
Multi-Way System Partitioning into a Single Type

or Multiple Types of FPGAs�

Dennis J.-H. Huang and Andrew B. Kahng

UCLA Computer Science Department, Los Angeles, CA 90024-1596 USA
jenhsin@cs.ucla.edu, abk@cs.ucla.edu

Abstract

This paper considers the problem of partitioning a
circuit into a collection of subcircuits, such that each
subcircuit is feasible for some device from an FPGA li-
brary, and the total cost of devices is minimized. We
propose a three-phase heuristic that uses ordering, clus-
tering, and dynamic programming to achieve good so-
lutions. Experimental comparisons are made with the
previous methods of [4][9].

1 Introduction

Multi-way circuit partitioning has been studied ex-
tensively in VLSI CAD. Recent research in multiple-
FPGA systems has addressed objectives which mini-
mize the net cut between partitions subject to size con-
straints (#CLBs) and pin constraints (#IOBs or inci-
dent signal nets) on each partition. Woo and Kim [12]
proposed a modi�cation of the Fiduccia-Mattheyses
(FM) [5] method to perform k-way partitioning, with
k given, which tries to minimize the total number of
pins of all partitions while satisfying given size and pin
constraints. Ku�znar et al. [9] proposed an algorithm to
partition a given CLB-level netlist into multiple device
types to minimize total device cost, where each device
type in a given library can have distinct price, size,
and pin capacity. Their method recursively applies a
variant of FM bipartitioning which allows some uphill
moves. In subsequent work, Ku�znar et al. [10] allow
CLBs to be duplicated, i.e., they introduce functional
replication to minimize the total cost of devices and
inter-device interconnect. Finally, Chou [4] et al. have
proposed an algorithm to partition a circuit into in-
stances of a single FPGA type, such that the number of
FPGAs is minimized. They use \local ratio-cut" clus-
tering to reduce the instance complexity, then derive a

�This work was partially supported by NSF MIP-9257982 and

MIP-23740.

disjoint partition using a set covering approach, follow-
ing the paradigm of Espresso II. Their algorithm sig-
ni�cantly improves over recursive FM on large bench-
marks with up to 160K gates and 90K nets.

In this paper, we consider the problem of partition-
ing a circuit such that each partition is feasible for some
FPGA device type from a library of device types, and
the total cost of devices is minimized. We propose a
new heuristic which incorporates (i) ordering, (ii) clus-
tering, and (iii) dynamic programming to achieve good
solutions. Experimental results show that our heuristic
can give substantial improvement over previous meth-
ods with comparable CPU costs, particularly for large
problem instances. A related result shows that our for-
mulation, which seeks a disjoint cover of the circuit
by FPGAs, is general. Speci�cally, we extend a result
stated in [4] and prove that an overlapping partitioning
solution does not reduce total device cost or intercon-
nect, i.e., given an overlapping solution we can always
construct a non-overlapping solution (i.e., having dis-
joint partitions) with the same cost and the same or
less I/O utilization.

2 Problem Formulation

A digital circuit can be represented as a hypergraph
G = (Vio [ Vin; E), where Vio is the set of primary
input and primary output nodes, Vin is the set of in-
ternal nodes, and E is the set of hyperedges. Each node
v 2 Vin has a weight w(v) associated with it (e.g., cor-
responding to area). A subcircuit C is the induced
subhypergraph over some subset V 0 � Vin. C is called
a feasible FPGA if the sum of the weights of its nodes
is w(C) � s, and the number of nets that it cuts is
Pin(C) � p, where s and p are respectively the node
capacity and the pin capacity of an FPGA device. The
FPGA partitioning implies an assignment of each node
in Vin to at least one of a set of k subcircuits, such that
each subcircuit is a feasible FPGA.

The simplest version of this problem is to partition a
circuit into instances of a single type of FPGA device.

Single Type FPGA Partitioning: Given a circuit
G, �nd a minimum number of disjoint feasible FPGAs
to cover G.

