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Abstract—Recent activities of the IEEE CEDA DATC
strengthen the DATC Robust Design Flow (RDF) and broadly
support research on machine learning for CAD/EDA (MLCAD).
The RDF-2023 version of the RDF adds standalone and in-
tegrated netlist partitioners, a detailed placement optimizer,
dynamic power analysis, and enablement of new directions
(design-technology co-optimization and 3D layout). Advancement
of benchmarking practices and strong baselines has continued –
e.g., the MacroPlacement effort introduced in RDF-2022 now has
new benchmarks, integration of the AutoDMP macro placer, and
baseline solutions generated by Simulated Annealing and human
experts. Other DATC efforts have focused on proxies and other
elements of MLCAD research enablement. These include real and
synthetic benchmarks tailored for IR drop analysis, a calibration
methodology for research PDKs, and artificial netlist generation
for data augmentation and design space coverage of netlists used
in model training. We conclude with directions for future DATC
efforts.

Index Terms—VLSI CAD, open source, EDA, machine learning

I. INTRODUCTION

The Design Automation Technical Committee (DATC) is
a technical committee of the IEEE Council on EDA (CEDA)
[36]. It provides a forum for discussing strategies and issues in
design automation. Since 2016, the DATC has maintained the
Robust Design Flow (RDF), an academic reference RTL-to-
GDS design flow that incorporates numerous contest-winning
point tools and the OpenROAD tool chain [32]. The RDF
was initiated with two overarching goals: (i) to preserve and
integrate leading research codes, and (ii) to trigger design flow
and cross-stage optimization research via tools developed in
academia. A series of invited papers [7]–[9], [16]–[20] has
provided updates on RDF enhancements as well as DATC’s
strategic directions and development activities. Table I lists
the tools currently used in RDF; the new 2023 additions are
in bold.

With RDF as a foundation, the IEEE CEDA DATC has
been extending its activities beyond flow enablement, with the
goal of establishing and expanding research foundations for
IC physical design and for machine learning in CAD/EDA
(MLCAD). Some of the main directions of DATC efforts in
the past year include the following.
• Recent improvements of RDF. RDF-2023 has added

the TritonPart netlist partitioner, as well as the DPO de-
tailed placement optimizer and OpenSTA-based dynamic

power analysis. RDF-2023 also opens up two new direc-
tions: design-technology co-optimization (DTCO) via the
PROBE3.0 platform [15], and enablement of fine-grain 3D
layout generation. The RDF improvements are available as
open source through OpenROAD integrations.

• Advancement of benchmarking practices and baselines.
The MacroPlacement effort, introduced in RDF-2022, now
has additional modern benchmarks, integration of the Au-
toDMP macro placer [1], and baseline solutions produced
by multiple methods including simulated annealing (SA) and
human experts. Separately, a benchmarking and leaderboard
repository for hypergraph partitioning [34] now includes
results for K-way partitioning instances and the K-SpecPart
partitioner.

• MLCAD research enablement. The need for open data
for MLCAD research has been highlighted in many forums;
[45] gives a recent summary of the associated challenges.
DATC efforts have focused on proxies and other elements
of MLCAD research enablement. Developments in 2023
include real and synthetic benchmarks for IR drop analysis
and prediction [38] [43], and a calibration methodology
to close the gap between open research PDKs and closed
commercial PDKs. Artificial netlist generation [23] [37],
for data augmentation and design space coverage of netlists
used in model training, has also been integrated. Key nascent
directions include (i) connecting cell library synthesis and
design enablement flows of PROBE3.0 to data generation
for MLCAD, and (ii) making the RDF tool chain more
ML-friendly and connecting to recent initiatives such as
NVIDIA’s CircuitOps [42].
The remainder of this paper is organized as follows. Sec-

tion II discusses the recent advancements in RDF. Section III
reviews developments toward benchmarks and stronger base-
lines. Section IV discusses proxies (optimizers, design en-
ablements), synthetic data generation, and related topics. We
conclude in Section V with directions for future DATC efforts.

