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Abstract—In global routing of relatively large nets, particularly
clock subnets, obtaining a good cost-skew tradeoff has remained
beyond the reach of efficient heuristics. This is in contrast to
obtaining a good cost-radius tradeoff, which has been well-
addressed by a series of methods. We propose a simple heuristic
for optimizing the cost-skew tradeoff, based on a “multi-source”
variation of the well-known Prim-Dijkstra (PD) construction
[1]. Our experiments demonstrate the effectiveness of the multi-
source PD heuristic compared to existing alternatives including
H-tree [5], bounded-skew DME [10], and original Prim-Dijkstra
constructions. We additionally develop characterization data for
PD with respect to instance parameters to aid future research.

I. INTRODUCTION

Interconnect tree constructions during physical synthesis,
timing-driven placement and buffering/sizing are key elements
of low-power, high-performance integrated circuit (IC) im-
plementation. Of primary interest for both researchers and
practitioners has been the tradeoff between tree cost (i.e., the
sum of Steiner tree edge lengths, which reflects wirelength
(WL)) and tree radius (i.e., the longest source-sink pathlength
in the tree, which reflects delay and pathlength (PL)). Mini-
mizing cost helps to reduce capacitance (power), coupling and
routing congestion. Minimizing radius helps to improve design
performance, especially during placement or global routing
stages when detailed parasitics and delays are unavailable.

Several tree construction heuristics have focused on the cost
vs. radius (i.e., WL vs. PL) tradeoff, as reviewed in Section
2 of [2]. Notably, the Prim-Dijkstra (PD) heuristic [1] has
been used in industrial electronic design automation (EDA)
tools for over 25 years. It has seen various improvements
over time, including PD-II [2], SALT [8], and TreeNet [18]
which applies deep learning to classify pointsets for well-
parameterized application of PD-II or SALT.

However, skew — the maximum difference in source-to-sink
pathlengths or path delays in a routing tree — is also a major
consideration for interconnect tree design [17]. Clock subnets,
which are determined in a post-placement clock tree synthesis
(CTS) step, often have fanouts of 30-50, and skew in these
subnets harms both chip performance and design schedule.
Also, in trial routing of high-fanout nets before initial buffer
insertion and sizing (e.g., during initial global placement),
minimizing both skew and cost will improve the routability
and timing seen at subsequent flow steps.

The pointset in Figure 1 illustrates why a traditional cost-
radius tradeoff heuristic (in this example, Prim-Dijkstra with
« parameter = 0.3) will often produce a poor solution in terms
of skew. We see that any direct connection from the root to
a nearby sink will induce skew at least on the order of the
radius (i.e., half the diameter) of the pointset. A low-skew
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Fig. 1: Prim-Dijkstra (PD) tree with o = 0.3. The root is highlighted as
the large, solid black circle. The vertices with the minimum and maximum
pathlengths (from the root) are respectively highlighted in red and orange.

tree should avoid such edges, but cost-radius tradeoff methods
such as Prim-Dijkstra or Steiner arborescences [20] are prone
to creating them. Intuitively, to reduce skew in the output
of a traditional cost-radius tradeoff heuristic, it will help to
initialize the tree with long initial edges that “teleport” the
construction far away from the root. This intuition is seen in
the H-tree construction [5] and in optimal cost-vs.-skew tree
solutions produced by flow integer-linear programs [12] [13].

In this work, we seek an efficient heuristic that produces
routing trees with a good cost-skew tradeoff. We furthermore
seek to retain the simplicity and efficiency of the state-of-
the-art cost-radius tradeoff — namely, the PD construction —
while steering it to a good cost-skew tradeoff. Informally, our
work explores a “PD-Clock Problem”: Given a pointset in the
Manhattan plane with an identified source, apply an existing
PD implementation to produce a tree with good cost-skew
tradeoff.