The generalization of this problem [9] is to cover



Device CLBs(s) IOBs(p) cost LB(l) UB(u)

XC3020x-x 64 64 1.00 0.8 0.9
XC3030x-x 100 80 1.36 0.8 0.9
XC3042x-x 144 96 1.84 0.8 0.9
XC3064x-x 224 110 3.15 0.8 0.9
XC3090x-x 320 144 4.83 0.8 0.9

Table 1: Xilinx XC3000 device library [9].

G with feasible devices from an FPGA library, such
that total device cost is minimized. Table 1 depicts an
FPGA library corresponding to a speci�c device family
(Xilinx XC3000), as summarized in [9].

Each device typeDj in the FPGA library has pin ca-
pacity pj (IOBs), node capacity sj (CLBs), and price
cj. Optionally a user may specify li and ui to rep-
resent the lower and upper bounds on the utilization
of CLBs, e.g., to enhance autoroutability. A subcir-
cuit Ci is called type-j feasible if Pin(Ci) � pj and
ljsj � w(Ci) � uisj . A k-way partition is called feasi-
ble if each partition Ci, i = 1; 2; : : : ; k is type-j feasible
for some device Dj .

Multiple Type FPGA Partitioning: Given a cir-
cuit G, �nd disjoint feasible FPGAs to cover G with
minimum total device cost.

3 Node Ordering, Clustering, and Dy-
namic Programming

In this section, we describe a three-phase heuristic
algorithm for FPGA partitioning. First, we embed the
given circuit into a linear ordering of nodes. Intuitively,
in a good ordering \natural" clusters will occur as con-
tiguous subsets of the ordering. Second, for large cir-
cuits we optionally use a clustering scheme to reduce
the problem size. Third, we apply dynamic program-
ming over the ordering to get an optimal restricted par-
titioning, i.e., subject to all clusters being contiguous
in the ordering. This approach is similar to that of
Alpert and Kahng [1]. We also use techniques from [2],
which constructs an ordering by iteratively adding the
node with highest attraction to the existing ordering.

3.1 Node Ordering

The �rst phase of our algorithm is node order-
ing. An ordering v�1 ; v�2 ; : : : ; v�n of a node set V =
fv1; v2; : : : ; vng is de�ned by a bijection � : f1 : : :ng !
f1 : : :ng. Node vi is the jth node in the ordering if
�(j) = i. [2] presented various orderings, such as max-
adjacency ordering, min-perimeter ordering, max ab-
sorption [11], and min scaled cost [3], each of which
may be achieved by de�ning some \attraction" from
unordered nodes to the set of all previously ordered
nodes. Let Nets(i) = fe 2 Ejvi 2 eg be the set of
nets incident on vi, and let S be the set of all previ-
ously ordered nodes, and for each unordered node vi let
Attract(i) be the attraction from vi to S. The ordering

may be obtained by the following three steps:

1. Initialization: Randomly choose a node vx, and
set �(1) = x; S = vx; and index = 1. For each
vi 2 V � S, compute Attract(i).

2. Best Node: If V �S 6= ; choose vx 2 V �S with
optimal Attract(x), else exit.

3. Update: Increment index. Set �(index) = x, and
S = S[vx. Update Attract(i) for each vi 2 V �S
and go to step 2.

The WINDOW algorithm in [2] used the scaled cost
metric, with corresponding attraction function de�ned
as follows :

AttractSC(i) =
X

e2Nets(i)

jS \ ej

jej � 1

The scaled cost attraction leads to reasonable order-
ing decisions in most cases. However, sometimes a
node is added which has high scaled cost attraction
but which also has high degree, thus leading to more
cut nets (see Figure 1). In addition, it only works for
unit weight nodes. To prevent adding a node which has
too strong connectivity to remaining unordered nodes,
we introduce a combination of the scaled cost and min
perimeter objectives. Let each net e 2 E have weight
w(e) =

P
vi2e

w(vi) which is the sum of node weights
in e. We use the WINDOW algorithm with the fol-
lowing attraction function to obtain our Scaled Cost +
Min Perimeter (SCMP) ordering.