II. RECENT IMPROVEMENTS OF RDF

We highlight four main improvements made in RDF-2023.

A. TritonPart: Constraints-Driven Partitioning Framework

Netlist partitioning has been a prominent missing com-
ponent in RDF; this has limited the ability to effectively
handle large designs with millions of instances. For physical



TABLE I
RDF-2023 COMPONENTS.

Component Tools
RTL generator Chisel/FIRRTL
RTL obfuscation ASSURE
Logic synthesis Yosys, ABC
Hypergraph Partitioner SpecPart, TritonPart
DFT insertion Fault
Floorplanning TritonFP
Macro Placement TritonMP, RTL-MP, Hier-RTLMP, AutoDMP
Global placement RePlAce, FZUplace, NTUPlace3, ComPLx, Capo,

Eh?Placer, FastPlace3-GP, mPL5/6, DREAMPlace
Detailed placement OpenDP, MCHL, FastPlace3-DP, DPO
Flip-flop clustering Mean-shift, FlopTray
Clock tree synthesis TritonCTS
Global routing FastRoute4-lefdef, NCTUgr, CUGR
Detailed routing TritonRoute, NCTUdr, DrCU
Layout finishing KLayout, Magic
Gate sizing Resizer, TritonSizer
Parasitic extraction OpenRCX
STA OpenSTA, iTimerC
Database OpenDB

Libraries/PDK GF180MCU, NanGate45, SKY130, ASAP7,
NCTUcell, ASAP5

Integrated app OpenROAD
Benchmark conversion RosettaStone
DTCO PROBE3.0

estimation and implementation, large system designs must be
partitioned into multiple blocks, tiers and devices that achieve
timing closure when implemented in parallel or concurrently.
TritonPart has been added to RDF-2023 as a general-purpose
constraints-driven partitioning engine, integrated into Open-
ROAD. In contrast to other publicly available partitioners such
as SpecPart [34], hMETIS [22] and KaHyPar [31], TritonPart
provides a modern “partitioning multi-tool” that is:
• Applicable to both classical balanced hypergraph partition-

ing (triton part hypergraph in Figure 1) and timing-
aware VLSI netlist partitioning (triton part design in
Figure 1);

• Able to handle rich constraint types including fixed vertex
constraints, multi-dimensional balance constraints, grouping
constraints, embedding constraints, and timing constraints;

• Permissively open-sourced and scalable in order to accom-
modate future problem instances.

Fig. 1. Applications of the TritonPart engine.

B. Dynamic Power Analysis in OpenSTA

The OpenSTA static timing analysis engine now supports
vectored and vectorless dynamic power analysis. Given a
specific value change dump (VCD), or an activity factor, Open-
ROAD can calculate the total dynamic power consumption of a
design. The command for this analysis is displayed in Figure 3.
Users have reported differences in the power analysis results

from OpenSTA and unnamed signoff evaluators; an example
(Ariane RISC-V core in NanGate45, with bsg fakeram SRAM
models [39] [44] and evaluation at multiple clock periods)
is shown in Figure 2. While the current implementation is
reported to reasonably align with signoff evaluators, improve-
ment of the dynamic power calculation is ongoing.
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Fig. 2. (a) Vectored and (b) vectorless dynamic power correlation between
OpenSTA and an unnamed signoff tool for the Ariane design on NanGate45
with bsg fakeram SRAM models.

# VCD-Based Power Analysis

read_power_activities -scope <scope> -vcd <vcd file>

report_power

# Vectorless Power Analysis

set_power_activity -global -activity <activity factor>

report_power

Fig. 3. OpenROAD (OpenSTA) command for dynamic power analysis.

