
The 2023 MLCAD FPGA Macro Placement Benchmark
Design Suite and Contest Results

Ismail Bustany, Grigor Gasparyan, Amit Gupta, Andrew B. Kahng∗, Meghraj Kalase, Wuxi Li, Bodhisatta Pramanik∗
AMD Inc., San Jose, CA, USA

∗University of California at San Diego, La Jolla, CA, USA
Email: {ismail.bustany, grigor.gasparyan, a.gupta, meghraj.kalase, wuxi.li}@amd.com, ∗{abk, bopramanik}@ucsd.edu

Abstract—The 2023 IEEE/ACM MLCAD Workshop program included
the inaugural MLCAD Contest, a multi-month research and development
competition intended to focus attention on pressing challenges at the
nexus of electronic design automation (EDA) and machine learning.
The 2023 contest aimed to spur research into machine learning-driven
solutions that can supplant state-of-the-art algorithms for FPGA macro
placement. Several factors make this problem more challenging than its
ASIC counterpart. These include: (i) discrete and SITE-typed columnated
nature of the FPGA device layout; (ii) cascaded macros or carry chains
that can greatly impact routability and timing closure because of their
high pin count and net connectivities, (iii) prevalence of resource-bound
multi-clock domains; (iv) larger number of macros (typically 100s-1000s)
than in ASICs; and (v) fragmentation of placement across multiple dies.
Two benchmark suites containing 140 public and 198 hidden designs
with varying complexities (based on Rent exponent, LUT/FF/BRAM/DSP
utilization, carry chains, cascaded macro shapes and number of clock
domains) were created for this competition. 19 teams globally participated
in the contest. We share the results from the 8 finalists, 6 of which had
competitive solutions. Our goal was for the contest to draw international
participation and catalyze industry-academic collaborations, leading to
contributions in premier conferences and journals. Several contestants
used electrostatic-based frameworks (e.g., [13], DreamPlaceFPGA [29]
and OpenPARF [24]) for global placement solution evaluations, along-
side core macro placement algorithms based on classical optimization
approaches (e.g., min-cost flow, bipartite graph matching, and simulated
annealing). One team used an RL-parameterized simulated annealing
algorithm for their macro placement solution. The contributed solutions
are insightful, and we remain optimistic about the contest’s potential
lasting influence for developing better algorithms for FPGA macro
placement.

Index Terms—CAD Contest, FPGA, macro placement, physical design,
electronic design automation, computer-aided design, integrated circuits,
MLCAD

I. INTRODUCTION

VLSI physical design encompasses a suite of NP-complete chal-
lenges which place-and-route (P&R) tools strive to address efficiently,
often in near-linear time. As we navigate advanced process nodes
coupled with intricate signoff requisites, new physical and timing
constraints are introduced into the workflow. This complexity ampli-
fies the challenge for physical design algorithms to achieve top-tier
power, performance and area (PPA) metrics without compromising
design turnaround time. The unceasing demand for energy-efficient
yet high-performance designs highlights the urgency for improved
predictive models and advanced analytics to drive implementation
flows. With advances in supervised and reinforcement learning,
combined with the availability of extensive computational resources,
Machine Learning (ML) has the potential to introduce a paradigm
change for EDA tools. The inaugural 2023 MLCAD contest [37] was
organized as part of the 2023 MLCAD Workshop [39] with the aim
to invigorate research in this direction by providing a platform where
industrial companies can share diverse design challenges and design

cases. This enables academia to study the state-of-the-art IC design
challenges and advance problem-solving techniques in the realm of
ML-enabled EDA.

The 2023 MLCAD contest marked the inaugural contest for
the MLCAD workshop, drawing participation from 19 teams all
over the world. This year saw representation from Canada, China,
Hong Kong, Korea, India, Taiwan and the U.S. Table III lists the
participating teams, their university affiliations, and regions. The
contest commenced in April and ended in August; Figure 1 shows
the detailed timeline. After final submissions and evaluations, winners
were announced at a 2023 MLCAD special session.

Fig. 1: Timeline of the 2023 MLCAD contest schedule

As one of the world’s prominent semiconductor companies, Ad-
vanced Micro Devices (AMD) offered to co-organize the 2023
MLCAD contest. The topic of this year’s contest was FPGA macro
placement. The 2023 MLCAD contest witnessed an impressive level
of participation, and the high quality of macro placers produced by
contestants bodes well for the contest’s future success in advancing
ML-driven EDA research.

