portals on the side
of this cell that are used by T (which connect points outside
A with those inside), and (ii) how these exiting portals are
connected by trees in the Steiner forest TA.

Let ΞA be the set of portal configurations for a cell A, and
let D = |ΞA|. Each cell has (4m+4)4r subsets of 4r portals,
and each subset of portals can be partitioned Bell(4r) ways.
As the Bell number Bell(k) is bounded above by kk we have
D = (4m+4)4rBell(4r) < (4m+4)8r. Our goal is to com-
pute, for each portal configuration σ ∈ Ξ, the minimum cost
cost(σ) of any rectilinear Steiner forest within A that gives
rise to this boundary condition. Assuming an arbitrary but
fixed order of portal configurations in Ξ = {σ1, . . . , σD},
the costs of all configurations can then be represented by a
vector C⃗A ∈ RD, where C⃗A[i] = cost(σi). We call C⃗A the
cost-vector for A.

We now describe the DP algorithm to compute this cost-
vector for all cells in a bottom-up manner (decreasing order
of levels).

Base case: A is a leaf cell. In this case, there is at most
one point p from V contained in A. We enumerate all con-
figurations, and compute C⃗A directly, which requires solving
RSMT instances of bounded size.

Inductive step: A is not a leaf cell. The four child-cells
A1, . . . ,A4 of A are from the level below A’s level, and thus,
by the inductive hypothesis, we have already computed the



cost-vectors C⃗Ai for i = 1, . . . , 4. Consider any portal con-
figuration σ ∈ Ξ. We simply need to enumerate all choices
of portal configurations τ1, . . . , τ4 for child-cells A1, . . . ,A4

that are consistent with σ, meaning that the portals on com-
mon sides are the same, and the connected components of
portals from the 4 child-cells do not form cycles (hence, still
induce a valid Steiner forest). We have

cost(σ) = min
τ1,...,τ4 consistent with σ

∑
i∈{1,2,3,4}

cost[τi] (1)

Final construction of approximate RSMT. At the end of
DP, after we compute the cost-vector for the root cell, we
identify the portal configuration σ∗ ∈ Ξ with lowest cost. To
obtain the corresponding rectilinear Steiner tree, we perform
a top-down backtracking: (i) for the root cell, from σ∗ we
can retrieve the set of child-cell configurations τ∗1 , . . . , τ

∗
4

generating σ∗; (ii) we repeat this until we reach all leaf cells.
At each leaf cell we once again compute the optimal Steiner
forest for the chosen configuration. Combining these Steiner
forests yields an optimal (m, r)-light RSMT.

3 NN-Steiner
Although the running time of Arora’s PTAS is polynomial in
the problem size, its computation is prohibitively expensive
in practice as we compute all possible portal configurations.
Instead of brute-force enumeration of portal configurations,
we propose a framework, NN-Steiner, which infuses neural
networks (NNs) into Arora’s PTAS to select Steiner points
from portals to build the output Steiner tree. First, we show
that the key components within the DP algorithm can be sim-
ulated exactly by certain NNs. However, such NNs are not
efficient either, as their size depends exponentially on m and
r. We then show a practical instantiation of NN-Steiner and
demonstrate its performance in Sec. 4.

Theoretical NN-Steiner to Simulate Arora’s PTAS
We can simulate key components in the DP framework of
Arora’s PTAS. Specifically, we use four neural networks:
NNbase and NNDP respectively implement the base case and
inductive step of DP to compute encodings of cost-vectors in
a bottom-up manner, while NNtop and NNretrieve obtain opti-
mal portal configurations from cells in a top-down manner.

There exist designs and parameters of these NNs simu-
lating Arora’s DP algorithm exactly; moreover, these NNs
are each of only bounded size independent of n (depending
only on parameters m and r, which are set to be constant in
practice). Here, we describe how to construct NNDP to sim-
ulate one inductive step in the DP algorithm. For brevity, we
leave the other NN cases to a full version.

Recall that, as described in Sec. 2, the inductive step of
the DP algorithm can be rewritten as applying a function
fDP : (RD)4 → RD, where D is the total number of
portal configurations for a single cell. In particular, for any
quadtree cell A with child-cells A1, . . . ,A4, the input to fDP

is the four cost-vectors (C⃗A1
, C⃗A2

, C⃗A3
, C⃗A4

) ∈ (RD)4, and
the output is the cost-vector C⃗A ∈ RD.