Our main contribution is a new multi-source PD (MSPD)
heuristic that produces improved cost-skew tradeoffs while still
leveraging an existing efficient PD implementation. MSPD
finds a starting configuration for the PD algorithm and the
ensuing “Steinerization” step,! such that we obtain a Steiner
tree with good cost-skew tradeoff. Here, we note that finding
high-quality routing trees is understood to be worth a moder-
ate computational expense, especially since poor wirelength

'The PD algorithm trades off between Prim’s algorithm and Dijkstra’s
algorithm via the parameter .. (o = 0 produces a minimum spanning tree; o =
1 produces a shortest-paths tree; and o = 0.3 is the usual default in commercial
EDA implementations.) As such, PD produces a spanning tree over the given
pointset. Works in the literature then apply methods such as edge-overlapping
(Ho et al. [15]) or detour-aware Steinerization [2] to post-process the PD tree
into a “Steinerized” (Steiner) tree.



or skew can lead to expensive downstream design efforts
(difficulty in timing closure, or loops back to earlier flow
steps). For example, the PD-II method runs at least 11 runs
(values of its v parameter) and returns the best result, while
SALT similarly uses 20 runs (values of its e parameter). With
this in mind, our goal is to identify small sets of candidate
starting configurations for PD, such that we can find good
cost-skew tradeoffs within reasonable runtimes. (In Section
VI, we validate the quality of multi-source PD’s cost-skew
tradeoff using high-volume ground truth data.)

An additional contribution of our work is the first (to our
knowledge) empirical characterization of PD skew vs. cost
properties. As described in Section III below, we develop
lookup tables to estimate PD skew and cost based on net
bounding box aspect ratio, number of terminals, source lo-
cation relative to the net bounding box center, and the PD
algorithm’s « parameter. These data highlight values for a
that tend to achieve good cost-skew tradeoffs, and that differ
from current defaults seen in open-source usage of PD [22].

QOutline of the Paper. In the following, Section II establishes
notation and terminology, and presents the PD-Clock problem.
Section III presents our characterization studies of the cost-
skew tradeoff that is inherent in the PD algorithm; this fills a
gap that we ascribe to past focus on cost-radius tradeoffs. Sec-
tion IV presents the multi-source PD construction. Sections V
and VI summarize our experimental studies, and we conclude
the paper in Section VII.

II. DEFINITIONS AND PROBLEM STATEMENT
Table I lists notation that is used throughout the paper.

TABLE I: Notation.

Notation || Meaning

v A signal net, i.e., set of terminals v; in the Manhattan plane
with v being the root (source) and all others being sinks.

a G = (V, E), the complete (distance-) weighted underlying
routing graph induced by V.

T = (V, E), a spanning tree in G where

T e CcEad|E|=|V]-1.
T The minimum spanning tree of G generated by
£ ||Prim’s algorithm (PD with a = 0).
T The shortest paths tree of GG generated by
b Dijkstra’s algorithm (PD with a = 1).
m; ; ||The Manhattan distance between vertices v;,v; € V.

e;j |/ The edge between v;,v; € V' with weight m; ;.

The set of edges on the unique path
inT fromv; € Viov; €V.

L7 ||The wirelength of tree 7'

L’ || The normalized wirelength of T, relative to Lr,,.

P; The pathlength from v to v; € V.

The skew of tree 7', i.e., absolute difference between
minimum and maximum source-sink pathlengths.

St The normalized skew of T, relative to St,,.

Elmore delay from the root to sink v;.

Elmore delay skew of the tree 7'

« Cost vs. radius control parameter (0 < a < 1).

AR ||The aspect ratio (max/min sidelength ratio) of a pointset’s bounding box.

The centrality of the source location of a pointset,
expressed as normalized distance from the center of the bounding box.

N The number of terminals in a pointset, also equal to [V].

Tx A generated PD tree with index z.

In this section, we define key notation and terminology,
along with the cost-skew tradeoff of a given routing tree. We
then state the PD-Clock problem that this work addresses.

Basic Definitions. A signal net V = {vg, vy, ..., v} consists
of terminals (points) v; in the Manhattan plane, with vy being
the root (source) and all other terminals being sinks. We

use N to refer to |V, and “net” and “pointset” are used
interchangeably. The underlying routing graph G = (V, E)
is the complete edge-weighted graph induced by V', where
the edge e; ; € I/ between v;,v; € V has weight equal to the
Manhattan distance m; ; between the two terminals.