II. BACKGROUND

Modern digital chips incorporate a significant number of macros,
including components such as SRAMs and clock generators. While
standard cells are more abundant and serve as the primary building
blocks of digital designs, macros are considerably larger. Their size
means they have greater influence on a chip’s floorplan, affecting
crucial design parameters such as wirelength, power, and area.
Conventionally, high-quality macro placements have been achieved
during floorplanning, which involves an initial (manual or algorith-
mic) placement of macros followed by an independent placement of
the standard cells [11] [8] [14] [1]. The commonly-studied two-stage
approach begins from an initial wirelength-driven placement. In the
first stage, a macro placer places only the macros without fine-grain
consideration of the standard cells. After this, the macros are fixed
and the standard cells are placed in the remaining whitespaces. Recent
advancements in mixed-size placement, which concurrently places
macros and standard cells (cf. [2] and Cadence CMP), have demon-
strated notable advantages over the traditional two-stage method. By
exploiting a global view of all elements to be placed, mixed-size
placement can identify macro locations consistent with high-quality
locations. Examples of such placers include the annealing-based
Dragon [32], partitioning-based Capo [30], and analytical placers
[34] [18] [31] [5] [10] [13] [22]. However, macro legalization is979-8-3503-0955-3/23/$31.00 ©2023 IEEE

challenging for mixed-size placement, especially when many macros
are tightly packed.
Related work. Past research on macro placement can generally be
categorized into packing-based, analytical, and – more recently – ML
and reinforcement learning (RL) methods. Packing-based techniques
focus on physical relationships among modules in a floorplan, and
optimize module locations through iterative perturbation techniques.
Analytical approaches leverage numerical methods to directly op-
timize floorplan layouts. Both strategies optimize a cost function
that captures area, congestion and timing. Packing-based methods
typically combine floorplan representations with heuristics such as
Simulated Annealing (SA) to solve the floorplanning problem. Some
prominent floorplan representations proposed in the literature include
Sequence Pair [27], Corner-Stitching [28], B*-tree [6] [7], MP-
tree [12], CP-tree [9] and MDPtree [23]. [16] and [17] are two
recent packing-based macro placers that generate high-quality macro
placements. Analytical methods model the objectives to be optimized
as terms in the objective cost function or as constraints, then solve
the constrained optimization problem mathematically. [36] is a work
in this direction. ML-based approaches utilize machine learning tech-
niques, such as expert systems [3] [33] and reinforcement learning
[15] [25] [26] for macro placement.

Fig. 2: Example of AMD FPGA architecture [35].

FPGA architecture. AMD FPGAs, an example of which is shown
in Figure 2, consist of an array of programmable blocks of different
types, including general logic (configuration logic block or CLB),
memory (BRAM) and multiplier (DSP) blocks [35]. Each location
of a programmable block is referred to as a SITE. This array of
programmable blocks is surrounded by a programmable routing fabric
(interconnect) facilitating connections between the blocks through
horizontal and vertical channels. Surrounding the array are input/out-
put (IO) blocks that link the chip to external interfaces. Beneath
the array lies a configuration memory (SRAM). When loaded with
configuration bits, the SRAM instructs the blocks and interconnects to
operate in specific ways. To implement a user’s design on the FPGA,
AMD’s dedicated tool flow, Vivado, translates the design into a set of
configuration bits, referred to as the bitstream. This bitstream, once
loaded onto the SRAM, programs the FPGA to emulate the intended
design. The central component for implementing designs is the CLB.
Each CLB comprises of logic elements that are grouped together as
a SLICE. These logic elements can be either lookup tables (LUTs)
or sequential elements (FFs). Each CLB contains one SLICE. Each
SLICE provides sixteen LUTs and sixteen flip-flops. The SLICEs
and their CLBs are arranged in columns throughout the device. There
are, however, certain rules regarding the usage of the LUTs and FFs
within each SLICE [35]. The target FPGA for the contest is a 16nm
single-die Ultrascale+ xcvu3p device. Details about the architecture

of this device can be obtained from [41].