Eqn. (1) gives how to compute each entry in the out-
put vector fDP (C⃗A1

, . . . , C⃗A4
). That is, fDP has a simple

form modeled as a certain linear function followed by a min-
pooling, which can be simulated by a NN as shown in Fig.
3. In particular, to compute C⃗A[σi], each neuron cℓ takes in a
set of four portal configurations τj ∈ Aj , j = 1, . . . , 4, con-
sistent with σi, and simply does a sum operation. Then the
output takes a min-pooling over all values at cℓs. As there
are at most D4 sets of four portal configurations for each
σi, the entire model has complexity Θ(D5). (Recall that
D ≤ (4m+4)8r is independent of the input pointset size n.)
That is, there is a NNDP of bounded complexity simulating
the DP step exactly. The following theorem summarizes the
existence of NNs to implement Arora’s PTAS.

Theorem 3.1. There exist four NNs, each of only bounded
size depending only on m and r, that can simulate the
DP algorithm of Arora’s PTAS, such that the resulting
mixed neural-algorithmic framework can find a

(
1 + 4

r +

O( 4 logL
m )

)
-approximate rectilinear Steiner tree (i.e., with

length at most
(
1 + 4

r + O( 4 logL
m )

)
OPT). The framework

calls these NNs only O(n logL) ⊆ O(n log n) times.

Practical Instantiation of NN-Steiner
The theoretical neural-algorithmic framework described in
the previous section is not practical as it is explicitly encod-
ing the exponential number of portal configurations (expo-
nential in m, r). We now present NN-Steiner, a practical in-
stantiation of this framework. Theorem 3.1 implies that the
NN-Steiner architecture has the capacity to approximately
solve the RSMT problem using NN components of bounded
size. In practice, one hopes that NN-Steiner can leverage
data to encode portal configurations more efficiently.

The pipeline starts with a neural network NNbase, that acts
on each leaf cell to produce an encoding of the configuration
costs. Next, we apply a NN simulation of the dynamic pro-
gramming step NNDP, for each non-leaf cell. We then use
two NNs, NNtop and NNretrieve, to simulate the backtracking
stage and return the likelihood that each portal is a Steiner
point. By selecting high-likelihood portals, we construct a
set of Steiner points and a corresponding Steiner tree. As the
selected Steiner points S must lie on cell boundaries, we fin-
ish with a local refinement scheme which introduces Steiner
points that lie in the interior of leaf cells. See Fig. 4 for a
high-level overview of our practical NN-Steiner pipeline.

Forward pass. The forward processing involves two
MLPs, NNbase and NNDP, and calls NNDP recursively in a
bottom-up manner to compute an implicit encoding of the
costs of possible portal configurations.

Base-case neural network NNbase. At the leaf level of
Arora’s PTAS, each cell contains at most 1 point. We instead
terminate the quadtree decomposition when a cell contains
no more than kb points, where kb is a hyperparameter. Given
a leaf cell B with VB ⊂ V the set of points contained in
B, NNbase takes relative coordinates of VB as well as the
set of portals on the sides of B as input, and outputs a dc-
dimensional vector as an implicit encoding of the cost vector
C⃗B ∈ RD; note that dc << D in practice. Coordinates are
specified relative to the bottom left corner of the cell, and
are normalized by the cell size. If a leaf cell has np < kb



Figure 3: An NN simulating fDP . Here, K = D4 and C⃗Ai
[σj ] = τ ji encodes the jth configuration cost in cell Ai. We sum over

costs Ai (i = 1, 2, 3, 4) consistent with a portal configuration σj (j = 1, 2, ..., D) so that the resulting vector cost(σj) encodes
the cost of all configurations consistent with σj . Min-pooling on cost(σj) yields the vector C⃗Ai

for i ∈ {1, 2, 3, 4} (blue).

Quadtree
construction

Bottom-up
config. encoding
NNbase

NNDP

Top-down portal
likelihood retrieval
NNtop

NNretrieve

MST
computation

Cell
refinement

Subtree
refinement

NN tree construction
Local refinement

Figure 4: Pipeline of an NN-Steiner instantiation.

input points, we pad the remaining kb−np coordinates with
(−1,−1). Each cell can have at most 4m+8 portals (m + 2
on each side) and these portals can appear only at 4m+8 dis-
tinct relative locations in the cell. Portals are then provided
to NNbase as 4m + 8 indicators in {0, 1}. Here, each cor-
ner contains two portals to simplify computation by distin-
guishing connections passing through from different sides.
(Arora’s PTAS uses a single portal at each corner.)