C. Detailed Placement Optimization
A new detailed placement optimizer (DPO) has been

added to RDF-2023, via integration into the OpenROAD
app. The code was developed by Professor Andrew Kennings
at the University of Waterloo. DPO is invoked using the
improve placement command in OpenROAD; it performs a
variety of operations including global swaps, vertical swaps,
random cell swaps, and cell reordering. These operations can
be conducted with varying or combined goals, such as reduc-
ing half-perimeter wirelength (HPWL), maximizing placement
utilization, and/or minimizing overall cell displacement. Ta-
ble II shows DPO results for aes, ibex, and jpeg designs across
ASAP7, NanGate45, and SKY130HD enablements, indicating
a 1% to 5.5% routed wirelength (rWL) benefit from DPO.

TABLE II
POST-PLACEMENT HPWL AND POST-ROUTE WIRELENGTH (RWL) FOR
AES, IBEX AND JPEG DESIGNS ON ASAP7 (A), NANGATE45 (N) AND

SKY130HD (S) ENABLEMENTS WITH AND WITHOUT DPO.

Design-
Enable.

Baseline With DPO HPWL
∆ %

rWL
∆ %HPWL rWL HPWL rWL

aes-A 74320.3 112370.0 71780.8 109239.0 -3.42 -2.79
aes-N 210407.7 329984.0 199669.0 312472.0 -5.10 -5.31
aes-S 553464.0 838329.0 519277.4 793545.0 -6.18 -5.34

ibex-A 62157.6 89161.0 61114.0 88154.0 -1.68 -1.13
ibex-N 192411.9 269948.0 186931.2 263464.0 -2.85 -2.40
ibex-S 446403.5 664436.0 435362.8 647759.0 -2.47 -2.51
jpeg-A 138651.1 162624.0 134809.9 159228.0 -2.77 -2.09
jpeg-N 475773.5 568330.0 456259.9 548508.0 -4.10 -3.49
jpeg-S 972223.3 1185920.0 927963.1 1136801.0 -4.55 -4.14



D. PROBE3.0 DTCO Pathfinding Framework
Design-technology co-optimization (DTCO) is increasingly

required to extract IC product benefit from advanced man-
ufacturing technology [28]. The DTCO process can enable
exploration of today’s rich space of scaling booster, integration
technology, and system and architecture options. However,
this requires scalability and automation of standard-cell library
and PDK (tool enablement) generation processes, which have
traditionally been the bottleneck for DTCO. Figure 4 shows
the flow of PROBE3.0 standard-cell and PDK generation [15].
Technology and design parameters are inputs to the flow.

Fig. 4. Automatic generation of standard-cell library and PDK (Design
Enablements) in the PROBE3.0 framework. In addition to technology and
design parameters, other technology-related inputs are required: (i) device
model cards, (ii) Liberty templates, (iii) process/voltage/temperature (PVT)
conditions, (iv) interconnect technology files (ICT or ITF formats), (v) LVS
rules, and (vi) SPICE netlists [15].

Three salient aspects of PROBE3.0 are as follows.
• Realistic artificial netlist generation using ML. The capabil-

ity to generate artificial yet realistic designs enables more
robust evaluation of PPAC impacts from various technology
options, across a wider space of designs. PROBE3.0 lever-
ages the Artificial Netlist Generator (ANG) [23] to generate
artificial designs, and applies machine learning (AutoML)
to improve the similarity of artificially-generated netlists to
targeted real netlists.

• Improved SMT-based standard-cell layout generation. In
recent technology nodes, standard-cell architectures use a
variety of pitch values for different layers in order to
optimize PPAC. PROBE3.0 and its extensions improve the
SMT-based layout generation used in PROBE2.0 [10] to
support arbitrary “gear ratios” between contacted poly pitch
and M1 pitch.