III. PROBLEM OVERVIEW

The topic for the 2023 MLCAD contest was non-timing driven
FPGA macro placement. The input is a netlist comprised of macros
and standard cell (LUTs and FFs) instances along with region
constraints. The objective is to find legal macro block SITE locations
such that the region constraints are honored and routing congestion
is minimized. While there is an extensive corpus of existing ASIC
macro placers, as reviewed above, these are not directly applicable
to FPGAs due to the unique challenges presented by the latter. Some
of these challenges are as follows.

• Discrete and SITE-typed columnated nature of the FPGA device
layout.

• Cascaded macros (i.e., macros formed by stacking BRAMs,
DSPs or URAMs together) or carry chains (macro shapes
composed of a large number of LUTs and FFs). These can
significantly impact routability and timing closure because they
inherently have large numbers of pins and connected nets.

• Presence of resource-limited, multiple clock domains (typically
1 – 100). The FPGA device layout is partitioned into clock
regions, with a limited number of clock resources. This clock
resource limitation constrains the placement of logic driven by
different clocks in these regions. This can be challenging as the
number of clock domains in the design grows.

• Higher number of macros (typically 100s-1000s) compared to
ASIC (typically 10s-100s) counterparts.

• Fragmentation of the placement across multiple dies.
The above challenges render state-of-the-art ASIC macro place-

ment approaches inadequate for FPGA designs. Our aim is to spur
academic research that addresses these unique challenges and pushes
the boundaries of current FPGA macro placement methodologies. To
simplify the problem, in this year’s contest, we chose a single-die
device, removed timing closure as an objective, and focused solely
on runtime and netlist routability metrics. We plan to introduce a
more complete version of the FPGA macro placement problem in
future competitions.

IV. BENCHMARKS

The contest benchmark suite consists of netlists of various sizes
and complexity that reflect modern high-end FPGA designs. These
designs were generated using an AMD internal netlist generation tool
with varying degrees of complexity such as the following.

• Design utilization. We created netlists that utilize 70% to 84%
of LUT capacity, 38% to 47% of FF capacity, and 80% to 90%
of BRAM and DSP capacities. Each of the 140 netlists in the
public benchmark suite contains between 561,632 and 720,227
instances, and between 3,721,746 and 4,730,679 nets.

• Cascaded macro blocks. We created netlists that contain large
macro blocks composed of stacked DSPs, BRAMs or URAMs.

• Rent’s exponent. Interconnection complexity, as measured by
Rent exponent, was varied by creating netlists with different
Rent exponents ranging from 0.65 to 0.72. This is important for
testing routability of the placement solutions.

• Number of clocks. To vary design complexity, we generated
netlists with different number of clocks (1, 16, 24, 30, 34 and
38 clocks). The macro placement complexity grows with the
number of clocks since there are limited clock sources available
in any given region of the device. The clock diversity also
reflects the complexity of realistic modern day designs.

Detailed specifications of the public benchmark suite are available in
the GitHub repo [37], and the testcases are available at the Kaggle

site [38]. Specifications and testcases of the hidden benchmark suite
will also be uploaded soon.

Design LUT% FF% BRAM% DSP% Rent #Clks Runtime(s)
Design 409 70 38 80 80 0.67 1 2034
Design 412 70 38 80 80 0.72 1 3269
Design 424 76 42 84 84 0.72 1 3398
Design 433 82 45 88 88 0.67 1 3541
Design 442 84 47 90 90 0.72 1 2105
Design 373 70 38 80 80 0.67 38 4681
Design 376 70 38 80 80 0.72 38 7635
Design 385 76 42 84 84 0.72 38 5126
Design 397 82 45 88 88 0.67 38 3496
Design 406 84 47 90 90 0.72 38 4941

TABLE I: Sample statistics for some of the benchmark designs.

Benchmark statistics. The public benchmark suite consists of 140
publicly released designs [38], and the hidden benchmark suite con-
sists of 198 designs to be released after the conclusion of the MLCAD
workshop. Sample benchmark statistics for the public designs can be
found in Table I, where the “Runtime” column denotes the Vivado
P&R flow runtime for each design. Figure 3 presents more detailed
runtime statistics for sample designs with 38 clocks, taken from the
public benchmark suite. Note that some designs require ∼5 hours to
complete P&R, reflecting their inherent complexity.

Fig. 3: Sample Vivado P&R flow runtimes on some of the public
2023 MLCAD FPGA macro placement contest benchmarks with 38
clocks.