Terminating with at most kb points in each leaf cell is
advantageous as, for a cell with few points, it is challeng-
ing to learn a meaningful encoding of portal configurations.
If kb is small, the majority of cells have few points. (Note
that a complete degree-4 tree has around 75% of its nodes
at the leaf level.) Hence, training on such a collection of
cells provides bad supervision, harming the effectiveness of
learning. On the other hand, as kb increases, larger Steiner-
tree instances must be computed at leaves, which may neg-
atively affect the performance of the framework. In our ex-
periments, kb is a hyperparameter; see Sec. 4 for its analysis.

DP-inductive-step neural network NNDP. Next, we use
another MLP, NNDP, to simulate the function fDP , which is
equivalent to the DP in Arora’s PTAS. In detail, given a cell
A at level i, let A1, . . . ,A4 be its 4 child-cells at level i+1 in
a fixed order. The neural network NNDP takes encodings of
C⃗A1

, . . . , C⃗A4
, and the portals of A, and generates an encod-

ing of the cost vector C⃗A ∈ RD of the parent cell A. Note
that the encodings of C⃗A1 , . . . , C⃗A4 are produced by apply-
ing either NNDP or NNbase at A1, . . . ,A4. Again, portals are
provided via 4m+ 8 indicators in {0, 1}.

Backward pass. The forward pass applies NNbase to all
leaf cells and NNDP to all internal vertices, simulating the
bottom-up stage of Arora’s PTAS. Now, we simulate the

backtracking stage of Arora’s PTAS with two additional
NNs. These NNs construct a portal-likelihood map ρ : P →
[0, 1], where P is the set of all portals.

Root-level retrieval neural network NNtop. For a cell A let
Portals(A) denote the portals in A that are one level higher
than A’s level, i.e., the portals on the vertical and horizontal
segments bisecting A. Let R be the root cell with children
A1, . . .A4. The input to NNtop is the output of NNDP at R,
and the input of NNDP at R. The output of NNtop is a vector
of the likelihoods of Portals(R), where R is the root cell.

Backward retrieval step neural network NNretrieve. We
compute the rest of the portal likelihoods in a top-down man-
ner. This is achieved by using a neural network NNretrieve

(at all non-root non-leaf cells A) which computes the likeli-
hoods of Portals(A). The input of NNretrieve applied at a cell
A with child-cells A1, . . . and A4, is comprised of two parts.
First, NNretrieve takes the output of four instances of either
NNbase or NNDP applied at A1, . . ., and A4 (same as NNtop).
Second, NNretrieve receives likelihoods for every portal on
the boundary of A. At this step, these likelihoods will have
been computed previously by an instance of either NNretrieve

or NNtop applied at the level above A’s level.

Retrieval of Steiner points and postprocessing. After
the backward pass, we have a portal-likelihood map ρ : P →
[0, 1] over all portals. We select all portals with likelihood
greater than a threshold t ∈ (0, 1) as the initial set of Steiner
points S. We then compute the minimum spanning tree over
S ∪ V , which takes time O(|S ∪ V | log |S ∪ V |). Next, we
apply three local refinement steps:

1. First, we iterate over all leaf cells and for each cell
replace every connected component with the optimal
Steiner tree connecting all of the component’s Steiner
points (selected portals) and input points.



2. Next, we remove Steiner points with degree less than 3
and round the locations of the remaining Steiner points
to integer coordinates.

3. Finally, we partition2 the tree into subtrees with k or
fewer input points. We replace each subtree with the opti-
mal Steiner tree over both its input points and any Steiner
point which is adjacent to a vertex in another partition.

Optimal Steiner trees are computed using GeoSteiner 5.1
(Juhl et al. 2018). The first step, cell refinement, introduces
Steiner points into the interior of cells since initially Steiner
points can only be at portals. The second step removes un-
necessary Steiner points and rounds the locations of Steiner
points. We perform this rounding step as the optimal Steiner
points are known to lie on the Hanan grid and thus have
Steiner points with integer coordinates. The final step, sub-
tree refinement, allows Steiner points at portals to be moved.

Figure 5: Total runtime for solving 100 pointsets.

Training. For each training pointset, we compute the op-
timal Steiner tree using GeoSteiner 5.1 (Juhl et al. 2018).
Each time this optimal tree crosses a side of a cell, we move
the crossing to the nearest portal. The resultant set of portals
with crossings is used as the target in computing the loss. For
the loss, we use binary cross entropy with weights of m+ 1
for portals that are Steiner points in the target, and weights of
1 for other portals. As the classification is imbalanced, with
most portals not being Steiner points, this scheme prevents
low loss with uniformly near-zero portal likelihoods.