A routing tree T = (V, E’) is a connected, edge-weighted
subgraph of G that spans V and has |E’| = |V |—1. We use Ly
to denote the total wirelength of T, i.e., the sum of the weights
of all edges e; ; € E' in T. We define P;, the pathlength from
the root to v; € V, as the sum of edge weights on the unique
path from vy to v; in T. The skew of T, denoted St, is the
difference between the maximum and minimum root-to-sink
pathlengths in 7.

The PD algorithm greedily builds a spanning tree 7, itera-
tively adding terminal v; and edge e; ; into the growing tree
that minimizes (o * P;) +m; ; over all v; € V —T, v; € T.
Section III studies trees 7' that are produced by running PD
with pointset V' and 0 < o < 1 as inputs.

Cost-Skew Tradeoff. We will capture the cost-skew tradeoff
of a given tree as the sum of a normalized wirelength of T,
denoted L7, and a normalized skew of T, denoted S/.. In this
paper, we study the cost-skew tradeoff defined as L’ + S7;
our methods can apply to other combinations of L’. and S’..

Let T» be the minimum spanning tree (MST) of G, which
is produced by running PD with & = 0 on V" (i.e., equivalent
to Prim’s MST algorithm). Because 7 is the tree with
the smallest possible WL cost, we define the normalized
wirelength of 1" as

L. — Lr (1)
T= L,

Let Tp be the shortest paths tree (SPT) of G, which is
produced by running PD with & = 1 on V (i.e., equivalent
to Dijkstra’s SPT algorithm). We define the normalized skew
S%. of a given tree T based on the concept of shallowness
or radius of a rooted tree [17], i.e., the ratio between the
maximum pathlength in 7" and the maximum pathlength in
Tp. Because skew and pathlength are closely related in the
context of the PD-Clock problem that we study, and because
finding the minimum-skew tree is NP-hard [7], we define S’
to be the ratio between St and S,

b:i 2
Tp

The PD-Clock Problem. Given a pointset V', the PD-Clock
problem aims to find a small subset of terminals (in this work,
between one and three terminals) to initially connect to the
root vg, such that the PD construction can be continued to
minimize the cost-skew tradeoff L7, 4+ S7. while maintaining
a low computational expense.

Sy =

III. COST-SKEW CHARACTERIZATION OF PRIM-DIJKSTRA

In this section, we characterize the cost-skew tradeoff inher-
ent in the PD heuristic. We use the improved PD-II version, as
open-sourced [14] by the authors of [2]. Our characterization
effort has produced lookup tables that can be used to quickly
estimate the cost and skew of PD when run on a given
pointset.” Such a table can be used, e.g., to guide hierarchical

2Finding a net bounding box and its aspect ratio requires time linear in N.
The table lookup is constant-time.



clustering and buffer placement in CTS. Source codes for PD
and for the MSPD heuristic that we describe below, along
with lookup tables for this section’s results, are available in
the Multi-Source-Prim-Dijkstra GitHub repository [3].

A. Design of Experiments

Our characterization sweeps the pointset size, the pointset
bounding box aspect ratio, the position of the source relative
to the bounding box center, and the value of .. As mentioned
earlier, relevant fanouts (V) in the CTS context can be as
large as ~50. Works such as [9] [6] [16] have studied the
dependence of tree construction outcomes on both /N and the
aspect ratio (AR, i.e., height divided by width) of the bounding
box of the given pointset. In this work, since we are concerned
with skew, another relevant parameter is the centrality of the
root location relative to the pointset bounding box.
Generating a pointset with prescribed bounding box as-
pect ratio. To generate a random pointset with a prescribed
bounding box aspect ratio, we use code provided by authors
of [16]. Note that the bounding box of a given pointset (when
the points are in general position, with no two co-linear) is
determined by two, three, or four points. The pointsets we use
follow the probability distributions detailed in Section 2.2 of
[16], namely,

- () ()

is the probability that the bounding box is determined by 2

terminals;
N 4!
roc = () (e -1 @

is the probability that it is determined by 4 terminals; and

P(N,3)=1— P(N,4) — P(N,2) (5)
is the probability that it is determined by 3 terminals.
Centrality of the root (source). We measure the centrality
of a point with respect to the pointset bounding box using a
parameter 0 < p < 1, where p = 0 means that the point is at
the bounding box center, and p = 1 means that the point is
on the edge of the bounding box.

