
An Open-Source Constraints-Driven General Partitioning
Multi-Tool for VLSI Physical Design

Ismail Bustany†, Grigor Gasparyan†, Andrew B. Kahng, Ioannis Koutis‡, Bodhisatta Pramanik, Zhiang Wang
University of California San Diego, La Jolla, CA, USA
†Advanced Micro Devices, San Jose, CA, USA

‡New Jersey Institute of Technology, Newark, NJ, USA
Email: †{ismail.bustany, grigor.gasparyan}@amd.com, {abk, bopramanik, zhw033}@ucsd.edu, ‡ikoutis@njit.edu

Abstract—With the increasing complexity of IC products, large-scale
designs must be efficiently partitioned into multiple blocks, tiles, or
devices for concurrent backend place-and-route (P&R) implementation.
State-of-the-art partitioners focus on balanced min-cut without consider-
ing constraints such as timing or heterogeneity of resource types. They
are thus increasingly unsuitable for current physical design require-
ments. We introduce TritonPart, the first open-source, constraints-driven
partitioning tool for VLSI physical design. TritonPart employs efficient
algorithms to handle constraints, including multi-dimensional balance,
embedding, and timing constraints. Our experimental work affirms
its benefits. For standard min-cut partitioning, TritonPart outperforms
hMETIS [17], with improvements of up to ∼20% on some benchmarks.
For embedding-aware partitioning, TritonPart effectively leverages the
embeddings generated by SpecPart [4] and improves upon it by ∼2%. For
timing-aware partitioning, TritonPart significantly reduces the number
of cuts on timing-critical paths and prevents timing-noncritical paths
from becoming critical (∼21X, ∼119X reduction relative to hMETIS and
KaHyPar [31], respectively).

Index Terms—hypergraph partitioning, multi-dimensional weights,
timing, embedding, VLSI constraints

I. INTRODUCTION

Hypergraph partitioning is a fundamental optimization problem in
VLSI CAD. Partitioning is arguably becoming even more crucial due
to system performance requirements, the more challenging hierarchy
of system interconnects, and the scale of modern systems. For
backend place-and-route (P&R), large designs must be partitioned
into multiple blocks/tiers/devices that achieve timing closure when
implemented in parallel or concurrently.

In the standard “one-dimensional” formulation of balanced hy-
pergraph partitioning, each vertex is associated with a single scalar
weight. However, in ASIC/FPGA flows, a netlist with different types
of elements (e.g. flip-flops, LUTs, DSPs, etc.) can be modeled as
a hypergraph where vertices are associated with vectors of weights
that give rise to multi-dimensional balance constraints. Moreover, the
standard formulation does not take into account timing constraints.
Publicly available partitioners such as SpecPart [4], hMETIS [17], and
KaHyPar [31] solve the standard formulation, but are not suitable for
modern applications such as multi-FPGA partitioning [15], [33], [34]
and timing-driven partitioning [1]. In light of the above, there is a
need for a 21st-century partitioning multi-tool that should be:

a. Timing-aware and able to handle multi-dimensional weights and
balance constraints, and other useful types of constraints.

b. Permissively open-source, easy-to-use, and scalable in order to
accommodate future – not just today’s – problem instances.

This paper describes TritonPart, an open-source, constraints-
driven, general partitioning framework. TritonPart is designed to
address hypergraph partitioning problems under user-specified con-
straints of multiple types. It is applicable to both classical hypergraph
partitioning and timing-aware netlist partitioning. The main contribu-
tions of this paper are as follows.

• Hypergraph Partitioning with Pragmatic Constraints:
We present a generalized hypergraph partitioning formulation. We
extend the standard scalar vertex weights to multi-dimensional vec-
tors, with corresponding multi-dimensional balance constraints [2].
We also include in our formulation constraints that are informed by
real applications across various domains. These include timing path
cut, fixed vertex, grouping [37], and “soft” embedding constraints.

• General Partitioning Multi-Tool:
We present TritonPart, the first open-source framework that is
able to simultaneously honor all the aforementioned constraints.
TritonPart is released under a permissively open-source license
enabling other researchers to readily adapt it to accommodate
different constraints.1

• Novel Algorithms for Multilevel Partitioning:
TritonPart follows the established multilevel partitioning paradigm,
but also incorporates elements from [4]. In addition, TritonPart
consists of multiple algorithms that enable it to handle constraints,
including a novel slack propagation algorithm that enables it to
reduce the number of cuts on timing-critical paths and prevent
timing-noncritical paths from becoming critical.

• An Extensive Experimental Study:
We evaluate TritonPart against state-of-the-art partitioners (Spec-
Part [4], hMETIS [17], and KaHyPar [31]), using the Titan23
Suite [25] benchmarks. For the classical hypergraph partitioning
problem, on some benchmarks, TritonPart can substantially im-
prove the cutsize by more than 20% compared to state-of-the-art
partitioners. We also validate TritonPart’s timing-aware partitioning
capabilities on modern VLSI benchmarks with up to 10M instances
from the MacroPlacement repository [37]. Our experimental results
demonstrate that TritonPart can substantially reduce the number of
cuts on timing-critical paths and prevent timing-noncritical paths
from becoming critical (∼21X, ∼119X reduction compared to
hMETIS and KaHyPar, respectively on some benchmarks).

A. Related Work

Hypergraph partitioning has been extensively studied in past
decades, with numerous high-quality partitioners proposed through-
out the literature. The majority of these partitioners address the bal-
anced min-cut hypergraph partitioning objective, while some timing-
driven partitioners have also appeared.

Min-cut partitioners follow the multilevel paradigm that entails (i)
multilevel coarsening that iteratively clusters the input hypergraph to
generate a multilevel hierarchy of progressively coarser hypergraphs;
(ii) initial partitioning that partitions the coarsest hypergraph to gen-
erate a solution; (iii) multilevel refinement that refines the partitioning

1We make public with permissive open-source license all results, scripts
and code at [40].

solution at each level of the hierarchy; and (iv) V-Cycle refinement
where the partitioning solution is used to drive further iterations of
restricted coarsening and multilevel refinement [17]. The partitioning
solution is preserved during restricted multilevel coarsening by only
clustering vertices that belong to the same block of the partitioning
solution. Leading partitioners MLPart [6], PaToH [7], BiPart [24],
KaHyPar [31], and hMETIS [17] follow the multilevel paradigm
and are widely used in standard industrial pipelines. Recently, a
new supervised spectral-based hypergraph partitioner, SpecPart [4]
has been proposed that (i) leverages a partitioning solution as a
hint, i.e., supervision; (ii) produces embeddings by incorporating
supervision; and (iii) generates high-quality partitioning solutions
from the embeddings.

Timing-driven partitioners fall into two categories. (i) Path-based
methods attempt to prevent cutting of timing-critical paths. Since
there are an exponential number of timing paths in a netlist, path-
based approaches focus on a given set P of most critical paths
[1], [16], [3], [28], [19]. (ii) Net-based methods define a criticality
value (e.g., slack) for each net (hyperedge) which indicates the
potential negative impact on timing if the net is cut [22], [8], [10].
However, the net-based approach can result in multiple cuts on some
critical paths [1]. Both path-based and net-based approaches focus
on minimizing path delays for the top P critical paths, and do not
explicitly account for the potential of non-critical paths to become
critical due to partitioning. Additionally, to the best of our knowledge,
there is no open-source software or executable for timing-driven
partitioning available to researchers.