Benchmark format. All contest benchmark designs were provided
to the contestants in an extended Bookshelf format, i.e., an exten-
sion of the standard Bookshelf format [4] as shown in Table II.
The design.nodes and design.nets adhere to the standard Bookshelf
format. The formats of design.lib and design.scl files are similar
to the ACM ISPD 2016 placement contest [35]. Notably, the de-
sign.scl file comprises two sections: (i) the SITE definition, detailing
available resources (LUT/FF/RAMB/DSP) for a SITE, and (ii) the
SITE map, outlining a two-dimensional SITE array for the entire
device. The design.pl file contains the locations of the placeable
macro instances. The location of an instance has three fields: (i)
column number, (ii) SITE number and (iii) BEL number. The BEL
number is the index within the SITE (the BEL number for macro
instances is always 0). For design.regions, all region constraints are
mutually non-overlapping boxes specified by xlow ≤ x < xhigh and
ylow ≤ y < yhigh, where (xlow, ylow) are the lower-left coordinates
and (xhigh, yhigh) are the upper-right coordinates of a given region
constraint box.

V. EVALUATION METHODOLOGY

The macro placement solutions produced by participating placers
were evaluated using the Vivado physical design compiler. Contestant

File Description
design.nodes Placeable instances in Bookshelf format.
design.nets Nets in Bookshelf format.
design.lib Cell library for placeable object types.
design.pl SITE locations of fixed IO blocks.

design.scl Target device layout + permissible
SITE locations for placeable object types.

design.cascade shape Types of placeable cascaded macro shapes.
design.cascade shape instances Cascaded macro shape instances.
design.regions Box region constraints for placeable objects
design.dcp Synthesized Vivado checkpoint database.

TABLE II: Extended Bookshelf format used for the 2023 MLCAD
FPGA macro placement contest. See [37] for further details.

teams were provided with a Vivado license and a P&R flow that read
an input macro placement in the extended Bookshelf format, checked
macro placement legality, and performed standard cell placement
and routing. The P&R flow was chosen to be non-timing driven for
this contest, with focus on routability and runtime. Accordingly, the
solutions were evaluated based on the following factors:

• Column SITE legality of the macro placement solution.
• Total routing congestion.
• Macro placement runtime.
• Total Vivado place-and-route flow runtime (5 hours limit).

Evaluation metrics. For each designj , j = 1, ...,#designs, in
the benchmark suite, the evaluation metric is a scoring function
encompassing the above factors, as shown in Equation 1.

scorej = (timemplj + timeP&Rj) ∗ routabilityj (1)

The first score factor in Equation 1 is the runtime score comprising
of the macro placement runtime (timemplj) and the P&R runtime
(timeP&Rj) for a design. The specific calculation for timemplj is
detailed in Equation 2, where timemplj is measured in minutes and
denotes the macro placement runtime for designj .

timemplj = 1 +max(0, timemplj − 10) (2)

Note that no penalty is incurred if the macro placement runtime
is under 10 minutes. The timeP&Rj is expressed as the overall
P&R runtime in hours. The second score factor in Equation 1 is
routabilityj , which consists of two parts: (i) initial routing score
and (ii) final routing score as shown in Equation 3.

routabilityj = routing scoreinitialj + routing scorefinalj (3)

Fig. 4: An example of an AMD FPGA interconnect tile grid.

The routing scoreinitialj is derived from the routing congestion
level determined by the initial router. The Vivado router reports
routing congestion metrics from which routing scoreinitialj is
calculated. In AMD FPGAs, routing congestion is assessed on
the interconnect tile grid (Figure 4), which defines the device’s

programmable routing fabric.1 Routing congestion arises when there
is an overutilization of these routing resources. Routing congestion is
further categorized based on interconnect wire length (short or long
segments) and direction (North, South, East, or West).

• Short congestion: Resulting from closely grouped cell place-
ments which can induce potential routability challenges.

• Long congestion: Resulting from dispersed (e.g., poor wire-
length) cell placements which can induce both timing and
routability challenges.

• Global congestion: Representing a combined measure of both
short and long congestion types.