• PPAC exploration of scaling boosters. Advanced-node scal-
ing has been accomplished through steady targeting and
realization of scaling boosters (contact over active gate,
single diffusion break, etc.). To overcome challenges of high
BEOL resistance and routing congestion overheads, multiple
foundries have begun implementing backside power delivery
networks (BSPDN) and buried power rails (BPR) as scaling
boosters in their sub-5nm technologies [29] [30]. PROBE3.0
enables detailed study of PDN scaling boosters for “end
to end” DTCO and pathfinding that spans from patterning
ground rules and device models all the way to IR drop-
and routability-constrained PPAC assessment of real design
blocks.

Figure 5 shows Energy-Delay Product (EDP) versus Area
data from a PROBE3.0 exploration of power delivery scaling
boosters. The data show that compared to PFS (iso-area), (i)
for 2Fin (Lib1 and Lib2), EDP with PFB , PBS and PBB

decreases by 0.2, 0.2 and 0.4 mW ·ns2, respectively; and (ii)
for 3Fin (Lib3 and Lib4), EDP with PFB , PBB decreases
by 0, 0.3 mW · ns2 respectively, while PBS increases by 0.1
mW · ns2. Further details are available in [15].

Fig. 5. Energy-Delay Product (EDP) vs. Area tradeoffs for JPEG with four
PDN options in the PROBE3.0 framework: (i) Frontside PDN (FS), (ii)
Frontside PDN with BPR (FB), (iii) Backside PDN (BS), and (iv) Backside
PDN with BPR (BB). For details, see [15].

E. Extensions for 3D Physical Design
With continued headwinds for traditional 2D scaling, along

with clear opportunities for 3D heterogeneous integration-
based scaling, there is growing interest in EDA tooling and
MLCAD support for multi-tier physical design [48]. OpenDB
has been extended to support multiple dies (tiers) and hybrid
bonds, enabling flexible exploration and development of new
fine-grain 3D place-and-route and multi-tier optimization ca-
pabilities in OpenROAD. For example, the RePlAce global
placer has been updated to assist with the global placement
of 3D multi-tier systems. Exploration of netlist partitioning,
clustering and tier assignment can be done using OpenROAD
infrastructure and engines. For 3D global placement, RePlAce
can cycle through the tiers, making a single iteration for each
tier followed by an update to hybrid bond locations. The
RePlAce iterations for each tier explicitly account for hybrid
bond connections. The OpenDP legalizer has been enhanced
to support the legalization of hybrid bonds. Figure 6 shows
an example 3D global placement for Case 4 of ICCAD-2023
Contest Problem B, generated using OpenROAD.

III. ADVANCING BENCHMARKING AND BASELINES

DATC efforts have sought changes in culture and academia-
industry interaction models, to improve both the velocity and
the accessibility of EDA and MLCAD research. These efforts
bridge the gap caused by restrictions on benchmarking, sharing
of design and tool data, etc. in the commercial sphere. The
topic of benchmarking is closely tied to the fact that the core
of EDA (and IC design itself) is optimization: benchmarking
clarifies the leading edge (i.e., via baseline methods and
solutions to benchmark problem instances) and drives progress
in the field. Benchmarking is also closely associated with
availability of open enablements and data for research, since
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Fig. 6. OpenROAD 3D global placement of ICCAD-2023 Contest Problem
B, Case 4: (a) top die, (b) bottom die, and (c) both dies together.

these open the door to communication and sharing. We note
that benefits for applied optimization in EDA are similarly
seen for MLCAD, where benchmarks and baselines promote
transparency, reproducibility, and continual refinement of ML
models. In this section, we review advances in benchmarking
and baselines in two areas, hypergraph partitioning and macro
placement.

A. Balanced Hypergraph Partitioning

Balanced hypergraph partitioning is a well-studied, funda-
mental combinatorial optimization problem with applications
throughout VLSI CAD. Many partitioners, such as hMETIS
[22] and KaHyPar [31], have been proposed over the past
decades. However, in that state-of-the-art hypergraph partition-
ers follow the multilevel paradigm, they may become stuck
in local optima. To address this, SpecPart at ICCAD-2022
[5] introduced a supervised spectral framework for balanced
hypergraph partitioning solution improvement, resulting in a
stronger baseline for research in both partitioning optimizers
and optimization proxies.