II. PRELIMINARIES

TABLE I: Terminology and Notation

wv ∈ Rm
+ , we ∈ Rn

+ Input weight vectors for vertex v and hyperedge e (input)
K Number of blocks in output (input)
ϵ Imbalance parameter for blocks (input)
Vγ(i) Set of vertices that must be in block i in the output partition (optional)
Cmty(v) A group of vertices containing vertex v (optional)
P = {p1, p2, ..., pl} Set of timing-critical paths (optional)
Pnon = {pnonj }cj=1 Set of timing-noncritical paths (optional)
slackp, slacke Slacks for path p and for hyperedge e (optional)
∆ Timing delay for a cut hyperedge (optional)
X ∈ R|V |×q Embedding: ith row is the vector of coordinates for vertex i (optional)
S = {V1, V2, ..., VK} A partitioning solution {Vi|i = 1, 2, ...,K} with K blocks
Cut(e) Cut(e)=1 if e is cut by S, 0 otherwise
I(v) Set of the hyperedges incident to vertex v
block(v) The block Vi that vertex v is assigned to
tp, te Timing weight (cost) for path p and edge e
D(p) The number of times a path p has been cut
SK(p) Normalized slack of a path p
SF (p) Snake factor of a path p

α ∈ Rm
+ Hyperedge cut cost scaling factor

β, non-negative scalar Hyperedge timing cost scaling factor
γ, non-negative scalar Path timing cost scaling factor
τ , non-negative scalar Snaking cost scaling factor
θ, positive scalar Number of solutions for cut-overlay clustering and partitioning
η, positive scalar Number of initial partitions computed after coarsening
ηp, positive scalar Number of partitions picked from η for V-Cycle refinement
µ, positive scalar Exponential scaling factor on timing cost for timing-driven partitioning
thrilp, positive scalar Maximum number of vertices in a hypergraph allowed for running ILP

A. Problem Formulation

The input is a hypergraph H(V,E) where each vertex v ∈ V
is associated with a non-negative m-dimensional weight vector wv ,
and each edge e is associated with an n-dimensional weight vector
we. We are also given a positive integer K, and want to partition
H into K blocks. At a high level, given all inputs I, we want to
compute a partition of V into K disjoint blocks S = {V1, . . . , VK}
that minimizes a cost function:

Φ(I, S) = Φcut(I, S) + Φtime(I, S) (1)

where Φcut(I, S) measures the cutsize as in the standard formulation
of hypergraph partitioning and Φtime(I, S) captures the timing cost.

Our generalized formulation of balanced hypergraph partitioning
is able to accommodate multiple constraints, each associated with
a set of optional inputs (Table I). The constraints we consider are
motivated by multiple applications.
• Fixed vertex constraint: If v ∈ Vγ(i), then vertex v must be in

block Vi in the output partition S. One application of this constraint
is the preassignment of certain IP modules to specific blocks prior
to partitioning. This is a hard constraint.

• Grouping constraint: Vertices that belong to the same group
should be assigned to the same block in S:

block(v) = block(u) if Cmty(v) = Cmty(u) && Cmty(v) > 1 (2)

Here each community is assigned a unique index greater than 1
and Cmty(v) = 1 signifies the special case when v is not part
of a group. A practical example of this constraint is ensuring that
closely-related standard-cell logic connected to the same macro
remains together during the partitioning process [23]. Such closely-
related standard-cell logic would be assigned to its own group with
a unique index. This is a hard constraint.

• Multi-dimensional balance constraint: Let wv(j) denote the jth

coordinate of wv . We define Wj =
∑

v∈V wv(j). Then we require
that the solution S satisfies the following for all 1≤i≤K, 1≤j≤m.

(
1

K
− ϵ)Wj ≤

∑
v∈Vi

wv(j) ≤ (
1

K
+ ϵ)Wj (3)

In other words, the standard balance constraint must be satisfied
along each dimension of weights. A practical example of this
constraint is partitioning a netlist across multiple FPGAs, where
resources such as flip-flops (FFs), digital signal processing blocks
(DSPs), and look-up tables (LUTs) are all limited. This is a hard
constraint.

• Embedding constraint: Vertices that are closer in the embedding
X (see Table I) should preferably be assigned to the same block.
This is a soft constraint that is used to inform algorithmic decisions
of the TritonPart flow, similar to the idea in [32]. The embedding
constraint can be based on real placement locations generated by a
placer in the physical design flow or be generated by any embed-
ding algorithm, including spectral methods such as SpecPart [4].

• Timing constraint: The sets of paths P, Pnon and their associated
slacks (see Table I), can come as input from a static timing analyzer
(e.g., OpenSTA [26]). We want the partition to minimize the number
paths in P that are cut. For a K-way partition, we also want to
control the maximum number of cuts on any timing-critical path.
Additionally, we want to control the number of timing-noncritical
paths Pnon that turn critical after partitioning. Essentially, for
each timing-noncritical path pnoni ∈ Pnon, we measure timing-
criticality after introducing an extra delay ∆ for each time pnoni is
cut. If the total delay increment incurred on pnoni exceeds its slack,
slackpnoni

, then we say that pnoni has become timing-critical.
Given the above, and a user-defined parameter α (Table I), we

define the cutsize (cut cost) as:

Φcut(I, S) =
∑
e∈E

⟨α,we⟩Cut(e) (4)

where ⟨·, ·⟩ denotes the inner-product. The timing cost is discussed in
more detail in Section IV where we define quantities te, tp, D(p), and
SF (p), listed in Table I. At a high level Φtime(I, S) consists of three

components: (i) the timing cost (Cut) associated with hyperedges
that are cut; (ii) the timing cost (D) associated with timing-critical
paths that are cut; and (iii) the timing cost (SF) associated with the
snaking factor [Section IV-A].

Φtime(I, S) =
|E|∑
e=1

βteCut(e) +
∑

p∈{P}

(γD(p)tp + τSF (p)) (5)

where β, γ, τ are user-defined scalar parameters that control the
relative importance of the corresponding costs (see Table I).

III. OUR APPROACH

In this section, we discuss the flow of the proposed constraints-
driven general hypergraph partitioning framework, called TritonPart.
We have released TritonPart with a permissively open-source license
at [40]. Similar to hMETIS [17] and KaHyPar [31], TritonPart
adopts a multilevel framework for handling large-scale hypergraphs.
However, TritonPart distinguishes itself with two major differences.
(i) It can concurrently handle multiple constraints such as fixed vertex
constraint, multi-dimensional balance constraint, grouping constraint,
embedding constraint, and timing constraint. (ii) It integrates the
cut-overlay clustering and partitioning techniques from [4] into
the multilevel framework. The flow of TritonPart is illustrated in
Figure 1, with details given in Algorithm 1.

Fig. 1: Flow of the TritonPart framework.