If the pointset bounding box has width w, height h, and
center point (a, b), then a point has centrality p if it lies on the
boundary of the rectangle defined by the lines z = a + pw/2
and y = b+ ph/2.

For a given pointset, we say that the point with centrality p is
the closest point, by Manhattan distance, to the boundary of the
rectangle defined by the lines x = a+pw/2 and y = b+ph/2.
Pointset generation. For each combination of pointset size
N = {20,30,40,50}, bounding box aspect ratio AR =
{1,1.2,1.4,1.6,1.8,2,2.5,3,4,5}, and centrality of the root
p = {0,0.2,04,...,1}, 2500 pointsets are randomly gen-
erated, yielding a total of 600,000 distinct pointsets. (Gen-
erated pointsets are scaled such that a pointset with pre-
scribed bounding box AR has bounding box [0...10,000]
x [0...AR * 10,000].) Then, each of the 600,000 pointsets
(i.e., nets) is input to PD and PD-II with various « values,
a = {0.0,0.1,0.2,0.3,0.4,0.42,0.44, ...,0.7,0.8,0.9, 1.0}.
Last, for each generated PD-II output tree, the WL and skew
are respectively normalized to Ly, and St, of that net.

B. Characterization Results

We now describe empirical relationships observed in PD-II
trees between the cost-skew tradeoff and the AR, N and p
parameters.
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Fig. 2: Average normalized WL and skew across different values of N, for
fixed p=0and AR =1.

Figure 2 shows traces of average normalized WL (solid
lines) and skew (dashed lines) for N = {20, 30,40, 50}, with
fixed AR = 1 and p = 0, over the range of possible «
values. We observe a small increase of both L’ and S’ as N
increases. The average normalized skew increase with larger
N is expected, since generally the largest PL increases and/or
the minimum PL decreases with larger pointsets. The “sweet
spot” at a ~ 0.55 is noteworthy: (i) it is different from the
folklore o = 0.3 that is commonly used with the PD heuristic,
and is currently seen in the clock subnet tree generation of
OpenROAD [22]; and (ii) it shows surprising stability across
all our data.
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Fig. 3: Average normalized WL and skew across different values of p, for
fixed AR = 1.4 and N = 50.

Figure 3 shows how centrality p of the source location
affects the cost-skew tradeoff, with fixed AR = 1.4 and
N = 50. As p increases, average normalized WL L’ (solid
lines) also increases, but average normalized skew S’ (dashed
lines) decreases significantly. With large p, the source is near
the edge of the pointset bounding box, and in some sense
not much can be done to improve spanning tree skew over
the Dijkstra (o« = 1) outcome. On the other hand, MST cost



(o = 0) of a pointset remains the same regardless of source
location centrality (p). We believe this explains the average
drop-off of S’ and the small increase of L’ seen for p = 1.0
as opposed to p = 0.0.
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Fig. 4: Average normalized WL and skew across different values of AR, for
fixed p = 0 and N = 50.

Finally, Figure 4 shows outcomes for various pointset
bounding box aspect ratios AR, for fixed N = 50 and p = 0.
As AR increases, the average normalized L’ (solid lines)
increases, which we see as consistent with previous studies of
RSMT cost (see Figure 11 of [6]). The average normalized S’
(dashed lines) tends to decrease with increasing AR. There is
also less variation in S’ over the entire range of o with smaller
values of AR

C. Lookup Tables

In the LUTs folder of the GitHub repository [3], we
provide 4-dimensional lookup tables which give mean and
variance of L7, and S/ for combinations of N, AR, p,
and o parameters. To achieve this, we randomly generate
2500 nets for each combination of N = {20, 30,40,50} x
AR = {1,1.2,...,2,2.5,3,4,5} x p = {0,0.2,...,0.8,1}.
For each net, we run PD-II with the 23 values of
o = {0,0.1,0.2,...,0.4,0.42,0.44, ...,0.68,0.7,0.8,0.9, 1},
i.e., for each (N, AR, p) triple we collect a total of 2500
* 23 = 57,500 PD-II trees. We then populate our lookup table
with the average and variance of the normalized L/, and S,
values for each combination of N, AR, p, and a.