AttractSCMP(i) =
X

fe2Nets(i) j e\S 6=;g

X
u2S\e

w(u) + w(vi)

w(e)

� � �
X

fe2Nets(i) j e\S=;g

w(e)� w(vi)

w(e)

The �rst term is the scaled cost attraction function
modi�ed to account for weighted nodes. The sec-
ond term is the min perimeter attraction function also
modi�ed to account for weighted nodes. � is the rel-
ative weighting factor of the min perimeter attrac-
tion. In Figure 1, if � = 1

2 , Attract(u) = 1 and

Attract(v) = 2� 1
2(

2
5) =

3
4 in the SCMP ordering con-

struction. Thus, SCMP would choose u instead of v.
Note that our use of the ordering concept will allow an
e�cient dynamic programming solution (Section 3.3).
Note also that our particular SCMP ordering is de-
signed with respect to the stated problem formulation.
For speci�c multi-FPGA system designs, other objec-
tives may prevail, e.g., re
ecting inter-FPGA routing
architecture. In such cases, di�erent attraction func-
tions may be preferable, along with use of the window
size and tail size parameters in [2].



u

vordered vertex set

Figure 1: The scaled cost attraction function will
choose node v to be added next into the ordered set
S, thus leading to more cut nets.

3.2 Clustering

To partition large circuits, the use of clustering to
reduce problem complexity is a widely adopted tech-
nique. Chou et al. [4] used local ratio cut clustering for
such a pre-processing step. They iteratively extract a
subcircuit C with desired cluster size from the original
circuit G, and apply ratio cut partitioning to all nodes
in C and all nodes in G n C which have connections
to nodes in C. Their clustering technique yields very
good results for FPGA partitioning.

We propose a clustering scheme based on the con-
structed linear ordering, again based on the intuition
that a good ordering should preserve dense circuit
structure in its contiguous subsets. Given a cluster size
limit U , we start from the �rst node in the ordering,
compute the scaled cost of all contiguous clusters start-
ing from that node and having size � U , and greedily
choose the cluster with optimal scaled cost. We then
start from the next node, and repeat the above steps
until the whole ordering is traversed. Figure 2 shows
the algorithm template.

Clustering Algorithm
Input : Linear Ordering fv�1 ; v�2 ; : : : ; v�ng

U � Upper cluster size bound
Output : Clustering solution Clusters
Vars : C[i;j] � cluster fv�i ; v�i+1 ; : : : ; v�jg
Clusters = ;
start = 1
while (start < n) do

Find cluster C[start;start+j] with optimal scaled
cost for all 1 � j � U

Let bestj � variable containing best index j
Clusters = Clusters [C[start;start+bestj]

start = start + bestj + 1
return Clusters

Figure 2: Clustering algorithm template.

3.3 Dynamic Programming

Given a node ordering, our dynamic programming
(DP) phase �nds the optimal FPGA covering cost for

a contiguous subset of the ordering, based on the opti-
mal covering costs of the smaller (contained) subsets of
the ordering. For the Single Type FPGA Partitioning
problem, let nFPGA[i; size] be the minimum number
of FPGAs needed to cover the node ordering from in-
dex i to index i + size � 1. Our DP is based on the
following recurrence relation :

nFPGA[i; size] = 1 if C[i;i+size�1] is feasible FPGA

else,

nFPGA[i; size] = min
1�x<size

(nFPGA[i; x] + nFPGA[i + x; size� x])

Similarly, for the Multiple Type FPGA Partitioning,
let mcost[i; size] be the minimum device cost to cover
the node ordering from index i to index i + size � 1.
The DP recurrence relation is as follows:

mcost[i; size] = min

�
min

C[i;i+size�1] is type-j feasible
cj ;

min
1�x<size

(mcost[i; x] +mcost[i + x; size� x])

�

The basic algorithm template for DP is shown in Figure
3. The complexity of this algorithm is O(Un2). Note
that Alpert and Kahng's DP-RP algorithm [1] used a
di�erent dynamic programming recurrence, i.e., they
derived a k-way partitioning from the best (k� 1)-way
partitioning solutions for all contiguous clusters.