Lines 5-6: We generate multiple orderings of the vertices in H . Each
ordering induces a unique multilevel hierarchy of coarser hypergraphs
using constraints-driven coarsening. [Section III-A]
Lines 7-14: For each hierarchy, we apply an initial partitioning
and refinement step. This generates multiple candidate partitioning
solutions {S1, ..., Sθ} where θ is an input parameter. [Sections III-B
and III-C]
Line 18: The candidate solutions are utilized by the cut-overlay
clustering and partitioning algorithm to generate a much better
partitioning solution S′. [Section III-D]
Lines 19-29: V-Cycle refinement uses S′ to further optimize the cost
function in Equation (1) and generate the output partitioning solution
S that satisfies all hard constraints. We emphasize that our V-Cycle
refinement is different from that of a standard multilevel partitioner.
Notably, we run an additional step of ILP-based partitioning on the
coarsest hypergraph (Hc) if the number of vertices in Hc is less than
a threshold (thrilp). [Section III-E]

The following sections elaborate on the components of TritonPart.

A. Constraints-Driven Coarsening

In the multilevel partitioning paradigm, the first step involves
multilevel coarsening, which constructs a sequence of progressively
coarser hypergraphs. More specifically, at each level, clusters of

Algorithm 1: TritonPart framework.
Input: Standard Inputs: H,K, ϵ

Constraint Inputs: Vγ , Cmty, P, Pnon, slackp,∆, X
Additional Parameters: θ, η, ηp, thrilp
Output: Partitioning solution S

1 merge all the vertices in the same group into one vertex and
update the hypergraph H

2 merge all the vertices that are preassigned into the same block
into one vertex and update the hypergraph H

3 create an empty list Scandidate = {} for candidate solutions
4 for i = 1; i ≤ θ; i++ do

/* Coarsening [Section III-A] */
5 generate random ordering of vertices
6 {Hc} = {Hc1 , Hc2 , ..., Hcζ} ← perform constraints-driven

First-Choice-based coarsening using the ordering to
generate a hierarchy of successively coarser hypergraphs

/* Initial Partitioning [Section III-B] */
7 Sinit ← perform initial partitioning heuristics
8 Sinit ← pick the best ηp solutions from Sinit

/* Parallel Refinement [Section III-C] */
9 while {Hc}.empty() == false do

10 H̃c ← {Hc}.back(); {Hc}.pop back()

/* All the solutions in Sinit are refined in parallel */
11 for each solution Sj ∈ Sinit do
12 perform refinement heuristics on H̃c and Sj

13 end
14 end
15 Si ← pick the best solution from Sinit

16 Scandidate.push back(Si)
17 end

/* Cut-overlay clustering and partitioning [Section III-D] */
18 S′ ← perform cut-overlay clustering and ILP-based partitioning

on Scandidate

/* V-Cycle refinement guided by S′ [Section III-E] */
19 {Hc} = {Hc1 , Hc2 , ..., Hcζ} ← perform constraints-driven

First-Choice-based coarsening guided by S′ to generate a
hierarchy of successively coarser hypergraphs

20 if Hcζ .num vertices ≤ thrilp then
21 S ← perform ILP-based partitioning on Hcζ

22 end
23 else
24 S ← S′

25 end
26 while {Hc}.empty() == false do
27 H̃c ← {Hc}.back(); {Hc}.pop back()

28 perform refinement heuristics on H̃c and S

29 end
30 return S

vertices are identified, and then merged and represented as a single
vertex in the resulting coarser hypergraph [17]. One of the most
effective coarsening schemes is First-Choice (FC) [17], [31], which
traverses the vertices in the hypergraph according to a given ordering
and merges pairs of vertices with high connectivity. The connectivity
between a pair of vertices (u, v) is measured using the heavy-edge
rating function [31]:

r(u, v) =
∑

e∈{I(v)∩I(u)}

⟨α,we⟩
|e| − 1

. (6)

However, the FC scheme is not directly applicable when we address
the multiple constraints present in the general hypergraph partitioning
problem. To efficiently manage these constraints, we propose the
following enhancements to the FC scheme.

• Fixed vertex constraint: Fixed vertices that belong to the same
partitioning block are merged into a single vertex. This approach
respects the immobility of these vertices and prevents the coarsen-
ing process from violating these constraints.

• Grouping constraint: Vertices that belong to the same group are
merged into a single vertex. This enforces the constraint of shared
group membership.

• Embedding constraint: The embedding information is incorpo-
rated into the heavy-edge rating function, which is updated to

r̂(u, v) = r(u, v) + ρ
1

||Xu −Xv||2
, (7)

In Equation (7), Xu is the embedding of vertex u, r(u, v) is the
score function in Equation (6), and ρ is a normalization factor.
We set ρ such that the average distance between two vertex
embeddings is equal to the average standard rating score r(u, v) in
Equation (6). A pair of vertices (u, v) that are in close proximity
within the embedding space are assigned a higher rating score. This
consideration mirrors the intuitive concept that closely embedded
vertices share a stronger connection. Recall that vertices are merged
by our constraints-driven coarsening framework. When vertices
v1, . . . , vt are merged into a single vertex vcoarse, we define the
embedding Xvcoarse of vcoarse to be the center of gravity of the
t vertices, i.e. the following convex combination:

Xvcoarse =

t∑
j=1

||wvj ||
M

Xvj , where M =

t∑
j=1

||wvj ||.

• Community guidance: Standard multilevel coarsening algorithms
have the ability to perform community-guided coarsening where
only vertices within the same community are considered for merg-
ing [17]. We adapt the same methodology in our constraints-driven
coarsening framework. This is used by the cut-overlay clustering
and partitioning (Section III-D) and V-Cycle refinement (Section
III-E).

• Tie-breaking mechanism: If multiple neighbor pairs have the
same rating score, we favor combining the lexicographically first
unmatched vertex to break ties.

Coarsening in the presence of timing constraints is described in
Section IV-B. To reduce runtime, we use a “multi-node matching”
scheme similar to that of BiPart [24].

B. Initial Partitioning

After completing the coarsening process, we find an initial par-
titioning solution for the coarsest hypergraph Hc. The small size
of Hc enables us to apply various partitioning methods, including
computationally demanding ones such as integer linear programming
(ILP). We run multiple variants for initial partitioning.
• Random and VILE partitioning. As highlighted in [11], the best

initial partition of the coarsest hypergraph does not necessarily
result in the best partition of the original hypergraph. As a result,
we conduct η (50 by default) runs of random initial partitioning
using distinct random seeds to ensure a diverse set of initial
solutions. In addition to this, we perform a “VILE” partitioning [5]
to generate a reasonably good partition of the coarsest hypergraph.

• ILP-based partitioning. We also run an ILP to find an initial
partitioning of Hcζ . We optimize only the cutsize rather than the
cost function Φ to reduce the complexity of the ILP formulation.
To keep the runtime of TritonPart manageable, we run the ILP-
based partitioning only if the number of vertices in the coarsest
hypergraph Hcζ does not exceed a threshold thrilp (default = 50).

To formulate the balanced hypergraph partitioning problem as an
ILP, for each block Vi, we introduce integer {0, 1} variables xv,i
for each vertex v and ye,i for each hyperedge e. Using the notation
from Section II, we then define the following constraints for each
i ∈ [1,K].
–

∑K
i=1 xv,i = 1 for each v ∈ V

– ye,i ≤ xv,i for each e ∈ E, and each v ∈ e

– xv,i = 1 if v ∈ Vγ(i), i.e., if v is fixed to block Vi

– Wj ≜
∑

v∈V wv(j) for each j ∈ [1,m].