IV. THE MULTI-SOURCE PD HEURISTIC

We now describe multi-source Prim-Dijkstra, which heuris-
tically addresses the goal of efficiently finding good cost-skew
tradeoff solutions based on an existing PD implementation. We
are unable to formally quantify or bound the suboptimality
of our heuristic solutions (the problem is difficult [13] [12]),
but experiments in Section V below assess heuristic solutions
against a large set of ground-truth data.

Recall the above intuition that skew can be reduced by
“teleporting” the tree construction far away from the root.
We have studied the benefit of introducing a small number
of root-to-terminal edges into the start of the PD execution.

3Note that it is not sensible to compare the normalized skew values observed
over various parameters of p, AR. This is because unlike normalized cost, the
normalized skew is highly dependent on root location.

Intuitively, this can decrease skew by increasing the shortest
root-to-terminal pathlength, and/or decreasing the longest root-
to-terminal pathlength. However, we must be mindful that the
PD algorithm adds an additional edge incident to the root
if it minimizes the expression (o * P;) + m; j, and PD-II
incrementally changes the tree topology if it can improve
o * EvieV Q; + (1 — a) * Ly, where Q; represents the
detour cost P; —my; for a vertex [2]. Thus, unless explicitly
prevented, short root-terminal connections beyond the initial
“seeded” connections could be added that spoil the tree skew.

Fig. 5: An example tree produced by MSPD for a pointset with N = 40. The
root is shown in solid black. The three points used as sources are indicated
by enlarged double-circles. In the resulting spanning tree, the sinks with
minimum and maximum pathlength distances from the root are respectively
highlighted in red and orange.

Our multi-source PD heuristic forces PD to not allow any
incident edges to the root, other than edges inserted at the
initialization of the algorithm. In the multi-source approach,
the chosen set of sources are included in the initial heap.
This simple change allows PD to construct disjoint trees from
these sources, with these trees connected to each other via the
initialized edges from the root. Intuitively, this preserves skew
benefits of “teleporting” away from the root, while preventing
short edges incident to the root. Figure 5 illustrates the output
of the multi-source variant.

Figure 6 shows cost-skew Pareto frontiers of original PD
and multi-source PD for four pointsets with N = 40. The
PD traces are from 11 PD-II runs with a = {0,0.1,...,1}.
The multi-source traces are derived from runs of PD-II with
all combinations of 1, 2 and 3 terminals as seeds (a total
of 9920 combinations), crossed with 11 « values, as detailed
in Section V below. While relative performance is instance-
dependent, the original PD is clearly dominated by the multi-
source variant.

Algorithm 1 formally presents the multi-source PD algo-
rithm, which functions in nearly the same way as the PD
algorithm described in [1], [2].

o Lines 1-8 initialize an empty tree and a queue with the
sources, then set the keys of the root and sources to be
zero. Any terminal that is not the root or a source has its
key and PL set to the Manhattan distance between that
terminal and the root.

o Line 9 sets the pathlength and key of the root to be zero,
but does not add the root to () so as to prevent additional
incident edges to the root.
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ALGORITHM 1: Multi-source PD

Input: Underlying Routing Graph G = (V, E), Source Set S,
Output: Spanning tree Tout = (V, Eout) With Eout C E and
€0,source € Fout S.t. source € S
: Initialize Q, Tout, <+ 0
: for allv € V do
PLy, keyy < mo,v
end for
: for all s € S do
keys < 0
add s to Q
: end for
i PLyoot, keyroot <= 0
: while size @ > 0 do
v 4 vertex in @ with min key,,
Remove v from @
for j =0...|V] do
u < jth closest neighbor to v
d< Mmyy+ PLy xa
if key, > d then
pary < v, keyy, < d
PLy < My + PLy
Add u to @ if not already added
end if
end for
: end while
: for v eV do
Insert epar,,v iNt0 Toyt
: end for
: Steinerize Toq¢ Without removing sources € S
or adding incident edges to the root.
creturn Tyt

[ e e el e
CSOXNONE WN—=OOVRIDNN W —

DN NN
AN W —

(38
2

e Lines 10 and 22 delimit a while loop which iterates
through each element in the queue, removing the vertex
with the minimum key (call this vertex v).

o Lines 11-12 remove the vertex v € ) with the minimum
key.

o Lines 13-21 change w’s parent to v if the change de-
creases u’s key. Then, u’s key and pathlength are both
updated, and () is modified to contain wu.

o Lines 23-27 add terminals and edges into the growing
tree, Steinerize the tree, and return the final tree.