Short, long, and global congestion levels vary from 1 to 8 and are
reported by Vivado at the end of the initial routing stage. For example,
congestion level 5 for short (resp. long) wires means that the design
contains at least one contiguous 5×5 short (resp. long) interconnect
tile region that is overutilized. Other congestion levels are defined
analogously. We enumerate the North/South/East/West directions as
i = 1 to 4 respectively, and define routing scoreinitialj as in
Equation 4. Note that only congestion levels 4 and above are
penalized.

routing scoreinitialj = 1 +

4∑
i=1

[max(0, short leveli − 3)2

+max(0, global leveli − 3)2]

(4)

We define routing scorefinalj as the number of outer iterations
of the detailed router as reported in Vivado at the end of final routing.
If a solution fails to place-and-route then we assign a penalty of 500
to scorej . Using the aforementioned scoring metrics, we evaluated all
team solutions on the 140 designs in the public benchmark suite, and
a subset of 38 out of 198 designs in the the hidden benchmark suite.
The final team score was then computed as a weighted geometric
mean of the design scores, ensuring equal contributions from the
public and hidden design scores to the overall score.2

VI. RESULTS

As mentioned in Section I and detailed in Table III, the 2023
MLCAD contest saw participation from 19 teams. 8 teams progressed
to submit final solutions, with 6 solutions standing out as particularly
competitive. To evaluate the submitted macro placement solution
executables, we followed the evaluation methodology in Section V: (i)
we used all 140 designs in the public benchmark suite; and (ii) from
the hidden benchmark suite of 198 designs, we selectively evaluated
38 representative designs to reduce the overall evaluation runtime.
The majority of teams submitted their solution executables using
Docker containers. Our evaluation platform consisted of standalone
3.885GHz, 512GB RAM, 64-processor AMD EPYC 7F52 servers.
Each team was evaluated according to the following three steps.

• We built a Docker container when provided with the submission.
• We executed the submitted macro placer on each design using

16 cores, recording the runtime.
• We ran the contest-specified non-timing-driven P&R flow [40]

after pre-placing macros based on the macro placement solution.

1The interconnect tile grid is where the device’s interconnect resources
(programmable routing fabric) are pre-allocated.

2 The final team scores are computed as follows:

final team score =

∑#designs
j=1 wj · score2j∑#designs

j=1 wj

where wj = 1 for public designs and wj = 140/38 for hidden designs.

Team University Region
TAMU University of Texas A&M USA
MPKU Peking University China

CUMPLE Chinese University of Hong Kong Hong Kong
Pomelo Nanjing University of Posts/Telecommunications China

DAG-MP Shanghai Jiao Tong University China
MacroM Nirma University India
MacroD Pohang University Korea

IMR Not provided Not provided
SEU Southeast University China

GoFish Georgia Institute of Technology USA
EFM University of Calgary Canada
BO University of Illinois-Urbana Champaign USA

Duke Duke University USA
UBCP University of British Columbia Canada

GD Dalian University of Technology China
MacroW Simon Fraser University Canada
CUMP Chinese University of Hong Kong Hong Kong
UTDA University of Texas at Austin USA
NTHU National Tsing Hua University Taiwan

TABLE III: List of participating teams in the 2023 MLCAD FPGA
macro placement contest.

Runtime Score
Team Avg. Geo. Mean StdDev Avg. Geo. Mean StdDev

MPKU 0.55 0.53 0.16 5.72 3.02 9.18
SEU 0.55 0.54 0.13 3.7 2.23 6.50

UTDA 0.58 0.56 0.25 4.2 2.12 16.24
TAMU 0.62 0.56 0.39 10.78 3.59 26.86

CUMPLE 0.59 0.58 0.16 6.19 3.03 10.65
CUMP 0.76 0.68 0.46 30.60 6.65 63.61

TABLE IV: Runtime and score comparisons on the public benchmark
suite.

Then, we harvested relevant metrics to compute the initial/final
routing congestion and overall P&R flow runtime.

Team Avg. Geo. Mean StdDev
MPKU 5.86 2.57 11.03
SEU 11.10 2.85 40.17

UTDA 10.93 2.93 38.69
TAMU 34.45 5.37 82.06

CUMPLE 15.38 3.59 35.96
CUMP 71.53 10.63 128.08

TABLE V: Score comparisons on the hidden benchmark suite.

Fig. 5: Macro placement runtime comparison on the public bench-
mark suite.