– Multi-dimensional balance constraint: for 1 ≤ j ≤ m
(K−1 − ϵ)Wj ≤

∑
v∈V wv(j)xv,i ≤ (K−1 + ϵ)Wj

Observe that the first two constraints enforce these two requirements:

xv,i = 1 iff v ∈ Vi ye,i = 1 iff e ⊆ Vi

The objective is to maximize the total weight of the hyperedges that
are not cut by the partitioning solution, i.e.,

max
∑

1≤i≤K

∑
e∈E

⟨α,we⟩ye,i.

We run our ILP solver to optimality. We speed its runtime through a
warm-start scheme. Specifically, we use the best partitioning solution
derived from random and VILE partitioning as a starting feasible
solution for the ILP solver.

C. Refinement

After a feasible solution of Hcζ is obtained by initial partitioning,
we perform uncoarsening and move-based refinement to improve the
partitioning solution. These are performed level by level. At each
level, three types of refinement heuristics are applied, in sequence.
• K-way pairwise FM (PM). K-way pairwise FM addresses multi-

way partitioning via concurrent bipartitioning problems in a re-
stricted version of K-way FM [9]. Given K blocks of a partition, a
refinement pass of PM includes the following steps. (i) ⌊K/2⌋ pairs
of blocks are obtained, with refinement specific vertex movements
restricted to associated paired blocks. In particular, paired blocks
are obtained using the gain-based configuration [9]. (ii) Two-way
FM [13] is concurrently performed on all the block pairs. (iii) A
new configuration of block pairs is computed at the end of the PM
pass for subsequent passes. Even though PM often outperforms
K-way FM [9], it still explores a subset of the solution space, as
it selects ⌊K/2⌋ block pairs out of K(K − 1)/2 block pairs in
each pass. To mitigate this, we run a direct K-way FM after PM,
as described next.

• Direct K-way FM. Our implementation uses K priority queues.
Unlike the traditional gain-bucket data structure [17], which only
accommodates integer gain values, and Sanchis’s method [30] that
relies on K(K − 1) priority queues, our approach can manage
floating-point gain values and significantly larger values for K.
Some key implementation details are the following. (i) For each
block Vi, we establish a priority queue that stores the vertices that
can be potentially moved from their current block to block Vi. This
queue is ordered according to the gain of vertices. The gain of a
vertex v is determined by the reduction in cost in Equation (5) when
moving v from its current block to Vi. (ii) After a vertex move,
each priority queue is updated independently, thus enabling parallel
updates via multi-threading. (iii) To speed up the refinement we
employ the early-stop mechanism in [17]. Specifically, we only
move a limited number of vertices (100 by default) in each pass.
(iv) We mitigate the “corking effect” [6] by traversing the priority

queue belonging to the vertex with the highest gain and identifying
a feasible vertex move.

• Greedy Hyperedge Refinement (HER). Greedy hyperedge re-
finement moves groups of vertices belonging to hyperedges that
cross the partition boundary, i.e., hyperedges spanning multiple
blocks. We apply the HER approach [18] to complement vertex-
based refinement approaches (PM and FM) that move a single
vertex at a time and can struggle to effectively refine a hypergraph
containing multiple hyperedges with a large subset of vertices. HER
mitigates this limitation by moving groups of vertices instead of
a single vertex. Our HER approach operates as follows. (i) We
randomly visit all the hyperedges. (ii) For each hyperedge e that
crosses the partition boundary, we determine whether we can move
a subset of the vertices in e without violating the multi-dimensional
balance constraints. The objective is to make e entirely contained
in a block.

We also adapt our multilevel refinement framework2 to accommodate
timing constraints. This is explained in detail in Section IV-C.

D. Cut-Overlay Clustering and Partitioning (COCP)

Cut-overlay Clustering and Partitioning (COCP) is a mechanism
to combine multiple good-quality partitioning solutions to generate
an improved solution [4]. Given θ candidate solutions {Sθ}, classical
multilevel partitioners like hMETIS pick the best solution and discard
the rest. In contrast, we combine all candidate solutions through
COCP. We first denote the sets of hyperedges cut in these solutions
by E1, . . . , Eθ ⊂ E. In COCP we perform the following steps. (i)
We remove ∪θ

i=1Ei from the hypergraph H(V,E), resulting in a
number of connected components. (ii) We merge all vertices within
each connected component to form a coarser hypergraph Hoverlay . If
the number of vertices in Hoverlay is less than thrilp, we apply ILP-
based partitioning [Section III-B]. If not, we conduct a single round of
constraints-driven coarsening to further reduce the size of Hoverlay

and generate a coarser hypergraph H ′
overlay . In particular, we use

the best candidate solution from {Sθ} to apply community guidance
[Section III-A]; this guarantees that the best candidate solution is
preserved in H ′

overlay . (iii) If the number of vertices in H ′
overlay is

less than thrilp, we apply ILP-based partitioning [Section III-B]. If
not, we simply retain the best candidate solution. (iv) We perform
multilevel refinement to further improve the partitioning solution at
each level of the hierarchy [Section III-C] and return the improved
solution S′.

E. V-Cycle Refinement

Cut-overlay clustering and partitioning produces a high-quality
partitioning solution S′. To further improve S′, we adopt V-Cycle
refinement and run it for multiple iterations3 similar to hMETIS
[17]. Our V-Cycle refinement consists of three phases: multilevel
coarsening, ILP-based partitioning, and refinement. During the mul-
tilevel coarsening phase, we use S′ as a community guidance for
the constraints-driven coarsening [Section III-A]. In this phase, only
vertices within the same block are permitted to be merged. This
ensures that the current partitioning solution S′ is preserved in the
coarsest hypergraph Hcζ . In the ILP-based partitioning phase, if the
number of vertices in Hcζ does not exceed thrilp, we run ILP-based
partitioning to improve S′. If not, we continue with S′ in successive

2We set the number of passes at each stage of refinement to 2 and the
maximum number of moves in each pass to 50.

3We set the default iterations of V-Cycle refinement to 2. We stop if the
partitioning solution does not improve between successive iterations.

iterations of the V-Cycle refinement. The refinement phase is carried
out as described in Section III-C. In the presence of timing constraints
we modify the refinement phase as described in Section IV-C.

IV. TIMING-AWARE NETLIST PARTITIONING

TritonPart’s timing-aware partitioning framework combines path-
based and net-based methodologies. Traditional path-based and net-
based approaches typically focus on optimizing cuts for the top P
timing-critical paths, ignoring the potential for noncritical paths to
become critical due to partitioning. To address this, we introduce a
slack propagation methodology that optimizes cuts for both timing-
critical and timing-noncritical paths.