3.4 Experimental Results

All algorithms and experiments were implemented in
the UNIX/C environment using a Sun SPARCstation
10. All benchmarks were obtained from MCNC un-
der the directory /pub/benchmark/Partitioning93. We
also obtained three large industrial benchmarks from
the authors of [4].

We omitted the clustering phase for the small bench-
marks. For all experiments, we set � = 0:3 in the
WINDOW ordering phase. For the four relatively small
benchmarks in [9], the FPGA constraint is based on the
Xilinx XC2064 (i.e., 64 CLBs and 58 IOBs). Table 2
shows that our algorithm (denoted by WCDP) achieves
comparable results with [9] and [4]. WCDP also per-
forms very well in larger test cases. For the four larger
benchmarks(s-series), the FPGA constraints are set to
320 CLBs and 144 IOBs. Table 3 shows that WCDP
outperforms recursive FM and SC [4].

We also tested WCDP on three huge industrial
benchmarks with up to 160K gates and 90K nets.
WCDP achieves an average of 18% improvement over
SC with reasonable (but longer) running time, as
shown in Table 4.

For Multiple Type FPGA Partitioning, we tested all
nine benchmarks studied in [9], using the same library.
Our WCDP heuristic outperforms [9] by an average of
5:08%, as shown in Table 5. In [10], Ku�znar et al.
allow node replication during the partitioning; WCDP
still obtains better results without using replication.



DP Algorithm for Single Type FPGA Partitioning
Input : Linear Ordering fv�1 ; v�2 ; : : : ; v�ng
Output : the number of FPGAs required by the given circuit

and partitioning solution
Vars : C[i;j] � cluster fv�i ; v�i+1

; : : : ; v�jg

nFPGA[i,j] � minimum number of FPGAs required
by cluster C[i;i+j�1]

for i = 1 to n do
nFPGA[i,1] = 1;

for size = 2 to n do
for i = 1 to n do

if C[i;i+size�1] is feasible then

nFPGA[i,size] = 1;
else

min value = 1
for j = 1 to U do

min value = Min( min value,
nFPGA[i,j] + nFPGA[i+j,size-j])

nFPGA[i,size] = min value;
return min

1�i�n
nFPGA[i; n]

DP Algorithm for Multiple Type FPGA Partitioning

Input : Linear Ordering fv�1 ; v�2 ; : : : ; v�ng
U � max FPGA size in the library

Output : the minimum device cost required by the given circuit
and partitioning solution

Vars : C[i;j] � cluster fv�i ; v�i+1
; : : : ; v�jg

mcost[i,j] � minimum device cost required by cluster
C[i;i+j�1]

for i = 1 to n do
mcost[i,1] = minimum FPGA device cost;

for size = 2 to n do
for i = 1 to n do

if C[i;i+size�1] can be �tted into a device with minimum

cost min dev cost then
min cost = min dev cost

for j = 1 to U do
min cost = Min(min cost, cost[i,j] + cost[i+j,size-j])

cost[i,size] = min cost;
return min

1�i�n
cost[i; n]

Figure 3: Dynamic programming for single- and
multiple-type FPGA partitioning.

4 Node Overlapping

Our partitioning formulation is inherently based on
an undirected circuit representation. Moreover, there
is no intrinsic reason to seek a disjoint cover of the cir-
cuit by feasible FPGAs. One might thus consider the
use of node overlapping, i.e., assigning a node to more
than one partition, to reduce the number of pins in
some partitions. (Figure 4 shows a non-overlapping so-
lution; if v1 and v2 are overlapped by the two partitions,
the number of pins in C2 is reduced by 1.) However,
we will show that node overlapping cannot reduce the
cost of an FPGA partitioning. (This is a consequence
of both the undirected formulation and the satis�cing
pin constraints.) Note that node overlapping is funda-
mentally di�erent from the concept of node replication
discussed in [8, 7]: node replication uses directional in-
formation and only duplicates incoming edges incident
to the replicated nodes.