A high-level summary of submitted solution methods can be
extracted from the video snapshots presented by each team. Most
teams used either quadratic or electrostatic formulations for their
mixed-sized global placers and min-cost flow or bipartite graph

matching for macro placement legalization. Teams UTDA, MPKU
and SEU used implementation variants of the electrostatic global
placement formulation ([24], [29]). By contrast, teams CUMPLE,
TAMU and CUMP used SimPL-based [19] quadratic placement
formulations. Team UBCPlacer was unique in adopting an RL-
parameterized simulated annealing macro placer along with netlist
hypergraph clustering. We do not report team UBCPlacer’s results
since their late-entry executable ran into errors on all the benchmark
designs.

Figure 5 compares the macro placement runtimes for the
public benchmark suite. Runtime penalties were mostly avoided
as only 4 macro placement runs exceeded the specified 10-minute
threshold. The majority of teams leveraged multi-threading across
16 cores to speed up their solutions. Team CUMP’s macro placer
outperformed others, running 5-20X faster.

Fig. 6: P&R runtime comparison on the public benchmark suite.

Fig. 7: Team scores comparison on the public benchmark suite.

Figures 6 and 7 show the P&R flow runtimes and scores for
the public benchmark suite. Team MPKU achieved the best runtime
score with a geometric mean score of 0.53, closely followed by teams
SEU and UTDA scoring 0.54 and 0.56 respectively as detailed in
Table IV. The team scores on the public and hidden benchmark suites
are listed in Tables IV and V, respectively.3 On the hidden benchmark

3Team MPKU submitted an updated executable for their macro placer after
the contest deadline, after being requested by contest organizers to incorporate
a fix for benchmark file parsing errors. While the updated executable was
not factored into the official contest rankings, it yielded superior scores
across both the public and hidden benchmark suites, surpassing all competing
macro placers. For transparency and to acknowledge their work, we have
included comparisons in Figures 8 and 9 using team MPKU’s post-contest
deadline executable. We believe it is important to share these results with
all participants and the broader MLCAD community to accurately establish a
baseline of best-in-class results.

suite, Team MPKU achieved the best scores (Table V), followed
closely by team SEU and UTDA. Table VI lists consolidated scores,
corresponding to the weighted geometric mean of scores on hidden
and public benchmarks. Teams UTDA and SEU were judged to tie
for first place, with team MPKU in second place, team CUMPLE
in third place, and teams TAMU and CUMP in fourth and fifth
places, respectively. Team MPKU’s updated executable achieved a
2.216 weighted geometric mean score3, notably better than the top
two contest scores of 2.513 and 2.516 (listed in Table VI).

Fig. 8: P&R runtime comparison on the public benchmark suite with
team MPKU’s updated executable.3

Fig. 9: Team scores comparison on the public benchmark suite with
team MPKU’s updated executable.3

Team Weighted Geo. Mean Rank
UTDA 2.513 1*
SEU 2.516 1*
MPKU 2.751 2
CUMPLE 3.605 3
TAMU 4.399 4
CUMP 8.433 5

TABLE VI: Final team scores for the 2023 MLCAD FPGA macro
placement contest.

VII. CONCLUSION

The published industrial benchmarks augmented with the hidden
benchmarks will remain available to academic researchers. We en-
courage participants to continually refine their solutions, anticipating
further innovations in next year’s timing-driven follow-on macro
placement contest. As noted in section VI, all but one of the submitted
solutions for this year’s contest were based on classical optimization
approaches. This could be attributable to the contest timeline and the
lack of scalable ML-based macro placement approaches. There are
many promising nascent RL and decision transformer-based works

[15] [25] [26] [20]. However, these approaches entail solving the
macro placement problem sequentially in a “coordinate descent”
fashion. That is, the objective function is minimized by updating one
variable at a time. In this context, the RL agent places one macro,
while querying a standard-cell placement oracle (e.g. force-directed or
electrostatic-based methods [25], [29], [24]) to compute the objective
function value for updating the reward and state. However, such an
approach can be challenging to scale for inference if it is not zero-shot
or few-shot, especially if the state update involves querying a timing-
driven and congestion-aware placement. The scalability issue can be
further exacerbated for the FPGA macro placement problem because
of the larger number of macros and the much tighter runtime budget
for P&R than in the ASIC context. Other potential approaches to
mitigate the scalability issue include the use of ML for parameter
optimization of classical optimization approaches [2] and, more
generally, emerging learning-to-optimize paradigms [21]. We remain
optimistic that scalable ML-boosted solutions can be found for this
challenging problem.