A. Extraction of Timing Paths and Slack Information

TritonPart first extracts the top P timing-critical paths and the
slack information for each hyperedge, leveraging the wireload model
(WLM) from the open-source static timing analyzer OpenSTA [26].
We use the findPathEnds function from Search.hh available at [39].
Here we set group count (|P |), endpoint count, unique pins and
sort by slack to 100000, 1, true and true, respectively. We then
calculate the timing cost for cutting a timing path and the timing
cost for cutting a hyperedge.
Timing cost for a path. The timing cost tp of a path p is determined
by its slack slackp,

tp = (1− slackp −∆

clock period
)µ (8)

where a fixed extra delay ∆ (whose value is specified in Section V) is
introduced for timing guardband, and µ (default = 2) is the exponent.
Snaking factor. The snaking factor [35] of a path p, denoted as
SF (p), quantifies the extent to which the timing path “snakes”
or zigzags its way through various blocks. Specifically, SF (p) is
defined as the maximum number of block re-entries along the path
p. Consider Figure 2, which illustrates two different partitions for the
timing path p, which consists of FF1 → Combinational module A
→ Combinational module B → FF2. In Figure 2(a), the blocks V0,
V1 and V2 experience re-entries 1, 0 and 0 times respectively, hence
SF (p) equals 1. However, in Figure 2(b), each block V0, V1 and V2

is entered only once, thereby resulting in SF (p) being 0. In both
cases, the number of cuts on p, denoted as D(p), is two. However,
the snake factor in Figure 2(b) is lower, which is more desirable from
a timing perspective. We consider SF (p) in our cost function defined
in Equation (5).
Timing cost for a hyperedge. The timing cost te of a hyperedge
consists of two parts: (i) the timing weight corresponding to the
hyperedge’s slack slacke; and (ii) the accumulated timing cost of
all paths traversing the hyperedge.

te = (1− slacke −∆

clock period
)µ +

∑
{p|e∈p}

tp (9)

B. Timing-aware Coarsening

TritonPart’s timing-aware coarsening builds upon the constraints-
driven coarsening framework (Section III-A). We add the timing cost
of a hyperedge, te, to the rating score in Equation (7), so as to merge
vertices associated with hyperedges with high timing cost. If vertices
(u, v) are associated with multiple critical paths then they are more
likely to be merged; this is reflected in our rating function rt(u, v):

rt(u, v) = r̂(u, v) +
∑

e∈{I(v)∩I(u)}

βte
|e| − 1

(10)

(a) (b)

Fig. 2: Different partitions of timing path p : FF1 → Comb module A
→ Comb module B → FF2. (a) {FF1, FF2} ∈ Block V0, Comb module
A ∈ Block V1, and Comb module B ∈ Block V2. (b) FF1 ∈ Block V0,
{Comb module A, Comb module B} ∈ Block V1, and FF2 ∈ Block V2.

C. Timing-aware Refinement

Our timing-aware refinement is based on the cost function in
Equation (5).4 The cost function in Equation (5) seeks to optimize
the timing cost based on the top P paths extracted by OpenSTA. To
prevent TritonPart from inadvertently turning noncritical timing paths
into critical, we perform an additional slack propagation step at the
end of each PM/FM/HER pass. In slack propagation, we continuously
manage noncritical timing paths from turning critical by repeatedly
updating the slacks on all nets (hyperedges) and paths after each
refinement pass. Our slack propagation methodology is presented in
Algorithm 2, and consists of the following steps.
Line 3: A fixed extra delay ∆ (see Section V) is applied to all cut
hyperedges in the partitioning solution, i.e., slacke = slacke −∆.
Lines 5-8: The extra delay introduced is propagated by traversing
the timing graph. In TritonPart, the first vertex v1 in a hyperedge
e = {v1, v2, ...} is the driver/source vertex and the remaining vertices
are load/sink vertices. This convention allows us to interpret the
hypergraph as a timing graph. For each timing path that traverses
a cut hyperedge e with slack slacke, we first propagate backward,
stopping if the slack of the fanout hyperedge is less than slacke. We
then propagate forward and stop the propagation if the slack of the
fanin hyperedge is less than slacke.
Line 10: The slack of each timing path p is updated based on the min-
imum slack of all the hyperedges in p, i.e., slackp = min

e∈p
(slacke).5

Line 11: We update the timing cost tp of all timing paths and the
timing cost te of all hyperedges, based on Equations (8) and (9).

V. EXPERIMENTAL SETUP AND RESULTS

TritonPart is implemented using approximately 12K lines of C++
code and is built on the OpenROAD infrastructure [20], [38]. We
use CPLEX [12] as our default ILP solver but also provide an open-
source alternative with an OR-Tools-based implementation [27]. For
all reported experimental results, we use CPLEX as our primary
ILP solver. Given that no prior work has addressed the constraints-
driven general hypergraph partitioning problem, there are no existing
benchmarks or baselines for direct experimental comparison. We thus
divide our validation efforts into: (i) validation of min-cut partition-
ing (Section V-A), (ii) validation of embedding-aware partitioning
(Section V-B), and (iii) validation of timing-driven partitioning (Sec-
tion V-C). We also present a study on parameter selection in Section
V-D. Finally, we explore the effect of multi-starts on hMETIS and
TritonPart in Section V-E.

4Recall that our cost function in Equation (5) incorporates cost associated
with path cuts D(p) and snaking factor SF (p). This is how we optimize the
timing cost tied to D(p) and SF (p).

5A path can be interpreted as a sequence of nets (hyperedges) where each
net (hyperedge) corresponds to a directed edge in the timing graph that is in
the path.

Algorithm 2: Slack propagation.
Input: Hypergraph H(V,E), Extra delay ∆, Partitioning solution

S, Extracted timing paths P

1 Ecut ← identify all hyperedges in H cut by S

2 for each hyperedge e ∈ Ecut do
/* Introduce the extra delay for each cut hyperedge */

3 slacke ← slacke −∆

/* Propagate the introduced extra delay by traversing the
timing graph */

4 {pe} ← identify all timing paths traversing hyperedge e
5 for each timing path p ∈ P do
6 propagate the delay backward and stop the propagation if

the slack of the fanout hyperedge is less than slacke
7 propagate the delay forward and stop the propagation if

the slack of the fanin hyperedge is less than slacke
8 end
9 end

10 update the slack, slackp of each timing path p in P

11 update the timing cost, tp of each timing path p in P and the
timing cost, te of each hyperedge e in E

A. Validation of Min-cut Partitioning

We first assess the min-cut partitioning capability of TritonPart by
comparing it to leading min-cut partitioners hMETIS and SpecPart,
with their default parameter settings. The default parameters for
hMETIS are Nruns = 10, CType = 1, RType = 1, Vcycle = 1, Reconst
= 0, and seed = 0 [14]. For SpecPart, the default parameters are δ
= 5, β = 2, γ = 500, ζ = 2, θ = 40 and m = 2 [4]. We use
the Titan23 benchmarks [25] for evaluation, with the benchmark
statistics presented in Table II. Given the sensitivity of partitioners
such as hMETIS and TritonPart to random seeds, cutsizes reported
for hMETIS and TritonPart are the averaged (50 trials) best of 20
runs, i.e., sampling 20 solutions of hMETIS and TritonPart 50 times
and reporting averaged best of 20 cutsize (hM20, TP20). Table II
and Figure 3 present the results for K = 2, 3, 4 respectively with ϵ
= 2%, with cutsize values rounded to the nearest integer. In Figure
3 cutsizes are normalized by those obtained from hM20. From Table
II and Figure 3, we can draw the following conclusions:

• For K = 2, TritonPart generates partitioning solutions that are on
average ∼4.5% (∼ 1%) better than those of hMETIS (SpecPart).

• For K = 3, TritonPart generates partitioning solutions that are
on average ∼8% better than those of hMETIS, with over 30%
improvement for the denoise and gsm switch benchmarks.

• For K = 4, TritonPart generates partitioning solutions that are
on average ∼8% better than those of hMETIS, with over 30%
improvement for the gsm switch and bitcoin miner benchmarks.