SpecPart is an instantiation of a general framework for
improving a given solution to a partitioning instance. It takes
a cut obtained by a multilevel partitioner as a hint toward a
better solution, and uses a spectral algorithm that encodes into
a generalized eigenvalue problem the supervision information
from the hint. Figure 7 illustrates how supervision incentivizes
the computation of an embedding that in general respects
(spatially) the given hint solution, but also identifies vertices
of contention where improving the solution may be possible.
SpecPart substantially improves the known leaderboard of
minimum hyperedge cutsize values for the classic ISPD98 [3]
and Titan23 benchmarks [27].

The HypergraphPartitioning repo [34] exemplifies a poten-
tial “papers with code” culture change to attain the sharing, re-
producibility and transparency that is seen in AI/ML, machine
vision and other fields. All runscripts and related partitioning
solutions are provided in the repo, to ensure full transparency
and reproducibility. The repo also maintains a leaderboard of
best known K-way partitioning [6] results for the ISPD98 and
Titan23 benchmarks.

Fig. 7. Vertex embeddings of the Titan23 gsm switch benchmark. Point colors
indicate block membership in a 3-way partitioning solution with imbalance
factor ϵ = 5% computed by hMETIS [22]. The embedding on the right uses
as a hint the same hMETIS solution, while the embedding on the left is
unsupervised.

B. Macro Placement
Macro placement is another classic problem in the VLSI

CAD literature that has received heightened attention due to its
impact on physical implementation QOR and the rapid scaling
of real-world instance complexities.
New Benchmarks. New, highly scaled benchmarks in open
enablements have been added to the MacroPlacement effort
[39] [11] that was introduced in RDF-2022. The BlackPar-
rot Quad-core and MemPool Group benchmarks respectively
have macro counts of 220 and 324, and instance counts of
approximately 800K and 2.8M, in the NanGate45 enablement.
New TCL flow scripts have been made public in [39] to
facilitate physical synthesis using Synopsys Design Compiler
Topographical and post-P&R evaluation of macro placement
solutions using Cadence Innovus; headers seen in the TCL
scripts reflect the recently-granted permissions from major
EDA suppliers, which provide a major step forward for the
research community.
New Baselines. Along with the testcases, we introduce two
sets of baseline solutions, one using Simulated Annealing
(SA) and the other from human experts. SA is implemented
according to the description given in [26], [40], with code
open-sourced in the MacroPlacement repository. The results
presented in [11] demonstrate that these benchmarks serve as
a competitive point of reference for ML-based macro placers.
Figure 8 shows example macro placement solutions generated
by human experts and by SA.
AutoDMP Baseline. The Automated DreamPlace-based
Macro Placer (AutoDMP) [1] has been developed and open-
sourced by NVIDIA Research; it has been added as an-
other baseline macro placement optimizer. AutoDMP fine-
tunes various DREAMPlace hyperparameters, such as target
density, density weight, the number of horizontal and vertical
bins, learning rate (LR), LR decay, HPWL model, and more,
using a multi-objective Parzen tree estimator to identify the
Pareto front for rectilinear Steiner minimum tree (RSMT)
wirelength, density, and Rudy-based congestion. It then selects
the configuration from the Pareto front that yields the lowest
cost based on wirelength, density and congestion. Figure 9
displays example macro placement solutions generated by
AutoDMP in NanGate45 enablement.

IV. MLCAD RESEARCH ENABLEMENT

Research in MLCAD has long-standing challenges that
include scarcity of training data, confidentiality (PDKs, de-
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Fig. 8. Baseline macro placement solutions generated by human experts: (a) Ariane, (b) BlackParrot and (c) MemPool Group; and using SA: (d) Ariane, (e)
BlackParrot and (f) MemPool Group.