VIII. ACKNOWLEDGMENTS

We thank The OpenROAD Project and AMD Inc. for sponsoring
the contest, and the TILOS AI Institute for hosting the contest GitHub
repository. We also thank Zhiang Wang, Yuji Kukimoto, Sreevidya
Maguluri, Ravishankar Menon, Nima Karimpour-Darav, Mehrdad
Eslami, Chaithanya Dudha, Lin Chai, Kai Zhu, Kristin Perry, Cathal
McCabe, Mark O Brien, and Vishal Suthar for their assistance.

REFERENCES

[1] S. N. Adya and I. Markov, “Combinatorial techniques for mixed-size
placement”, ACM TODAES 10(1) (2005), pp. 58-90.

[2] A. Agnesina, P. Rajvanshi, T. Yang, G. Pradipta, A. Jiao, B. Keller,
B. Khailany and H. Ren, “AutoDMP: automated DREAMPlace-based
macro placement”, Proc. ISPD, 2023, pp. 149–157.

[3] R. Bruck, K.-H. Temme and H. Wronn, “FLAIR-a knowledge-based
approach to integrated circuit floorplanning”, Proc. Intl. Workshop on
Artificial Intelligence for Industrial Applications, 1988, pp. 194-199.

[4] A.E. Caldwell, A. B. Kahng and I. L. Markov, “Toward CAD-IP reuse:
the MARCO GSRC bookshelf of fundamental CAD algorithms”, IEEE
Design and Test 19(3) (2002), pp. 70-79. http://vlsicad.eecs.umich.edu/
BK/Slots/

[5] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze and M. Xie, “mPL6: enhanced
multilevel mixed-size placement”, Proc. ISPD, 2006, pp. 212-214.

[6] Y.-C. Chang, Y.-W. Chang, G.-M. Wu and S.-W. Wu, “B*-trees: a new
representation for non-slicing floorplans”, Proc. DAC, 2000, pp. 458-
463.

[7] T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on B*-tree
and fast simulated annealing”, IEEE Trans. CAD 25(4) (2006), pp. 637-
650.

[8] H.-C Chen, Y.-L. Chuang and Y.-C. Chang, “Constraint graph-based
macro placement for modern mixed-size circuit designs”, Proc. ICCAD,
2008, pp. 218-223.

[9] Y. Chen, C. Huang, C. Chiou, Y. Chang and C. Wang, “Routability
driven blockage-aware macro placement”, Proc. DAC, 2014, pp. 1-6.

[10] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen and Y.-W. Chang,
“NTUplace3: an analytical placer for large-scale mixed-size designs
with preplaced blocks and density constraints”, IEEE Trans. CAD, 27(7)
(2008), pp. 1228-1240.

[11] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang and D. Liu, “MP-tree:
a packing-based macro placement algorithm for mixed-size designs”,
Proc. DAC, 2007, pp. 447-452.

[12] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang and T.-Y. Liu,
“MPtrees: a packing-based macro placement algorithm for modern
mixed size designs”, IEEE Trans. CAD 27(9) (2008), pp. 1621-1634.

[13] C.-K. Cheng, A. B. Kahng, I. Kang and L. Wang, “RePlAce: advancing
solution quality and routability validation in global placement”, IEEE
Trans. CAD 38(9) (2019), pp. 1717-1730.

[14] J. Cong and M. Xie, “A robust detailed placement for mixed-size IC
designs”, Proc. ASP-DAC, 2006, pp. 188-194.

[15] Z. He, Y. Ma, L. Zhang, P. Liao, N. Wong, B. Yu and M. D.-F.
Wong, “Learn to floorplan through acquisition of effective local search
heuristics”, Proc. ICCAD, 2020, pp. 324-331.

[16] A. B. Kahng, R. Varadarajan and Z. Wang, “RTL-MP: toward practical,
human-quality chip planning and macro placement”, Proc. ISPD, 2022,
pp. 3-11.

[17] A. B. Kahng, R. Varadarajan and Z. Wang, “Hier-RTLMP: a hier-
archical automatic macro placer for large-scale complex IP blocks”,
arXiv:2304.11761, 2023.

[18] A. B. Kahng and Q. Wang, “APlace: a faster implementation of APlace”,
Proc. ISPD, 2006, pp. 218-220.