Fig. 3: Results on Titan23 benchmarks for ϵ = 2%. Left: K = 2.
Right: K = 3 and 4.

Statistics K = 2 K = 3 K = 4
Benchmark |V | |E| hM20 SP TP20 hM20 TP20 hM20 TP20

sparcT1 core 91976 92827 982 977 983 2188 1787 2533 2517
neuron 92290 125305 245 244 243 372 371 432 405

stereo vision 94050 127085 171 169 176 333 325 440 413
des90 111221 139557 377 374 373 536 524 696 668

SLAM spheric 113115 142408 1061 1061 1061 2797 2592 3371 3167
cholesky mc 113250 144948 282 282 282 886 793 983 978
segmentation 138295 179051 120 120 107 476 447 496 495
bitonic mesh 192064 235328 585 584 582 895 898 1304 1123

dart 202354 223301 837 805 834 1190 1200 1430 1413
openCV 217453 284108 435 434 442 502 487 526 512
stap qrd 240240 290123 377 464 370 501 467 715 696
minres 261359 320540 207 207 207 309 311 407 405

cholesky bdti 266422 342688 1156 1156 1166 1769 1697 1874 1889
denoise 275638 356848 497 418 456 953 670 1172 860

sparcT2 core 300109 302663 1221 1188 1214 2827 2076 3324 2948
gsm switch 493260 507821 4235 1833 1483 4149 2446 5169 2813

mes noc 547544 577664 635 633 651 1164 1140 1315 1302
LU230 574372 669477 3334 3363 3314 4550 4498 6325 5591

LU Network 635456 726999 524 524 526 787 786 1496 1488
sparcT1 chip2 820886 821274 914 876 982 1453 1298 1610 1604

directrf 931275 1374742 603 515 527 728 720 1104 1093
bitcoin miner 1089284 1448151 1514 1562 1492 1945 1879 2605 1860

TABLE II: Cutsize comparisons for hMETIS, SpecPart, and Triton-
Part on Titan23 benchmarks for K = 2, 3, 4 and ϵ = 2%.

B. Validation of Embedding-aware Partitioning

To evaluate the embedding-aware partitioning capability of Tri-
tonPart, we propose a two-step evaluation method. First, we use
two-dimensional embeddings generated by SpecPart with its de-
fault settings, on the dart, denoise, sparcT1 chip2 and directrf
benchmarks. These embeddings consist of the first two nontrivial
eigenvectors of a generalized eigenvalue problem [4]. Next, we use
these embeddings as input embedding constraints to TritonPart. The
results are presented in Table III. Here, TP emb represents the
cutsize from a single TritonPart run, while TP emb20 represents
the best cutsize across twenty runs. TP emb20 produces partitioning
solutions that outperform those of hMETIS, SpecPart, and TritonPart
without embedding constraints by ∼11%, ∼2%, and ∼8%, respec-
tively. These results suggest that with high-quality embeddings as
input, TritonPart can effectively utilize the embeddings to generate
high-quality partitioning solutions (even better than SpecPart).

cutsize runtime (second)
Benchmark hM20 SP TP20 TP emb TP emb20 hM20 SP TP20 TP emb TP emb20

dart 837 805 835 804 784 444 93 1360 46 920
denoise 497 418 454 418 416 696 78 1800 88 1760

sparcT1 chip2 914 876 997 882 877 1800 292 5400 306 6120
directrf 603 515 526 657 493 1883 378 3260 203 4060

TABLE III: Effect of embedding for K = 2, ϵ = 2%.

C. Validation of Timing-driven Partitioning

We now assess TritonPart’s timing-driven partitioning capability.
We consider the following two categories of timing metrics.
• Evaluation of cuts on timing-critical paths. This consists of the

average number of cuts on each timing-critical path (P avg cut)
and worst (maximum) number of cuts on any timing-critical path
(P wst cut).

• Evaluation of cuts on timing-noncritical paths. This consists
of the number of timing-noncritical paths which became critical
(#P n critical) due to partitioning, average number of cuts on
each timing-noncritical path that became critical (P n avg cut),
and worst (maximum) number of cuts on any timing-noncritical
path that became critical (P n wst cut).
As mentioned in Section I-A, there are no open-source timing-

driven partitioners available for direct comparison. Toward a fair
comparison, we propose reasonable baselines based on hMETIS and

Fig. 4: Timing-driven partitioning evaluation flow.

Benchmark |V | |E| cp(ns) ∆ (ns) #paths #c paths #nc paths
Ariane (NG45) 118061 121289 1.0 0.2 44428 16127 28301

BlackParrot (NG45) 768986 808973 1.3 0.26 100000 39872 60128
MemPool Group (NG45) 2741149 2788222 3.8 0.76 100000 15083 84917
MemPool Cluster (NG45) 10486897 10726018 4.6 0.92 100000 38720 61280

Ariane (GF12) 9947 100620 – 20% 43963 15184 28779
BlackParrot (GF12) 686364 700967 – 20% 100000 18909 81091

MemPool Group (GF12) 2460278 2488257 – 20% 100000 21111 78889

TABLE IV: Benchmarks and Statistics. ∆ is normalized to clock
period (cp) for GF12. #c paths and #nc paths denote numbers of
time-critical and noncritical paths respectively.

KaHyPar, illustrated in Figure 4. Our evaluation flow comprises
the following steps. (i) We extract the top (non-decreasing order
of slack) 100,000 timing paths in the netlist using OpenSTA [26].
(ii) Hyperedge weights are updated based on the slack values of
corresponding nets according to Equation (9). (iii) The reweighted
hypergraph is passed as input to TritonPart, hMETIS, and KaHyPar.
(iv) We evaluate the partitioning solutions from TritonPart, hMETIS,
KaHyPar, and timing-driven TritonPart (TritonPartt) and report the
timing metrics.

In our experimental setup, for each design, we set ∆ to be 20% of
the design’s clock period. We use modern VLSI benchmarks from the
MacroPlacement repository [37], implemented in open NanGate45
(NG45) and commercial GlobalFoundries 12nm (GF12) enablements.
Benchmark statistics are given in Table IV.
Evaluation of cuts on timing-critical paths. Results for cuts on
timing-critical paths are detailed in Table V. For the majority of
the benchmarks, timing-driven TritonPart (TPt) outperforms other
baselines in both P avg cut and P wst cut metrics, albeit with
some runtime overhead. For the MemPool Cluster benchmark which
has more than 10M vertices, both hMETIS and KaHyPar crash,
while TritonPart successfully runs to completion without cutting any
timing-critical paths. Similarly, for the large MemPool Group design
with GF12 enablement, TPt does not cut any timing-critical paths, in
contrast to hMETIS, KaHyPar, and TritonPart. These results validate
the timing-driven capabilities of TritonPart, and its ability to handle
very large problem instances.
Evaluation of cuts on timing-noncritical paths. Results for cuts on
timing-noncritical paths are presented in Table VI. Across all bench-
marks, TPt outperforms other baselines in all metrics (#P n critical,
P n avg cut, and P n wst cut). Notably, for the MemPool Group
design with GF12 enablement, TPt achieves a ∼21X, ∼119X and
∼66X reduction in #P n critical compared to hMETIS, KaHyPar and
TritonPart, respectively. For the same design, TPt achieves a ∼1.8X,
∼2X and ∼1.3X reduction in P n avg cut compared to hMETIS,
KaHyPar and TritonPart respectively. For the P n wst cut metric
on the BlackParrot design with NG45 enablement, TPt achieves 5X,
3X and 3X reduction compared to hMETIS, KaHyPar and TritonPart.