(a) (b)

Fig. 9. Macro placement results generated by AutoDMP for: (a) Ariane and
(b) BlackParrot.

signs, EDA tool reports, etc.) which demands the creation of
proxies, and the lack of standardized data formats [45]. These
challenges have come under the spotlight as education and
workforce development needs of the semiconductor design and
EDA industries grow more urgent. In this section, we present
several DATC efforts toward MLCAD research enablement,
including artificial netlist generation, benchmark generation
for IR drop prediction, calibration of proxy PDKs, and nascent
connections of OpenROAD to NVIDIA CircuitOps and ML
platforms.

A. Artificial Netlist Generation
To address the lack of shareable place-and-route (P&R)

data, Artificial Netlist Generator (ANG) [23] [37] offers a
structured approach to creating realistic P&R benchmarks for
ML applications. The framework uses a number of standard
topological and layout parameters, including number of in-
stances, number of IOs, average net degree, average net half-
perimeter wirelength, average depth of timing paths, and ratio
of sequential:combinational instances. Figure 10, reproduced
from [23], shows the P&R data generation flow using a netlist
generated by ANG; the figure shows how different topological
parameters are sampled to yield an artificial but realistic
training dataset for MLCAD.

Fig. 10. Flow used by ANG to generate an artificial netlist [23] along with
the netlist sampling process using ANG. Figure reproduced from [23].

B. Calibration and ML Benchmarks for IR Drop Prediction

The ICCAD-2023 Contest Problem C focuses on utilizing
machine learning to predict static IR drops. The contest
provides twenty real [43] circuit testcases on NanGate45,
created using OpenROAD-flow-scripts [33] and PDNSim for
SPICE netlist representation. These testcases vary with respect
to design areas, power maps, grid density, and voltage pad
locations. Additionally, a GAN-based [13], [38] framework
is utilized to generate thousands of synthetic netlists featur-
ing varied power distributions and grid densities, which are
publicly accessible. Golden IR drop data produced by SPICE
simulation accompanies each data point in both real and
synthetic datasets, providing support for ML EDA, calibration
and power integrity research.

C. Calibration of Proxy Design Enablement

Recent work has explored the possibility of scaling public
PDK and design enablement (Liberty, LEF, etc.) data, so as to
achieve a proxy enablement that mimics analogous commercial
data. The goal is to match or “bound” the commercial design
enablement, particular in terms of design PPA outcomes.
This serves not only EDA and MLCAD researchers, but also
designers who wish to perform early design exploration with
reduced barriers to access.

Our working hypothesis is that to narrow the gap between
open-source and closed-source design enablements, it may
be sufficient to apply scaling (eventually, aided by machine
learning) of standard-cell delays and slews, internal power,
switching power and other SP&R-relevant attributes. Figure 11
shows the outcome when the ASAP7 [47] enablement is
calibrated (scaled) to match a corresponding Foundry 7nm
enablement. The figure shows block-level power, performance
and area for the JPEG design at 70% utilization, based on a
sweep of target clock period (Fmax). In this example, scaling
factors (undisclosed to protect the foundry’s IP) for internal
power, switching power and cell delays/slews in Liberty are
applied separately for each threshold voltage (VT). This small
set of nine scaling factors can expand to encompass pin
capacitance, leakage, setup and hold timing, gate type, area,
and BEOL resistance and capacitance. As the number of
scaling factors grows, techniques such as autotuning can help
to search for best-possible combinations of scaling factors. In
this experiment, Ray Tune [25] is applied in the search of
scaling factors. Figure 11 shows that autotuning can find a
combination of the nine scaling factors that closely matches
the foundry 7nm target from the design implementation PPA
point of view. Ongoing work pursues automated, ML-boosted



search for proxy enablements using an expanded space of
scaling parameters (e.g., including area and BEOL).