[19] M-C. Kim, D-J. Lee and I. Markov, “SimPL: an effective placement
algorithm,” Proc. ICCAD, 2010, pp 649–656.

[20] Y. Lai, J. Liu, Z. Tang, B. Wang, J. Hao and P. Luo, “ChiP-
Former: transferable chip placement via offline decision transformer”,
arXiv:2306.14744, 2023.

[21] K. Li and J. Malik, “Learn to optimize”, arXiv 1606.01885, 2016.
[22] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany and D. Z. Pan, “Dream-

place: deep learning toolkit-enabled gpu acceleration for modern vlsi
placement”, Proc. DAC, 2019, pp. 1-6.

[23] Y.-C. Liu, T.-C. Chen, Y.-W. Chang and S.-Y. Kuo, “MDP-trees: multi-
domain macro placement for ultra large-scale mixed-size designs”, Proc.
ASP-DAC, 2019, pp. 557-562.

[24] J. Mai, J. Wang, Z. Di, G. Luo, Y. Liang and Y. Lin, “OpenPARF: an
open-source placement and routing framework for large-scale heteroge-
neous FPGAs with deep learning toolkit”, arXiv:2306.16665, 2023.

[25] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang
et al., “Chip placement with deep reinforcement learning”, arXiv
2004.10746, 2020.

[26] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang
et al., “A graph placement methodology for fast chip design”, Nature
594 (2021), pp. 207-212.

[27] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence-pair”, IEEE
Trans. CAD 15(12) (1996), pp. 1518-1524.

[28] J. K. Ousterhout, “Corner stitching: a data-structuring technique for vlsi
layout tools”, IEEE Trans. CAD 3(1) (1984), pp. 87-100.

[29] R. S. Rajarathnam, M. B. Alawieh, Z. Jiang, M. Iyer and D. Z. Pan,
“DREAMPlaceFPGA: an open-source analytical placer for large scale
heterogeneous FPGAs using deep-learning toolkit”, Proc. ASP-DAC,
2022, pp. 300-306.

[30] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F. Lu and I.
L. Markov, “Capo: robust and scalable open-source min-cut floorplacer”,
Proc. ISPD, 2005, pp. 224-226.

[31] P. Spindler and F. M. Johannes, “Kraftwerk: a fast and robust quadratic
placer using an exact linear net model”, Modern Circuit Placement,
Boston, Springer, 2007.

[32] T. Taghavi, X. Yang, B.-K. Choi, M. Wang and M. Sar-
rafzadeh, “Dragon2006: blockage-aware congestion-controlling mixed-
size placer”, Proc. ISPD, 2006, pp. 209-211.

[33] K.-H. Temme and R. Bruck, “Chip-architecture planning based on expert
knowledge”, Proc. Intl. Workshop on Artificial Intelligence for Industrial
Applications, 1988, pp. 188-193.

[34] N. Viswanathan, M. Pan and C. Chu, “FastPlace 3.0: a fast multilevel
quadratic placement algorithm with placement congestion control”, Proc.
ASP-DAC, 2007, pp. 135-140.

[35] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy and R. Aggarwal,
“Routability-driven FPGA placement contest”, Proc. ISPD, 2016, pp.
139-143.

[36] Y. Zhan, Y. Feng and S. S. Sapatnekar, “A fixed-die floorplanning
algorithm using an analytical approach”, Proc. ASP-DAC, 2006, pp. 771-
776.

[37] 2023 MLCAD FPGA macro placement contest repository,
https://github.com/TILOS-AI-Institute/MLCAD-2023-FPGA-Macro-
Placement-Contest

[38] 2023 MLCAD FPGA macro placement contest benchmark suite,
https://www.kaggle.com/datasets/ismailbustany/mlcad2023-fpga-
macroplacement-contest/settings?resource=download%2F

[39] 2023 MLCAD workshop, https://mlcad-workshop.org/
[40] Vivado P&R flow script for 2023 MLCAD contest,

https://github.com/TILOS-AI-Institute/MLCAD-2023-FPGA-Macro-
Placement-Contest/blob/main/Flow/vivado pnr.tcl

[41] Xilinx, “UltraScale architecture and product data sheet: Overview”,
https://www.xilinx.com/content/dam/xilinx/support/documents/
data sheets/ds890-ultrascale-overview.pdf