These results suggest that the timing-driven TritonPart can help avoid
timing-noncritical paths becoming critical.

P avg cut P wst cut runtime (min)
Design hM KHPr TP TPt hM KHPr TP TPt hM KHPr TP TPt

Ariane (NG) 0.61 0.63 0.44 0.12 7 6 6 3 0.3 1 2 6
BlackParrot (NG) 0.00 0.37 0.46 0.26 0 2 3 1 2 117 9 16
MemPool-G (NG) 0.08 0.00 0.00 0.00 2 0 4 0 15 417 24 28
MemPool-C (NG) – – 0.00 0.00 – – 0 0 – – 77 84

Ariane (GF) 0.09 0.09 0.32 0.02 4 4 5 2 0.3 1 4 10
BlackParrot (GF) 0.13 0.29 0.66 0.06 1 1 3 1 3 108 13 25
MemPool-G (GF) 0.03 0.21 0.19 0.00 2 5 2 0 12 258 26 37

TABLE V: Results on timing-critical paths for K = 5 and ϵ =
2%. hM , KHPr, TP , and TPt respectively stand for hMETIS,
KaHyPar, TritonPart, and timing-driven TritonPart. [‘-G’: Group, ‘-
C’: Cluster, NG: NG45, GF: GF12.]

#P n critical P n avg cut P n wst cut
Design hM KHPr TP TPt hM KHPr TP TPt hM KHPr TP TPt

Ariane (NG) 442 571 569 162 2.92 2.79 1.59 1.05 4 4 4 3
BlackParrot (NG) 8407 6756 9011 3128 1.32 1.12 1.15 1.00 5 3 3 1
MemPool-G (NG) 3770 0 6244 0 1.13 0.00 2.02 0.00 2 0 4 0
MemPool-C (NG) – – 0 0 – – 0.00 0.00 – – 0 0

Ariane (GF) 0 0 1454 0 0.00 1.01 1.00 0.00 0 0 2 0
BlackParrot (GF) 13954 15511 21752 786 1.38 1.09 1.40 1.01 4 4 4 2
MemPool-G (GF) 2084 11553 6441 97 1.86 2.01 1.32 1.00 2 6 2 1

TABLE VI: Results on timing-noncritical paths for K = 5 and ϵ
= 2%. hM , KHPr, TP , and TPt stand for hMETIS, KaHyPar,
TritonPart, and timing-driven TritonPart. [‘-G’: Group, ‘-C’: Cluster,
NG: NG45, GF: GF12.]

D. Hyperparameter Selection

TritonPart includes the following four lower-level parameters
omitted from Algorithm 1. (i) thr coarsen hyperedge size skip:
hyperedges of size larger than this threshold are excluded from
the constraints-driven coarsening phase. (ii) coarsening ratio: the
maximum ratio between the numbers of vertices of two successive hy-
pergraphs in the multilevel hierarchy. (iii) max moves: the maximum
number of vertices that can be moved in each pass of the refinement
phase. (iv) num coarsen solution: the number of candidate solutions
Scandidate, each generated from a distinct vertex order [Section III].
We have determined default values for these hyperparameters by
performing an empirical study with K = 2 and ϵ = 2%, involving
5 benchmarks: LU230, LU Network, sparcT1 chip2, directrf and
bitcoin miner. We define the score value as the average improvement
in cutsize and runtime of TritonPart relative to hM20 on these
benchmarks. In our experiments, we first vary each parameter while
keeping the other three constant, and record the cutsize and runtime of
TritonPart for the five benchmarks. Next we report the average cutsize
and runtime. The results are presented in Figure 5. We normalize
these results with respect to the cutsize of TritonPart with default
parameter settings. From our findings, we observe that the default
setting of the hyperparameters is a reasonable choice.

E. QoR vs. Runtime Comparison

Leading multilevel partitioners, such as hMETIS, often employ
multi-start strategies to improve their performance. As TritonPart
follows a similar approach, we analyze the effect of multi-starts
on both hMETIS and TritonPart. Our methodology consists of the
following steps. (i) We generate ψ (1 ≤ ψ ≤ 50) solutions using
both hMETIS and TritonPart, varying the random seed for each trial.
(ii) We record the best solution for each ψ. The result is presented in
Figure 6 for the bitcoin miner benchmark with K = 4 and ϵ = 2%.
Unsurprisingly, with additional multi-starts both hMETIS and Triton-
Part can generate better cutsize. However, TritonPart consistently

Fig. 5: Validation of TritonPart parameters.

outperforms hMETIS, achieving ∼30% cutsize reduction with a
∼2.4X runtime overhead. More crucially, TritonPart demonstrates
better robustness and stability across random seeds compared to
hMETIS.

Fig. 6: Cutsize versus runtime comparison of hMETIS and TritonPart
on the bitcoin miner benchmark for K = 4 and ϵ = 2%.

VI. CONCLUSION AND FUTURE WORK

In this work, we introduce the constraints-driven general hy-
pergraph partitioning problem and present the first open-source
constraints-driven general partitioning multi-tool, TritonPart, to tackle
it. TritonPart’s adaptation of the multilevel partitioning paradigm,
combined with use of efficient algorithms, enables it to effec-
tively manage multiple constraint types such as fixed-vertices, multi-
dimensional balance, grouping, embedding, and timing constraints.
Extensive experimental results (verifiable using [40]) validate Tri-
tonPart’s superior performance on min-cut partitioning, compared
to leading partitioners such as SpecPart, hMETIS, and KaHy-
Par. We also demonstrate the effectiveness of TritonPart’s slack
propagation-based timing-aware partitioning framework. Our ongoing
research pursues three main directions. First, we believe Triton-
Part’s embedding-aware partitioning could be of independent interest
and amenable to machine learning-based applications. In particular,
higher-quality embeddings than eigenvectors could potentially guide
TritonPart to even better partitioning solutions. Second, we seek to
improve the timing-driven framework with use of more accurate delay
budget-based methodologies. Third, a spatial arrangement-aware par-
titioning framework could be beneficial for 3D IC and (multi-)FPGA
implementation, where blocks are known to be configured in various
arrangements (e.g. stacked on top of each other or in a 2D array).

Acknowledgments. This work was partially supported by DARPA
HR0011-18-2-0032, and by NSF grants CCF-2112665, CCF-2039863
and CCF-1813374.

REFERENCES

[1] C. Ababei, S. Navaratnasothie, K. Bazargan and G. Karypis, “Multi-
objective circuit partitioning for cutsize and path-based delay minimiza-
tion”, Proc. ICCAD, 2002, pp. 181-185.

[2] D. Avdiukhin, S. Pupyrev and G. Yaroslavtsev, “Multi-dimensional
balanced graph partitioning via projected gradient descent”, Proc. VLDB
Endowment 12(8) 2019, pp. 906-919.

[3] R. Burra and D. Bhatia, “Timing driven multi-FPGA board partitioning”,
Proc. Intl. Conf. on VLSI Design, 1998, pp. 234-237.

