
Invited Paper: The Inevitability of AI Infusion Into
Design Closure and Signoff

Jiang Hu
Texas A&M University

College Station, TX, USA
jianghu@tamu.edu

Andrew B. Kahng
UC San Diego
La Jolla, USA
abk@ucsd.edu

Abstract—SoC design teams embrace new technologies and
methodologies that bring clear value. Given this, future infusion
of AI into design closure and signoff is inevitable. Predictive
AI models help focus the application of last-mile incremental
optimizations (sizing, placement and routing) to achieve timing
and noise closure; successful examples range from routing-
free crosstalk prediction to timing/power evaluation in early
RTL development. Design closure becomes more efficient when
“imperfect but fast” ML inferencing is used to filter out potential
violations, which can then be passed to golden analysis tools.
Learning methods also improve the design process in many ways,
ranging from smarter PVT corner selection to predicting the CPU
and memory usage of signoff tools. At a higher level, AI will help
design teams learn to avoid design trajectories that lead to time-
consuming closure and signoff iterations. This talk will provide a
broad overview of directions in which AI will inevitably improve
the cost and efficiency of signoff in the coming years.

I. INTRODUCTION

SoC design teams always want get to end goals (i.e., tapeout
and volume production) with less resources and schedule.
Ideally, this is achieved by a single-pass design flow (with
no loops back due to violated specifications or design rules)
and minimal design guardbanding. In this talk and invited
paper, we motivate why signoff analysis and design closure
are inevitable targets for AI/ML, and discuss potential benefits
and limitations of AI/ML in these contexts.

Signoff analysis refers to the “golden”, foundry-qualified
verifications of physical/geometric, manufacturability, timing,
power and reliability attributes. Signoff is the final gatekeeper
at the handoff from design to manufacturing. Importantly,
product owners – as well as the fabless-foundry business
framework – require the use of golden signoff tools at tapeout.
In this context, AI/ML seeks to minimize turnaround times
and license demand by shifting cost-accuracy tradeoffs, as
cartooned in Figure 1. This can be achieved with a variety
of mechanisms, such as (i) improved (multi)physics model-
ing; (ii) learning and extrapolation from data; and (iii) early
filtering or triage to distinguish “safe” (not of concern) versus
“at-risk” (needing greater attention) elements of the design.
We note that multiscale-multiphysics analyses – e.g., thermo-
mechanical stress and reliability analysis of a heterogeneously-
integrated module – demand nearly 1000000× speedups over
current methods. All of these bring opportunities for AI/ML.

Design closure makes the design safe for signoff analysis:
designers do not want loops in their flow due to failed

signoff runs. AI/ML for design closure centers on prediction,
especially, of future failure. Here, the core challenge arises
from the tension between “range” of lookahead into the future,
and accuracy of predictions: What can we predict (e.g., post-
route crosstalk noise violations), from what earlier state in the
design process (e.g., from the post-physical synthesis netlist),
without unacceptable pessimism (which leaves design quality
on the table) or optimism (which incurs costly loops in the
flow)? A corollary challenge is how to model the behavior
of black-box EDA tools that may contain millions of lines
of code. Design closure is also about optimization of the
design with respect to a given PPA (Performance, Power and
Area) objective, while satisfying constraints. AI/ML offers
the potential to learn more relevant optimization objectives
or more effective metaheuristics (cf. “Learn to Optimize”
[27]). As noted in [19], the complexity of design closure
is continually exploding, with ever-more modes and corners,
physical effects, rules and checks. Thus, AI/ML for design
closure always becomes more appealing over time.

Perspectives. Before continuing, we offer the following per-
spectives. First, improving signoff analysis and design closure
brings a virtuous cycle: more accuracy, fewer violations and
loops, more design exploration within schedule, better design
outcomes, more investment, etc. This is true with AI-driven
improvements as well, where an “AI data flywheel” effect also
applies [33]. Second, several caveats arise from industry struc-
ture and IP considerations. Inability to share data pertaining
to technology, design enablement and EDA tool – along with
prohibitions of reverse-engineering of (signoff) EDA tools –
may slow development of AI/ML for signoff. Third, there are
limits to infusion of AI/ML in signoff. Juxtaposing “AI/ML”
and “signoff” elicits near-reflexive arguments why these two
can never meet in practice. (i) An AI/ML model makes errors
in inference, while “signoff” must be golden and error-free,
as it underpins the fabless-foundry business relationship. (ii)
AI/ML predictions and estimations may not be explainable
or easily diagnosable, and may be expensive to improve. This
can be a non-starter. (iii) AI/ML models may not generalize or
easily transfer to new designs or enablements, both of which
evolve rapidly. Despite these limitations, AI/ML techniques
are likely to provide substantial value in early alignment
toward signoff, i.e., during design implementation and closure.