Fig. 11. 3D PPA plot for JPEG encoder implementation based on reference
Foundry 7nm and scaled ASAP7 proxy design enablements.

D. MLCAD Data Generation and Accessibility
Toward MLCAD data generation and accessibility, a signifi-

cant recent development is CircuitOps [24], which has created
an ML-friendly circuit data representation format in the form
of a labeled property graph (LPG) for easy operation with
ML algorithms. CircuitOps uses OpenROAD to parse design
and technology files (DEF/LEF/Verilog/Liberty) to generate
an intermediate representation of the circuit data in the form
of relational tables through TCL APIs. The relational tables
with the properties and connectivity information are then
used by CircuitOps to create LPGs. The CircuitOps GitHub
repository [42] contains sample intermediate representation
and LPGs for various designs in NanGate45, ASAP7, and
SKY130HD technology nodes. These LPGs can serve graph-
based ML applications in physical design, e.g., enabling easy
application of GNN/GCN based algorithms, easy query of
node features, and batch parallel processing with PyTorch.

Figure 12 depicts a roadmap for Python and OpenROAD.
While OpenROAD has a Python interpreter that runs all
engines except for OpenSTA, this capability has to date been
underused. The vision is that OpenROAD in RDF can become
a “playground” for EDA researchers and the chip design
community, where ML/RL algorithms integrate seamlessly and
the research community can explore the potential of ML both

Fig. 12. Python and OpenROAD roadmap. Figure courtesy of V. A. Chhabria
[12].

within and around traditional EDA algorithms [12]. While
some of the python APIs exist, an ML for EDA playground
requires three elements: (i) data representations/formats for
LEF/DEF/Verilog that integrate with ML libraries; (ii) addi-
tional python APIs that return information from the database
in formats ML algorithms can interpret; and (iii) APIs that can
have callbacks from ML predictions back to the database. For
example, graph-based ML algorithms that perform node and
edge transformations can map back to updates to the netlist
and database. Realizing this roadmap will be a major goal for
the next edition of the RDF.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have summarized key DATC efforts from
the past year.

Improvements in the RDF-2023 tool chain include inte-
gration of the TritonPart constraint-driven netlist partitioner,
dynamic power analysis capability, a new detailed placement
optimizer, enablement of 3D layout generation within Open-
ROAD, integration of the new PROBE3.0 DTCO framework,
and extensions for 3D physical design.

Advancement of benchmarking practices and baselines saw
expansion of the MacroPlacement initiative to incorporate new
benchmarks along with baseline solutions from AutoDMP,
Simulated Annealing and human experts – as well as commer-
cial tool flow scripts that enable full reproduction of academic
research results. For the latter, recent permissions from major
EDA suppliers are a major step forward for the research com-
munity, and are gratefully acknowledged. A benchmarking and
leaderboard repository [34] for K-way balancecd hypergraph
partitioning gives an example of potential future “papers with
code” practice in the EDA research literature.

MLCAD research enablement has continued to address
two primary challenges: the shortage of data, and the need
for baselines to assess both ML models and ML-based op-
timization and analysis outcomes. Development of proxies
can unblock availability of open data (i.e., tool enablements,
design testcases, and all forms of derived data from tools and
flows). One potential direction is seen in autotuned scaling
of the ASAP7 enablement to align with a commercial 7nm
enablement. A second direction is the use of an artificial netlist
generator (ANG) that is designed for ML model training in
physical design tasks. Additionally, new real and synthetic
IR drop benchmarks have been made available for IR drop
prediction; this builds on the Calibrations effort initiated in
RDF-2020 [8] [46] and is the basis for “Contest C” at this
conference [43]. As noted above, RDF-2023 also provides
baselines for ML EDA optimizations, including hypergraph
partitioning and macro placement.

Future DATC and RDF efforts aim to connect the cell library
synthesis and design enablement flows of PROBE3.0 to data
generation for MLCAD. Another important direction is to
make the RDF tool chain more ML-friendly.
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