For the Single Type FPGA partitioning problem,
Chou et al. [4] proposed the \FPGA complementary
theorem", which states that k disjoint feasible FPGAs
can be obtained from k overlapping feasible FPGAs.
They gave the proof for the 2-way result, but did not

ckt (CLBs, IOBs, nets, pins) KBK93 SC WCDP

c3540 (373, 72, 569, 1933) 6 6 7

c5315 (535, 301, 936, 3004) 11 12 12
c7552 (611, 313, 1057, 3318) 11 11 11
c6288 (833, 64, 1472, 3438) 14 14 14

Table 2: Comparison of WCDP and two other algo-
rithms. KBK93 is the modi�ed FM algorithm in [9],
and SC is the Set Covering algorithm in [4]. The FPGA
size constraint and pin constraint are 64 and 58 respec-
tively, re
ecting the XILINX XC2064 part.

ckt (CLBs, IOBs, nets, pins) RFM SC WCDP

s15850 ( 842, 102, 1265, 4977) 4 3 3
s13207 ( 915, 154, 1377, 5309) 7 6 6
s38417 (2221, 156, 3216, 13257) 12 10 8

s38584 (2904, 292, 3884, 17483) 17 14 12

Table 3: Comparison of the WCDP, recursive FM
(RFM), and Set Covering [4] algorithms. The FPGA
size constraint and pin constraint are 320 and 144 re-
spectively.

give a formal proof for the k-way result. We now pro-
vide an analogous complementarity result for the k-way
Multiple Type FPGA partitioning problem.

Theorem 1 : k-Way Single Type FPGA Com-
plementary Theorem (Chou et al. [4]). Let
C1; C2; : : : ; Ck be k feasible FPGA candidates. Then
there exists a permutation function �(i); i 2 1; 2; : : : ; k,
such that

1. C�(1),
2. C�(2) n C�(1),
3. C�(3) n (C�(1) [C�(2)),
...
k. C�(k) n (C�(1) [C�(2) [ : : :[ C�(k�1))

are disjoint feasible FPGAs.

ckt gates pins I/Os nodes nets
38K 38039 30043 120 7259 10102
49K 48992 62700 1129 19215 19734
160K 159054 245311 1885 89288 90029

LRSC WCDP
ckt #FPGAs (min.) #FPGAs (min.) % improv.
38K 37 (9) 33 (14) 10.81%
49K 87 (65) 77 (110) 11.49%
160K 186 (383) 128 (589) 31.38%

Table 4: Comparison of WCDP and SC [4] algorithms
based on three huge industrial benchmarks. Top:
Benchmark parameters. Bottom: partitioning results.
The FPGA size constraint is 2; 700 CLBs and the pin
constraint is 184 IOBs. The numbers in parentheses
giving running time in minutes on a Sun SPARC-10.



ckt KBK93 WCDP LB KBZ94
c3540 5.52 4.51(18.30%) 4.51 4.56(18.30%)
c5315 7.03 7.04(-0.14%) 5.92 6.92(1.57%)
c6288 13.66 12.32( 9.81%) 12.32 13.66(0%)
c7552 7.36 7.88(-7.06%) 7.36 7.36(0%)
s5378 6.67 6.67(0%) 5.52 6.19(7.20%)
s9234 7.98 6.83(14.42%) 6.83 7.98 (0%)
s13207 17.16 18.52(-7.92%) 13.40 18.12 (-5.59%)
s15850 14.80 13.55(8.45%) 12.35 14.97 (-1.14%)
s38584 51.83 45.60(12.03%) 45.50 51.19 (1.24%)
Impr. vs. { 5.08% 2.40%
KBK93

Table 5: Comparison of Multiple type FPGA Partition-
ing results. WCDP outperforms KBK93 [9] by 5:08%.
LB = lower bound on solution cost obtained by integer
programming in [9].

v

v

1

2

C C1 2

Figure 4: An example of node overlapping. When
node v1 and v2 are overlapped (dotted line), the num-
ber of pins in C2 is reduced by 1.