The following sections give a sampling of AI/ML opportu-
nities in various facets of signoff and design closure, roughly
ordered from low-level physics to high-level prediction. Sec-
tion II addresses PVT corner selection and reduction in signoff.
Section III discusses prediction challenges associated with
wiring: parasitics, delays and slews, and design rule violations
(DRVs). Section IV presents routing-free crosstalk prediction,
while Section V discusses prediction of timing and power at
the register-transfer level. Section VI touches on the higher-
level need for predictions of EDA tool resource usage, and we
conclude in Section VII.

Fig. 1. Accuracy-cost tradeoff in analysis. Figure reproduced from [20].

II. PVT CORNER SELECTION

In today’s physical design flow, a significant portion of
design turnaround time is spent on timing analysis at various
process, voltage and temperature (PVT) corners. At final
signoff, timing and electrical constraints – as well as power
consumption that includes glitch and internal power – must
be verified at hundreds of corners, across multiple operational
modes. Analyzing more mode-corner combinations within
given (compute, license, time) resources is always preferred.1

To speed up timing analysis and signoff processes, several
machine learning-based approaches have been proposed for
corner selection in multi-mode multi-corner timing analysis. It
is observed in [23] that timing results for a given path at differ-
ent corners will have strong correlations due to the physics of
chained devices and interconnects. The authors propose use of
multivariate linear regression to predict timing at unobserved
corners from analysis results at observed corners. The flow
in Figure 2 consists of three main steps: (i) subset selection
uses greedy deletion to determine which n corners are most
predictive of the remaining N -n corners, for a fixed value of
n; (ii) model training generates optimal model parameters W ∗

for each value of n; and (iii) model inference predicts timing
at unobserved corners from observed corners using the trained
model. It affords greater timing accuracy with low overhead,
with accumulated value as the design is iterated and reanalyzed
throughout the months-long physical implementation process.

1Due to practical limitations such as runtime, memory footprint, license
resource, or inability of heuristic optimizers to handle too many constraints,
only a few mode-corner combinations may be used in early design stages such
as logic synthesis or placement. At the same time, the “accuracy” requirement
for timing analysis is relaxed in early design stages, e.g., estimating endpoint
arrival times to within one percent is usually sufficient for design stages up
to early global routing in the placer.

However, it cannot substitute for the final signoff run that must
pass all modes and corners (see Section VI).

Fig. 2. Modeling flow for “unobserved corner” prediction. Figure reproduced
from [23].

More recent works have also addressed the selection and
pruning of timing corners. The work of [5] introduces a
learning-based framework for predicting circuit path delays
at low-voltage corners based on corresponding delays at high
voltages. The framework employs a dilated CNN for feature
engineering and an ensemble model as the predictor. [39]
proposes a dominant corner selection strategy to quickly de-
termine the dominant corner combination, along with machine
learning-based models (linear regression, multilayer percep-
tron network, and random forest) for multi-corner timing
prediction. In [7], a learning-based approach is developed to
predict path timing for multiple unknown corners at low volt-
age. It uses long short-term memory (LSTM) to exploit circuit
topology correlation with timing and a multigate mixture-of-
experts (MMoE) network to capture correlation among all
analysis corners.

Two open directions for AI/ML are (i) further improvement
of timing corner selection, including in contexts of path-based
and SI-aware timing, and “other physics” such as skew cor-
ners, temperature inversion, and timing derivatives such as cell
internal power; and (ii) generation of a design-specific minimal
set of synthetic corners that achieves specified coverage of all
corners. The latter can be extended to find synthetic corners
that best drive particular SP&R flows to desired outcomes.

III. WIRE PARASITIC AND DELAY PREDICTION

To achieve design closure, timing optimizations are per-
formed throughout the pre-routing stages of logic synthesis,
placement, CTS and global routing. During these stages,
estimated wire parasitics inform delay and slew estimations,
which in turn inform optimization transforms such as remap-
ping, cloning, buffering, sizing and re-placement. For exam-
ple, logic synthesis may use a wireload model to estimate
parasitics, while clock tree synthesis will use Steiner trees
and placement will use 3D early global routes.2 Inevitably,
estimated parasitics will differ from the post-detailed rout-
ing ground truth values. Such discrepancies cause either
pessimistic overdesign (incurring increased power, area, and
design cycle time) or optimistic underdesign (incurring failed

2The problem of early parasitics, delay and slew estimation has been well-
studied, with early works including [22] [16].