We train all four networks in an end-to-end manner. In
training, the models are connected in a tree structure sim-
ilar to that used in RNNs (recursive neural networks) in
that the output of NNDP is fed into the same NNDP in-
stance repeatedly in our architecture. However, RNNs are
often connected linearly while NN-Steiner connects NNs
in a tree structure. To accelerate training, we utilize batch-
mode training. Batch mode necessitates that the same tree
structure is used for each training sample. Otherwise, the
model shape would be different between training samples,
and these samples could not be learned in parallel.

We use pointsets sampled from a distribution tailored for
compatibility with batch-mode training. Pointsets are con-
structed as follows: (i) Sample n0 points from a distribution
D on an integer grid of size N ×N . (ii) Construct a depth-
d quadtree. (iii) In each quadtree leaf cell with greater than

2We partition by iterating the following: (i) select a leaf, (ii) use
breadth-first search to select vertices until k input points or all re-
maining input points are selected, then (iii) remove these vertices.
The subtree induced by each removed set of vertices, which con-
tains at most k input points, forms an element of the partition.

kb points, remove points randomly until only kb points re-
main. With these pointsets, a depth-d quadtree can always
be used with no more than kb points in every leaf cell. Note
that while we use a fixed tree structure throughout training,
for testing, the tree structure is decided by the specific test
pointset and can have any shape or depth.

4 Experimental Performance
We present experimental results of NN-Steiner on planar
RSMTs. Our experiments show that NN-Steiner outper-
forms SOTA algorithms for large point sets and has ap-
proximately linear runtime. We demonstrate the effective-
ness of NN-Steiner on differently distributed pointsets. We
give ablations that elucidate the role of our portal-retrieval
and refinement schemes and we show the dependence of
NN-Steiner on critical hyperparameters. All of our experi-
ments run on a 64-bit Linux server with a 2.25GHz AMD
EPYC 7742 Processor (256 threads) and three Nvidia RTX
A100-SXM4 GPUs allocating 80GB RAM.

Implementation. Each of NNbase,NNDP,NNtop,NNretrieve

is implemented using a 4-layer MLP, with ReLU activa-
tion and size-4096 hidden layers. The output of NNbase and
NNDP is a vector of dimension dc = 16(4m + 8). An addi-
tional sigmoid layer is appended to NNtop and NNretrieve to
output the portal likelihoods in [0, 1]. For training, we use a
dropout of 0.1 and a batch size of 5000. Training pointsets
are generated using a uniform distribution with n0 = 180
initial points, N = 100 grid lines, and using a quadtree of
depth d = 3. ( In testing, the quadtree may have depth much
greater than d, depending on the number and distribution of
points.) We train the models on 120,000 pointsets solved ex-
actly by GeoSteiner. For the refinement step, we partition
into subtrees of size k = 10. We train for 5000 epochs us-
ing Adam (Kingma and Ba 2014) as our optimizer, with a
learning rate of 10−4. The default setting of NN-Steiner is
m = 15 and kb = 4 with the threshold set to t = .95.

Performance comparison. The results of the exact RSMT
solver GeoSteiner are ground truth solutions. Since we could
not compute GeoSteiner for large instances, we use FLUTE
(Chu and Wong 2007), the SOTA heuristic solver, as the
base for comparison of approaches. Table 1 shows the per-
formance comparison. Smaller values indicate better perfor-
mance and negative values indicate superior performance to
FLUTE, i.e., length is smaller than the output of FLUTE. All
the FLUTE instances are run with A = 18, the setting which
produces the highest-quality solutions. We also make com-
parisons against REST (Liu, Chen, and Young 2021) with
T = 8, the best-performing setting claimed by the work.
Batch sizes are set to 1. Test pointsets are generated uni-
formly at random from a 104 × 104 grid. Reported values
are averages over 100 pointsets. Table 1 shows that NN-
Steiner generalizes to large pointsets. (Recall that training
pointsets have less than n0 = 180 points.) Furthermore, NN-
Steiner outperforms FLUTE and REST for pointsets of size
500 or greater, with margin of outperformance increasing
with pointset size. NN-Steiner has advantage over FLUTE
for large problems, however, it performs best on small point
sets relative to the exact solution. Also, Fig. 5 shows that the
runtime of NN-Steiner scales approximately linearly.