This theorem suggests that for Single Type FPGA
partitioning, a solution without overlapping can be ob-
tained from an overlapping solution. We now extend
the result to Multiple Type FPGA partitioning.

Theorem 2 : 2-Way Multiple Type FPGA
Complementary Theorem. Let C1 be a type-1 fea-
sible FPGA, and C2 be a type-2 feasible FPGA. Then
at least one of the following is true:

1. C1 is type-1 feasible and C2 n C1 is type-2 feasible.
2. C2 is type-2 feasible and C1 n C2 is type-1 feasible.

Proof : Let C1 = A[O, C2 = B[O, C1\C2 = O, and
R be the rest of the circuit (note that O � \overlap").
We consider the possible multi-pinnets. LetAB denote
the number of nets which contain at least one pin in
each of A and B, and let AO(R[B) denote the number
of nets which contain at least one pin in each of A, O,
and (R [ B). Let p1 and p2 be the pin constraints
for type-1 and type-2 FPGAs respectively. Suppose
neither of the above holds, i.e., A = C1 n C2 is not
type-1 feasible and B = C2 n C1 is not type-2 feasible.
Since C1 is type-1 feasible,

AO(R [B) +A(R [B) + O(R [B) � p1 (1)

and since A is not type-1 feasible,

AO(R [B) +AO +A(R [B) > p1 (2)

From (1) and (2), we have

AO > O(B [R)) AO > BO (3)

Similarly,C2 is type-2 feasible and B is not type-2 fea-
sible, implying

BO > O(A [R)) BO > AO (4)

This contradicts (3), and hence one of the two outcomes
must hold.

Theorem 3 : k-Way Multiple Type FPGA
Complementary Theorem: Let C1; C2; : : : ; Ck be
type-t1, type-t2, : : :, type-tk feasible FPGAs with pin
constraints pt1; pt2 ; : : : ; ptk, respectively. There exists
a permutation function �(i); i 2 1; 2; : : : ; k, such that :

1. C�(1) is type-t�(1) feasible.
2. C�(2) n C�(1) is type-t�(2) feasible.
3. C�(3) n (C�(1) [C�(2)) is type-t�(3) feasible.
...
k. C�(k) n (C�(1) [C�(2) [ : : :[ C�(k�1)) is type-t�(k)
feasible FPGA.

Proof : We prove the result by induction. When
k = 2, this theorem is the 2-Way Multiple Type FPGA
Complementary Theorem. Assume the result holds for
k = j � 1 partitions. We prove the result for k = j as
follows :

Let Ci = Ni [ Oi, where Ni is the non-overlapping
part of Ci and Oi is the part of Ci overlaps with other
clusters. Let R be the set of I/O pads and let G = C1[
C2[: : :[Ck[R be the whole circuit as shown in Figure
5. We claim that at least one of the Ni (1 � i � j) is
a feasible FPGA. Suppose none of the Ni are feasible.
Then, since Ci is feasible, for all i we have (using the
same notation as before)

Ni(G n Ci) + Oi(G n Ci) +NiOi(G n Ci) � pti (5)

and since Ni is not feasible,

Ni(G n Ci) +NiOi + NiOi(G n Ci) > pti (6)

From (5) and (6), NiOi > Oi(G n Ci) for all i, whence

jX
i=1

NiOi >

jX
i=1

Oi(G n Ci) (7)



N

G \ C

i

i

Ni

Oi

Ci = Ni Oi∪

Figure 5: A feasible FPGA partition Ci with non-
overlapping part Ni and overlapping part Oi.

All nets in NiOi (for all i) are disjoint since they must

have pins in Ni. Every net in
[
i

NiOi must appear

at least once in
[
i

Oi(G n Ci) since the net in NiOi

must have pins in Ni and have pins in Oi sharing
with other clusters. For example, if the net in NiOi

shares pins with clusters Cx and Cy, then this net will
also be contained by Ox(G n Cx) and Oy(G n Cy).

Thus,
kX
i=1

NiOi �
kX
i=1

Oi(G n Ci). This contradicts (7).