Post GR timing  

optimization

Logic gate 

resizing and 

net buffering

Net slew model

T
im

in
g

 e
n
g

in
e

Wire delay

Wire slew

C1, R, C2

F
ea

tu
re

 

ex
tr

ac
ti

o
n Net delay model

D
et

ai
le

d
 r

o
u

ti
n

gML-model-based timing prediction: 

π model predictor

Traditional parasitic extraction flow:

T
im

in
g

 e
n
g

in
e

Detailed 

routing

Parasitic 

extraction
SPEF

G
lo

b
al

 r
o

u
ti

n
g

T
im

in
g

 e
n

g
in

e

Ground-truth parasitic extraction flow:

GR-generated Steiner-tree-

based parasitics as RC trees
G

lo
b

al
 r

o
u

ti
n

g
G

lo
b

al
 r

o
u

ti
n

g

Post GR timing  

optimization

Logic gate 

resizing and 

net buffering D
et

ai
le

d
 r

o
u

ti
n

g

Post GR timing  

optimization

Logic gate 

resizing and 

net buffering D
et

ai
le

d
 r

o
u

ti
n

g

(a)

(b)

(c)

Fig. 3. Three flows that use different parasitic estimates for post-GR timing
optimizations: (a) traditional flow (Steiner tree-based RC estimates), (b)
ground-truth (DR followed by parasitic extraction to determine post-DR
parasitics), and (c) [10] flow (fast ML engine for post-DR parasitic and
timing). Figure reproduced from [10].

Fig. 4. Path slacks comparison for JPEG 130nm. Figure reproduced from [10].

signoff and loops in the flow). This motivates new methods
to reduce parasitic estimation errors relative to post-detailed
route ground truth.

Recent works of Chhabria et al. [10], [11] have addressed
this challenge by introducing a machine learning-based frame-
work that predicts post-detailed route wire delay, slew, and
capacitance from a design that has only undergone global
routing. Additionally, the predicted delay and parasitics are
used for subsequent timing optimization. Figure 3 illustrates
the traditional parasitic extraction flow, the ground-truth par-
asitic extraction approach, and the ML model-based timing
prediction method of [10], [11]. The model uses features
such as post-placement HPWL (Half Perimeter Wire Length),
number of sinks, slew at driving point, congestion estimates,
rise and fall transitions, and source-sink distance. It also
considers source-sink R, C values and uses an XGBoost
model to predict parasitics and delay. Figure 4 shows the
improvement of delay prediction accuracy achieved by the
trained ML model versus post-GR estimations, for the JPEG
design in a 130nm technology node.

Two open directions for AI/ML in this context are (i) to
incorporate predictors of congestion and routability, which
strongly determine wiring detours (hence, parasitics, timing
and crosstalk) as well as design rule-correctness of final
routing; and (ii) addressing the closed loop of estimation and
optimization, whereby the iteration between predictors and
optimizers must together achieve improved design outcomes.

IV. ROUTING-FREE CROSSTALK PREDICTION

Due to the coupling capacitance between two adjacent
wires of two different nets, the signal switching of one net
causes crosstalk noise to the other net. In addition, coupling
capacitance induces extra signal propagation delay depending
on switching activities of two neighboring nets. Starting from
the deep submicron technologies, the crosstalk effect became
very significant and must be considered for signal integrity and
timing signoff. However, it is very difficult to tell if an early
design step may result in significant crosstalk problems until
chip routing, where wire adjacency is finally decided. Due to
its importance, crosstalk has been considered in cell place-
ment [30] and even in technology mapping [14]. However,
all early crosstalk estimation techniques rely on trial routing,
which is time consuming. By machine learning, truly routing-
free crosstalk prediction can be achieved [28].

Crosstalk-induced noise hotspot Routing congestion hotspot

Fig. 5. Congestion hotspots vs. crosstalk hotspots [28].