[4] I. Bustany, A. B. Kahng, I. Koutis, B. Pramanik and Z. Wang, “SpecPart:
A supervised spectral framework for hypergraph partitioning solution
improvement”, Proc. ICCAD, 2022, pp. 1-9.

[5] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Improved algorithms
for hypergraph bipartitioning”, Proc. ASP-DAC, 2000, pp. 661-666.

[6] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Iterative partitioning
with varying node weights”, VLSI Design 11(3) 2000, pp. 249-258.

[7] Ü. Çatalyürek and C. Aykanat, “PaToH (partitioning tool for hyper-
graphs)”, Boston, MA, Springer US, 2011.

[8] J. Cong and C. Wu, “Global clustering-based performance-driven circuit
partitioning”, Proc. ISPD, 2002, pp. 149-154.

[9] J. Cong and S. K. Lim, “Multiway partitioning with pairwise move-
ment”, Proc. ICCAD, 1998, pp. 512-516.

[10] J. Cong, S.K. Lim and C. Wu, “Performance driven multi-level and
multiway partitioning with retiming”, Proc. DAC, 2000, pp. 274-279.

[11] G. Karypis, “Multilevel hypergraph partitioning”, Boston, MA, Springer
US, 2003.

[12] IBM ILOG CPLEX optimizer,
https://www.ibm.com/analytics/cplex-optimizer.

[13] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions”, Proc. DAC, 1982, pp. 175-181.

[14] G. Karypis and V. Kumar, “hMETIS, a hypergraph partitioning package,
version 1.5.3”, 1998.
http://glaros.dtc.umn.edu/gkhome/fetch/sw/hMETIS/manual.pdf

[15] D. J.-H. Huang and A. B. Kahng, “Multi-way system partitioning into
a single type or multiple types of FPGAs”, Proc. FPGA, 1995, pp. 140-
145.

[16] W. Hou, X. Hong, W. Wu and Y. Cai, “A path-based timing-driven
quadratic placement algorithm”, Proc. ASP-DAC, 2003, pp. 745-748.

[17] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning”,
Proc. DAC, 1999, pp. 343-348.

[18] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel hyper-
graph partitioning: applications in VLSI domain”, IEEE Trans. on VLSI
7(1) 1999, pp. 69-79.

[19] A. B. Kahng and X. Xu, “Local unidirectional bias for smooth cutsize-
delay tradeoff in performance-driven bipartitioning”, Proc. ISPD, 2003,
pp. 81-86.

[20] A. B. Kahng and T. Spyrou, “The OpenROAD project: unleashing
hardware innovation”, Proc. GOMACTech, 2021.

[21] T. Luo, D. Newmark and D. Z. Pan, “A new LP based incremental timing
driven placement for high performance designs”, Proc. DAC, 2006, pp.
1115-1120.

[22] J. Minami, T. Koide and S. Wakabayashi, “A circuit partitioning algo-
rithm under path delay constraints”, Proc. IEEE APCCAS, 1998, pp.
113-116.

[23] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, et al., “A
graph placement methodology for fast chip design”, Nature, 594(7862)
2021, pp. 207-212.

[24] S. Maleki, U. Agarwal, M. Burtscher and K. Pingali, “BiPart: a parallel
and deterministic hypergraph partitioner”, Proc. ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, 2021, pp. 161-174.

[25] K. E. Murray, S. Whitty, S. Liu, J. Luu and V. Betz, “Titan: Enabling
large and complex benchmarks in academic CAD”, Proc. Intl. Conf. on
Field programmable Logic and Applications, 2013, pp. 1-8.

[26] OpenSTA static timing analyzer,
https://github.com/The-OpenROAD-Project/OpenSTA

[27] Google OR-Tools version 9.4,
https://developers.google.com/optimization/

[28] S. Ou and M. Pedram, “Timing-driven bipartitioning with replication
using iterative quadratic programming”, Proc. ASP-DAC, 1999, pp. 105-
108.

[29] D. Z. Pan, B. Halpin and H. Ren, “Timing-driven placement”, Handbook
of Algorithms for Physical Design Automation, 2008, pp. 423-446.

[30] L. A. Sanchis, “Multiple-way network partitioning with different cost
functions”, IEEE Trans. on Computers 42(12) 1993, pp. 1500-1504.

[31] S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz and P.
Sanders, “High-Quality Hypergraph Partitioning”, ACM J. Exp. Algo-
rithmics, 27(1.9) 2023, pp. 1-39

[32] J. Sybrandt, R. Shaydulin and I. Safro, “Hypergraph partitioning with
embeddings”, IEEE Trans. on Knowledge and Data Engineering 34(6)
2022, pp. 2771-2782.

[33] D. Zheng, X. Zang and M. D.F. Wong, “TopoPart: a multi-level topology-
driven partitioning framework for multi-FPGA systems”, Proc. ICCAD,
2021.

[34] D. Zheng and E. F. Y. Young, “An integrated circuit partitioning and
TDM assignment optimization framework for multi-FPGA systems”,
Proc. ASP-DAC, 2023, pp. 522-526.

[35] Combinational logic snake paths. http://www.truevue.org/p/847
[36] Hypergraph partitioning for VLSI: benchmarks, code and leaderboard,

https://github.com/TILOS-AI-Institute/HypergraphPartitioning.
[37] C.-K. Cheng, A. B. Kahng, S. Kundu, Y. Wang and Z. Wang, “Assess-

ment of reinforcement learning for macro placement”, Proc. ISPD, 2023,
pp. 158-166. https://github.com/TILOS-AI-Institute/MacroPlacement/
tree/main/CodeElements/Grouping.

[38] The OpenROAD project.
https://github.com/The-OpenROAD-Project/OpenROAD

[39] Search.hh. https://github.com/The-OpenROAD-Project/OpenSTA/blob/
master/include/sta/Search.hh

[40] TritonPart GitHub repository for TritonPart.
https://github.com/ABKGroup/TritonPart OpenROAD

https://www.ibm.com/analytics/cplex-optimizer
http://glaros.dtc.umn.edu/gkhome/fetch/sw/hMETIS/manual.pdf
https://github.com/The-OpenROAD-Project/OpenSTA
https://developers.google.com/optimization/
http://www.truevue.org/p/847
https://github.com/TILOS-AI-Institute/HypergraphPartitioning
https://github.com/TILOS-AI-Institute/MacroPlacement/tree/main/CodeElements/Grouping
https://github.com/TILOS-AI-Institute/MacroPlacement/tree/main/CodeElements/Grouping
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenSTA/blob/master/include/sta/Search.hh
https://github.com/The-OpenROAD-Project/OpenSTA/blob/master/include/sta/Search.hh
https://github.com/ABKGroup/TritonPart_OpenROAD

	Introduction
	Related Work

	Preliminaries
	Problem Formulation

	Our Approach
	 Constraints-Driven Coarsening
	Initial Partitioning
	Refinement
	Cut-Overlay Clustering and Partitioning (COCP)
	V-Cycle Refinement

	Timing-aware Netlist Partitioning
	Extraction of Timing Paths and Slack Information
	Timing-aware Coarsening
	Timing-aware Refinement

	Experimental Setup and Results
	Validation of Min-cut Partitioning
	Validation of Embedding-aware Partitioning
	Validation of Timing-driven Partitioning
	Hyperparameter Selection
	QoR vs. Runtime Comparison

	Conclusion and Future work
	References