Number of points 50 100 200 500 800 1000 2000 5000
NN-Steiner 2.10 1.38 0.74 -0.67 -1.11 -1.43 -2.44 -2.99
REST (T=8) -0.14 1.08 7.40 22.68 35.16 42.52 75.12 147.48
FLUTE (A=18) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GeoSteiner -0.54 -1.23 -2.25 -3.71 -4.43 -4.78 – –

Table 1: Performance comparison on uniformly distributed pointsets (average percent length difference compared to FLUTE).

Number of points 50 100 200 500 800 1000 2000 5000
NN tree construction + refinement (NN-Steiner) 2.10 1.38 0.74 -0.67 -1.11 -1.43 -2.44 -2.99
MST of V + refinement 2.54 2.50 1.44 0.04 -0.75 -1.04 -1.73 -2.46
NN tree construction + cell refinement 3.01 2.54 1.84 0.39 -0.10 -0.45 -1.39 -2.08
NN tree construction + subtree refinement 6.76 5.55 4.90 3.39 3.20 3.07 1.64 1.44
FLUTE + refinement -0.03 -0.08 -0.15 -0.22 -0.27 -0.27 -0.31 -0.33

Table 2: Ablation experiments showing the effect of refinement (average percent length difference compared to FLUTE).

Generalization to Different Distributions. We test the gen-
eralization of NN-Steiner to different pointset distributions.
In particular, NN-Steiner is trained on uniformly distributed
pointsets, but tested on pointsets with mixed normal and
non-isotropic normal distributions. Points are restricted to a
104 × 104 grid. The standard deviation of the non-isotropic
normal distribution is taken to be 3000 for both x and y and
1500 for mixed-normal distribution. Means are distributed
uniformly. The covariance matrix of the non-isotropic nor-
mal distribution is given by uniformly picking a correla-
tion in [−1, 1]. For the mixed-normal distribution, we use a
uniform mixture of 10 normal distributions.3 Fig. 6 shows
that NN-Steiner generalizes to different distributions, de-
spite only being trained on uniformly distributed pointsets.

Figure 6: NN-Steiner performance on different distributions.

Ablations. We use an ablation study to show the impor-
tance of each component of our algorithm. To determine the
impact of different components on performance as a whole,
we evaluate the performance after removing each compo-
nent. The components we consider are tree construction, cell
refinement, and subtree refinement (Fig. 4). Tree construc-
tion produces an MST over V ∪ S where S is found by por-
tal retrieval. To evaluate performance without this compo-
nent, we instead apply refinement to the MST over V (here,
edges between cells are preserved in cell refinement). Table
2 shows that each of these stages contributes to the overall
performance, with refinement contributing the most. How-
ever, this observation does not undermine the importance
of tree construction; if we apply refinement to the output
of FLUTE (Chu and Wong 2007), also shown in Table 2,

3We do not generate mixed-normal distributions of 5000 points
because the 104 × 104 granularity is too restrictive.

we see limited improvement. This suggests that the global
topology produced by tree construction and cell refinement
for large pointsets is superior to that produced by FLUTE.

Hyperparameter choice. We evaluate how m and kb affect
performance (Fig. 7). Results show poor performance for
small values of kb, which we attribute to overfitting. In the-
ory, (m, r)-light trees are better approximations with greater
values of m. However, for smaller instances, m = 7 yields
similar performance as m = 15. This suggests that, for
smaller instances, the fine granularity from larger m is not
needed to generate high-quality global tree topologies. Also,
models with smaller m may exhibit better performance as
they are easier to train due to less classification imbalance.
Experiments and discussion for threshold selection are given
in the supplemental material (Kahng et al. 2023)

Figure 7: Dependence of NN-Steiner on kb and m.

5 Conclusion
We present a mixed neural-algorithmic framework, NN-
Steiner, for solving large-scale RSMT problems. This is the
first neural architecture that has the capacity to solve RSMT
approximately. In experiments, our framework shows gener-
alization and scalability, and outperforms both heuristic al-
gorithms and machine learning baselines on large instances.

Our ongoing research pursues the following directions.
First, Arora’s PTAS can solve higher-dimensional RSMT
problems; this motivates us to generalize our framework to
3D IC designs. Second, the methodology behind NN-Steiner
can be extended to compute obstacle-avoiding RSMTs,
which again have important applications in VLSI design.
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