Although crosstalk and routing congestion are correlated,
crosstalk prediction cannot be simply replaced by congestion
prediction. Figure 5 illustrates that crosstalk hotspots can
be significantly different from routing congestion hotspots.
Crosstalk can be evaluated by coupling capacitance, crosstalk
noise and crosstalk induced delay, which are correlated but not
the same. The Venn diagram in Figure 6 demonstrates that nets
with large coupling capacitance, crosstalk noise and crosstalk-
induced delay have overlap but are significantly different.

 A: Nets with large coupling 
capacitance;

 B: Nets with large crosstalk-
induced noise;

 C: Nets with long incremental 
delay.

Fig. 6. Venn diagram of nets with large coupling capacitance, crosstalk-
induced noise and crosstalk-induced delay [28].

In [28], machine learning models are built to take placement
solutions as input and predict post-routing nets with large cou-
pling capacitance, crosstalk noise and crosstalk-induced delay.
The model features include logic information, such as gate



type, timing information obtained from post-placement timing
reports, such as signal slew rate, and placement information,
including net HPWL, source-sink distance and RUDY [36],
which is a routing congestion indicator. Several machine
learning engines are studied and the best results are produced
by XGBoost. The data labels are obtained by performing a
commercial signal integrity analysis tool on IWLS05 bench-
marks [3] with ASAP7 cell library [12]. The results show
that the XGBoost-based prediction achieves AUROC (Area
Under Receiver Operating Characteristic curve) 0.99 for all
of coupling capacitance, crosstalk noise and crosstalk-induced
delay hotspot identification. Feature importance analysis based
on XGBoost reveals that the most important features are
products between HPWL and RUDY of large nets.

V. RTL TIMING AND POWER PREDICTION

RTL (Register Transfer Level) design is a common entry
for many digital IC design flows and is usually described
by HDL (Hardware Description Language) such as Verilog
and VHDL. Decisions in RTL include design choices, e.g.,
FIFO depth, and description styles, e.g., blocking assignments
vs. non-blocking assignments. These decisions may cause a
large impact on timing and power signoff. Figure 7 shows
that different Verilog descriptions for the same design lead to
different timing slack and power after placement. One issue
is that the impact is usually not clear until late design stages,
e.g., cell placement. Moreover, the impact depends on EDA
tool parameter settings. In Figure 7, one dot corresponds to
one logic synthesis parameter setting and the best setting is not
known a priori. In order to assess such impacts, one needs to
not only perform a flow through late design stages but also run
it many times with various parameter settings. Since a design
flow through placement for a sizeable circuit can easily take
hours of CPU time, the overall assessment with hundreds of
parameter settings may take 1-2 weeks. In [38], it is reported
that the logic synthesis of a 32×32 systolic array with floating
point operations takes a day.

Fig. 7. Impact on post-placement timing and power from different Verilog
descriptions for an AES core design with different synthesis parameter
settings [35].

Recently, an industrial tool [34] reduces layout-aware RTL
PPA assessment time to several hours by parallel runs of
quick design flows. Machine learning-based PPA prediction
techniques are investigated in [13]. These techniques take
architectural level parameters, such as L1 cache configuration,
and logic synthesis parameters as input, and predict post-
synthesis PPA results, where the performance is indicated
by critical path delays. Multiple ML engines have been
investigated and the best results are obtained from neural
networks and XGBoost. The dataset are variants of Rocket
chip designs [4] using commercial 25nm technology with
consideration of different process corners. To effectively train
models with a limited number of training data samples, the
samples are generated according to Latin Hypercube sampling.
Models trained with 150 data samples achieve accuracy of
98% for designs seen in the training dataset. Incremental
training with 15 additional data samples provides accuracy
of 95% on unseen designs.

Another RTL PPA prediction work is [38], which takes
HDL code as input and predicts post-synthesis PPA. The HDL
code is first parsed into graph intermediate representation
(IR) using Yosys [37]. Model features are collected from
paths in the graph. Since the number of paths of a graph is
exponential with respect to the number of nodes, the work of
[38] samples a subset of paths. The features of each path is fed
to a lightweight transformer. The results from all transformers
corresponding to the sampled paths are assembled to an MLP
(Multi-Layer Perceptron), which produces the overall PPA pre-
dictions. This work employs a diversified set of data, including
RISC-V cores, CNN cores, FFT, AES, etc. In addition, GAN
is used to enrich the dataset. The synthesis in data generation
is performed using a commercial tool with the 15nm FreePDK
library [31]. The proposed models are hundreds times faster
than performing logic synthesis with root relative square errors
of around 0.5. For a BOOM core design [8], they reduce design
space exploration time from 45 days to 2.1 hours. The path-
based approach has an advantage that it can identify timing
critical path besides the overall PPA assessment.