Therefore, there exists at least one Ni which is a fea-
sible FPGA. After removing one feasible Ni, by the
induction hypothesis the remaining j � 1 overlapping
clusters can be rearranged to yield a non-overlapping
partitioning.

This theorem suggests that for a given overlapping
solution of the multi-type FPGA partitioning problem,
we can construct a non-overlapping solution with the
same cost and the same (or less) total I/O utiliza-
tion. The optimal solutions for overlapping and non-
overlapping are the same.

5 Conclusion

We have presented the WCDP heuristic { composed
of modi�ed WINDOW ordering, clustering, and dy-
namic programming phases { for the Single Type and
Multiple Type FPGA Partitioning problems. Our al-
gorithm outperforms SC by 18% on huge benchmarks,
and outperforms KBK93 by 5% for Multiple Type
FPGA partitioning. Of supplementary interest is our
extension of the FPGA complementary theorems in [4]
to multiple-type FPGA partitioning. According to this
result, and within our given problem formulation, we
can always obtain a disjoint partitioning solution from
an overlapping solution.

6 Acknowledgments

We are grateful to Dr. L. T. Liu for his valuable
discussion and providing the translator of benchmarks
[9] from MCNC.

References

[1] C. J. Alpert and A. B. Kahng, \Multi-Way Partition-
ing Via Space�lling Curves and Dynamic Program-
ming", 31st ACM/IEEE Design Automation Confer-
ence, 1994, pp. 652-657.

[2] C. J. Alpert and A. B. Kahng, \A General Framework
for Vertex Orderings, With Applications to netlist
Clustering", Proc. IEEE Intl. Conf. on Computer-
Aided Design, 1994, pp. 63-67.

[3] P. K. Chan, M. D. F. Schlag and J. Y. Zien, \Spectral
K-Way Ratio-Cut Partitioning and Clustering", IEEE
Trans. on CAD 13(9), Sept. 1994, pp. 1088-1096.

[4] N.-C. Chou, L.-T. Liu, C.-K. Cheng, W.-J. Dai, and R.
Lindelof, \Circuit Partitioning for Huge Logic Emula-
tion Systems", 31st ACM/IEEE Design Automation
Conference, 1994, pp. 244-249.

[5] C. M. Fiduccia and R. M. Mattheyses, \A Linear Time
Heuristic for Improving Network Partitions", 19th
ACM/IEEE Design Automation Conference, 1982, pp.
175-181.

[6] L. Hagen and A. B. Kahng, \New Spectral Meth-
ods for Ratio Cut Partitioning and Clustering", IEEE
Trans. on CAD 11(9), Sept. 1992, pp. 1074-1085.

[7] J. Hwang and A. El Gamal, \Optimal Replication
for Min-Cut Partitioning", Proc. IEEE Intl. Conf. on
Computer-Aided Design, 1992, pp. 432-435.

[8] C. Kring and A. R. Newton, \A Cell-Replication Ap-
praoch to Mincut-Based Circuit Partitioning", Proc.
IEEE Intl. Conf. on Computer-Aided Design, 1991,
pp. 2-5.

[9] R. Ku�znar, F. Brglez, and K. Kozminski, \Cost Min-
imization of Partitions into Multiple Devices, 30th
ACM/IEEE Design Automation Conference, 1993, pp.
315-320.

[10] R. Ku�znar, F. Brglez, and B. Zajc, \Multi-way Netlist
Partitioning into Heterogeneous FPGAs and Mini-
mization of Total Device Cost and Interconnect", 31st
ACM/IEEE Design Automation Conference, 1994, pp.
238-243.

[11] W. Sun and C. Sechen, \E�cient and E�ective Place-
ments for Very Large Circuits" Proc. IEEE Intl. Conf.
on Computer-Aided Design, Santa Clara, Nov. 1993,
pp. 170-177.

[12] N.-S. Woo and J. Kim, \An E�cient Method of Par-
titioning Circuits for Multiple- FPGA Implementa-
tion", 30th ACM/IEEE Design Automation Confer-
ence, 1993, pp. 202-207.