Fig. 8. Prediction of timing-power tradeoff curve [35].



Method Model Features Model Predictions ML Engines Handling of Tool Parameters
[13] Architecture options, Post-synthesis PPA XGBoost, NN Different settings are considered individually

tool parameters
[38] RTL paths Post-synthesis PPA Transformer A fixed tool parameter setting
[35] AST-based graph Post-placement timing-power tradeoff XGBoost Concurrent consideration of multiple settings
[29] AST-based graph Post-synthesis delay, slew & AT GNN A fixed tool parameter setting

TABLE I
COMPARISON OF DIFFERENT RTL TIMING/POWER/AREA PREDICTION TECHNIQUES.

Machine learning-based prediction of RTL timing, power
and their tradeoffs is studied in [35]. This framework also
starts with HDL descriptions. It first parses an HDL code into
an AST (Abstract Syntanx Tree) using an off-the-shelf tool,
and then converts the AST into a graph representation similar
to data and control flow graphs, where machine learning
model features are extracted. Unlike other techniques, which
predict post-synthesis results, it predicts post-placement timing
and power, which are generally more accurate than synthesis
results as layout information is additionally considered. An-
other difference is that its timing metric is Total Negative
Slacks (TNS), which is more commonly used for signoff
than path delays. This work includes two prediction problem
formulations. In the first formulation, synthesis and placement
parameters are taken as features besides the graph features
and predicts the TNS and power for a specific tool parameter
setting corresponding to a single dot in Figure 7. The second
formulation predicts the overall TNS-power tradeoff for dif-
ferent parameter settings without including tool parameters in
the model features. The tradeoff is described by a regression
function empirically chosen to be

y = α ln(x− β) + γ (1)

where x denotes dynamic power and y represents TNS. The
values of coefficients α, β and γ are the machine learning
model outputs. Figure 8 shows an example of such prediction
for a case with 180K gates. Please note the tradeoff curve is
to indicate a general trend instead of an accurate estimation
and such indications are usually good enough for RTL design
assessments. Multiple ML engines are evaluated in this work
and the best results are based on XGBoost. For IWLS 2005
benchmarks [3] with 45nm technology, the XGBoost-based
technique achieves 0.95 correlation and 0.0098 root mean
square error compared to post-placement timing and power
analysis by a commercial tool. It is eight orders of magnitude
faster than running a commercial synthesis and placement
flow due to the fact that the overall circuit timing and power
can be captured without trying different tool parameters. One
application scenario of this technique is quick feedback to
HDL coding styles. For example, in Figure 9 left, the two
dashed curves show the different timing-power tradeoffs of
two different coding styles. While the blue one emphasizes
more on low power, the orange one allows higher performance.
The prediction shown on right correctly reflects this trend and
can provide the feedback to designers almost instantaneously.

A recent work of RTL timing prediction is [29]. It starts
from HDL code, extracts AST, which is converted to graph-

Fig. 9. Prediction of Verilog coding style difference [35].

based intermediate representations. It predicts post-synthesis
delay and slew of major components, such as adders, as well as
the arrival time at flip-flops. The consideration of signal slew
rate is a main difference from other RTL timing prediction
techniques. Another difference is its focus on a graph neural
network (GNN) approach, although GNN-based techniques
have been studied in [38], [35] as well. Different from the
other techniques, where data are obtained using commercial
tools, the data of this work are all generated by open-source
tools, such as Yosys [37] and OpenSTA [2]. Compared to post-
synthesis timing analysis results, it obtains 0.82 correlation
with three orders of magnitude speedup. A comparison among
the four RTL prediction methods is provided in Table I.

VI. EDA TOOL RESOURCE USAGE PREDICTION

Recall from Section I that design closure and signoff will
improve if they can use less resources and schedule. A surpris-
ingly valuable lever is the modeling and prediction of EDA
tool resource usage: cores, cache, main memory, bandwidth to
filers, etc. Accurate modeling enables jobs to be launched on
the right-sized hardware, conserving resources without sacri-
ficing project schedule or risk. Such modeling is non-trivial: (i)
there is a diversity of compute and storage requirements across
EDA tools (e.g., contrast front-end functional simulation and
formal verification, or back-end P&R, physical verification and
timing signoff) [6], and (ii) the existence of other running jobs,
along with data and scripting dependencies, can greatly affect
runtimes. On the other hand, if armed with resource usage
models, design organizations can optimize project schedules
and provisioning of engineering IT and EDA licenses, with
potential savings in the millions of dollars [1].

In the late 1990s, METRICS [15] attempted to address the
above challenges with a unified approach to collection, storage
and communication of design process data and tool param-



eters. The goal was to record all tool activities and design
attributes, so as to enable data mining and prediction of tool
outcomes and tool-specific “sweet spots” (i.e., fields of use).
Follow-on work [24] developed a data mining-based predictor
of placer runtime that achieved a correlation coefficient of
0.82. METRICS 2.0 [17] updated the METRICS scope (e.g., to
handle the multiplicity of PVT corners, clocks, and threshold
voltages seen in modern designs) and system architecture (e.g.,
to leverage a MongoDB database [40]) while retaining the
focus on tool and design-specific metrics.

Fig. 10. The GNN-based runtime prediction model of [18]. Figure reproduced
from [18].

More recently, [18] has proposed a graph convolution net-
work (GCN) based model to predict EDA tool runtimes. The
authors of [18] also outline an approach for deploying multiple
EDA jobs on the cloud to minimize deployment costs while
meeting deadline constraints. Figure 10 shows the architecture
of the proposed model. Depending on the task, the model
accepts either an RTL netlist for place-and-route runtime
prediction, or an And-Inverter Graph (AIG) for synthesis run-
time prediction. The model generates embeddings through two
GCN layers and transforms these embeddings into predictions
using a fully-connected neural layer [18]. Leveraging these
predicted runtimes, speedup gains are derived based on the
utilization of varying numbers of virtual CPUs (vCPUs). A
multi-choice knapsack problem is solved to select an optimal
number of vCPUs to run the EDA job, such that deployment
cost is minimized and the deadline is met. The authors of
[18] show that their model can achieve a prediction accuracy
of 87% and a deployment cost reduction of 35.29%.

Fig. 11. Regression results for memory usage and runtime prediction of an
industrial (signoff) static timing analysis tool.

Figure 11 presents sample results of a machine learning
regression analysis using LightGBM, aimed at predicting
memory usage and runtime for a signoff static timing analysis

tool. The motivating context is final timing signoff, where
hundreds of mode-corner combinations must be run using
available servers and licenses, within as short a period as
possible since the signoff directly gates the tapeout.3 The
example shown leverages data from an industrial collaborator.
For predicting memory usage, the features taken into account
include: (i) specifications of the machine on which the run
was launched, (ii) operational corners belonging to a given
mode of operation, and (iii) #hierarchical and #leaf cells in
the design being timed. For runtime prediction, additional
features are used, including (i) number of cores requested by
the user (e.g., in an LSF queue) for running the tool, (ii) CPU
clock frequency and architecture specifications, and (iii) total
memory used by the runs.

VII. CONCLUSIONS

AI/ML techniques, in spite of their approximate nature, can
provide substantial values to design signoff through design
predictions for early alignment with design specifications.
Such design predictions can avoid both excessive design itera-
tions and overly pessimistic design margins. This paper show-
cases several AI/ML applications in this regard, including PVT
corner selection, wire parasitic and delay prediction, routing-
free crosstalk prediction, and RTL timing/power prediction.
Besides design predictions, AI/ML helps efficient management
of EDA tool resource usage, which is a key factor in design
signoff but which has long been manually handled.

While significant progress has been achieved in leveraging
AI/ML techniques for expediting design closure, there remains
ample room for further improvement. Most AI/ML-based
design prediction techniques have demonstrated considerable
speedup compared to performing actual design flows. How-
ever, the integration of these techniques with design flows has
not yet been well-studied. How should an optimization tool
incorporate design predictions within an improved, iterative
process? Will the incorporation lead to higher-quality correct-
by-construction designs – or, alternatively, can restrictions
of the design space (cf. the much simpler nature of signoff
in FPGA or regular fabrics [32]) make it easier for AI/ML
to improve signoff and design closure? How much will the
incorporation of AI/ML-based design predictions within a
design flow change the nature of the flow that is being
predicted [21]? These are a few samples of important problems
that deserve careful studies. Above all, the impact of AI/ML
techniques on overall design closure instead of individual steps
needs to be systematically evaluated.

VIII. ACKNOWLEDGMENTS

We thank Sayak Kundu, Bodhisatta Pramanik, Zhiang Wang
and Dooseok Yoon for their efforts in implementing and
compiling material covered in this paper. Partial support from
DARPA HR0011-18-2-0032, NSF CCF-2112665 and CCF-
2106725, and SRC GRC-CADT 3103.001 is gratefully ac-
knowledged.

3This becomes a problem of (i) finding a robust packing of jobs into servers
based on runtime and memory predictions, while (ii) ordering jobs based on
likelihood that they will expose violations that requires design iteration.



REFERENCES

[1] P. Agrawal, M. Broxterman, B. Chatterjee, P. Cuevas, K. H. Hayashi, A.
B. Kahng, P. K. Myana and S. Nath, “Optimal Scheduling and Allocation
for IC Design Management and Cost Reduction”, ACM TODAES 22(4)
(2017), pp. 60:1-60:30.

[2] T. Ajayi and D. Blaauw, “OpenROAD: Toward a Self-Driving, Open-
Source Digital Layout Implementation Tool Chain”, Proc. of Govern-
ment Microcircuit Applications and Critical Technology Conference,
2019.

[3] C. Albrecht, “IWLS 2005 Benchmarks”, Proc. IWLS, 2005.
[4] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Briancolin, C.

Celio, H. Cook, D. Dabbelt, J. Hauser and A. Izraelevitz, “The Rocket
Chip Generator”, EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17.

[5] W. Bao, P. Cao, H. Cai and A. Bu, “A Learning-Based Timing Prediction
Framework for Wide Supply Voltage Design”, Proc. GLSVLSI, 2020, pp.
309-314.

[6] E. Brown and A. Carter, “Predict the Cost of Electronic Design
Automation on AWS Using Simulation”, AWS for Industries, June
29, 2022. https://aws.amazon.com/blogs/industries/predict-the-cost-on-
of-electronic-design-automation-on-aws-using-simulation/

[7] P. Cao, T. Yang, K. Wang, W. Bao and H. Yan, “Topology-Aided
Multicorner Timing Predictor for Wide Voltage Design”, IEEE Design
& Test 40(1) (2023), pp. 62-69.

[8] C. Celio, D. A. Patterson and K. Asanovic, “The Berkeley Out-of-Order
Machine (BOOM): an Industry-Competitive, Synthesizable, Parameter-
ized RISC-V Processor”, EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2015-16.

[9] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, Y.-L. Li, S.-
T. Lin and M. Woo, “DATC RDF-2019: Towards a Complete Academic
Reference Design Flow”, Proc. ICCAD, 2019, pp. 1-6.

[10] V. A. Chhabria, W. Jiang, A. B. Kahng and S. S. Sapatnekar, “From
Global Route to Detailed Route: ML for Fast and Accurate Wire Para-
sitics and Timing Prediction”, Proc. ACM/IEEE Workshop on Machine
Learning for CAD, 2022, pp. 7-14.

[11] V. A. Chhabria, W. Jiang, A. B. Kahng, S. S. Sapatnekar, “A Machine
Learning Approach to Improving Timing Consistency between Global
Route and Detailed Route”, ArXiv, arxiv.org/pdf/2305.06917.pdf, 2023.

[12] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C.
Ramamurthy and G. Yeric, “ASAP7: a 7-nm finFET Predictive Process
Design Kit”, Microelectronic Journal, 2016, Vol. 53, pp. 105-115.

[13] W. R. Davis, P. Franzon, L. Francisco, B. Huggins III and R. Jain, “Fast
and Accurate PPA Modeling with Transfer Learning”, Proc. ICCAD,
2021, pp. 1-8.

[14] F.-Y. Fan, H.-M. Chen and I. Liu, “Technology Mapping with Crosstalk
Noise Avoidance”, Proc. ASPDAC, 2010, pp. 319-324.

[15] S. Fenstermaker, D. George, A. B. Kahng, S. Mantik and B. Thielges,
“METRICS: A System Architecture for Design Process Optimization”,
Proc. DAC, 2000, pp. 705-710.

[16] K. Han, A. B. Kahng, J. Lee, J. Li and S. Nath, “A Global-Local
Optimization Framework for Simultaneous Multi-Mode Multi-Corner
Skew Variation Reduction”, Proc. ACM/IEEE DAC, 2015, pp. 1-6.

[17] S. Hashemi, C. -T. Ho, A. B. Kahng, H. -Y. Liu and S. Reda, “METRICS
2.0: A Machine-Learning Based Optimization System for IC Design”,
Workshop on Open-Source EDA Technology, 2018.

[18] A. Hosny and S. Reda, “Characterizing and Optimizing EDA Flows for
the Cloud”, IEEE Trans. on CAD 41(9) (2022), pp. 3040-3051.

[19] A. B. Kahng, “New Game, New Goal Posts: A Recent History of Timing
Closure”, Proc. ACM/IEEE DAC, 2015, pp. 1-6.

[20] A. B. Kahng, “Machine Learning Applications in Physical Design:
Recent Results and Directions”, Proc. ACM/IEEE ISPD, 2018, pp. 68-
73.

[21] A. B. Kahng, “Machine Learning for CAD/EDA: The Road Ahead”,
IEEE Design & Test, Special Issue on Machine Learning for CAD/EDA,
January-February 2023, pp. 8-16.

[22] A. B. Kahng, S. Kang, H. Lee, S. Nath and J. Wadhwani, “Learning-
Based Approximation of Interconnect Delay and Slew in Signoff Timing
Tools”, Proc. ACM/IEEE SLIP, 2013, pp. 1-8.

[23] A. B. Kahng, U. Mallappa, L. Saul and S. Tong, “Unobserved Corner”
Prediction: Reducing Timing Analysis Effort for Faster Design Conver-
gence in Advanced-Node Design”, Proc. DATE, 2019, pp. 168-173.

[24] A. B. Kahng and S. Mantik, “A System for Automatic Recording and
Prediction of Design Quality Metrics”, Proc. ISQED, 2001, pp. 81-86.

[25] H. Kellerer, U. Pferschy and D. Pisinger, “The Multiple-Choice Knap-
sack Problem”, Knapsack Problems, Berlin, Springer, 2004.

[26] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks”, arXiv 1609.02907, 2017.

[27] K. Li and J. Malik, “Learning to Optimize”, arXiv 1606.01885, 2016.
https://arxiv.org/abs/1606.01885

[28] R. Liang, Z. Xie, J. Jung, V. Chauhan, Y. Chen, J. Hu, H. Xiang and
G.-J. Nam, “Routing-Free Crosstalk Prediction”, Proc. ICCAD, 2020,
pp. 1-6.

[29] D. S. Lopera, I. Subedi and W. Ecker, “Using Graph Neural Networks
for Timing Estimations of RTL Intermediate Representations”, Proc.
MLCAD, 2023, pp. 1-6.

[30] J. Lou and W. Chen, “Crosstalk-Aware Placement”, IEEE Design & Test
of Computers, 2004, 21(1), pp. 24-32.

[31] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech
and J. Michelsen, “Open Cell Library in 15nm FreePDK Technology”,
Proc. ISPD, 2015, pp. 171-178.

[32] L. Pileggi, H. Schmit, A.J. Strojwas et al., “Exploring Regular Fabrics
to Optimize the Performance-Cost Trade-Off”, Proc. DAC, 2003, pp.
782-787.

[33] R. Puri, “Engineering the Future of AI for the Software and the
Hardware Design Industry”, CASS research seminar, June 2022. https:
//www.youtube.com/watch?v=5ukIftE38Vg

[34] J. Schultz, “RTL Architect: Parallel RTL Exploration with Unparalleled
Accuracy”, Technical Report, 2021.

[35] P. Sengupta, A. Tyagi, Y. Chen and J. Hu, “How Good Is Your Verilog
RTL Code? A Quick Answer from Machine Learning”, Proc. ICCAD,
2022, pp. 1-9.

[36] P. Spindler and F. M. Johannes, “Fast and Accurate Routing Demand
Estimation for Efficient Routability-Driven Placement”, Proc. DATE,
2007, pp. 1-6.

[37] C. Wolf, “Yosys Open Synthesis Suite”, 2016.
[38] C. Xu, C. Kjellqvist and L. W. Willis, “SNS’s not a Synthesizer: a Deep-

Learning-Based Synthesis Predictor”, Proc. ISCA, 2022, pp. 847-859.
[39] Z. Zhao, S. Zhang, G. Liu, C. Feng, T. Yang et al., “Machine-Learning-

Based Multi-Corner Timing Prediction for Faster Timing Closure”,
Electronics 11(10) (2022), pp. 1571.

[40] MongoDB. https://www.mongodb.com/.