Like the original PD heuristic, Algorithm 1 follows the tem-
plate of Dijkstra’s algorithm and has the same asymptotic
runtime of O(N?).

V. EMPIRICAL STUDIES OF MULTI-SOURCE PD

We now present empirical studies of MSPD, where up
to three sources are used. We first describe data generation,
followed by two metrics of suboptimality and two intuitions
obtained from study of multi-source trees with good cost-skew
properties. We then describe a Multi-Source Selection (MSS)
heuristic that incorporates these intuitions.

Pointset and Ground-Truth Data Generation. We generated
500 pointsets of size 10, 15, 25, and 30, 100 pointsets of size
40, and 5 pointsets of size 45 and 50. All of these pointsets
were generated uniformly at random, with all points having
integer coordinates within a [0...1000] x [0...1000] bounding
square.

Each pointset of size N is input to the modified PD
algorithm. Let R = 1+ (Nfl) + (Ngl) + (Ngl). R is the total
number of 0-, 1-, 2- and 3-source combinations that can be
passed into our PD algorithm. (When N = 30 (resp. 40, 50),
R = 4090 (resp. 9920, 19650).) For all R combinations, 11
values of a = {0.0,0.1, ..., 1.0} are used to test the effect of «
on our modified PD. Thus, a total of R’ = R*11 combinations
of source choices and « values are fed to the multi-source PD
algorithm.

J% (Rank) and K% (Suboptimality) Metrics. We introduce
two metrics to determine how the solution quality of tree 7T,
ie., Ll + S7, compares to that of all (i.e., R’ — 1) other
trees that can be generated using the multi-source approach.
Please note that while these metrics (and, even, our choice of
normalization for tree skew) may at first seem “arbitrary”, we
believe that the conclusions we draw are robust and accurately
reflect what we find with other reasonable alternatives.

Our J% metric reflects the ranking of T. Consider all R’
trees that are generated by the multi-source PD variant. We
say that a given tree 7" has J% suboptimality with respect to
ranking if, after sorting all R’ trees in non-decreasing order
of their solution quality, T" is within the first J% of all trees.

Our K% metric reflects the suboptimality of T'. For a given

net, let T, be the tree with minimum L7, 4+ S7, among all
R’ trees that we evaluate. Then, a given tree T, has K%
suboptimality with respect to solution quality, where K =
100 % (L, + S, — (L, + 84,))/(Ly, + S,).
Intuition: Center-Most Point. From studies of high-quality
multi-source trees, we observe that there is often a source
that is “central” to the set of terminals. This tends to be true
regardless of the root location. Intuitively, choosing a central
point as a source is reasonable, since this would tend to prevent
any terminal from having too long a PL from the root. And,
reducing maximum PL by choosing a central point as a source
would in turn reduce skew. This intuition is borne out in our
experimental studies of the Multi-Source Selection heuristic
(Algorithm 2) below, which adds a center-most point to its set
of candidate sources.* See Table IV in Section VL.

Intuition: Reaching Clustered Points. Multi-source PD trees
with good cost-skew balance also tend to use sources that
are well placed to reach other points with minimal wire cost.
Intuitively, this means that if there is a relatively dense cluster

“4For a given pointset, we say that the center-most point is the point that is
closest, by Manhattan distance, to the center of the pointset’s bounding box.



of points, one of these points is promising as a source; having
a direct edge from the root will limit the PL to other points
in the cluster, which helps to control skew. Based on this
intuition, our Multi-Source Selection heuristic (Algorithm 2)
preferentially uses sources that have small sum of Manhattan
distances to their closest neighbors.

Multi-Source Selection Heuristic. Given the above intuitions,
we have implemented the following heuristic (Algorithm 2) for
multi-source selection in a given pointset. The MSS heuristic
has two input parameters x and .

ALGORITHM 2: Multi-Source Selection

Input: V, k, A

Output: Spanning tree Tout = (V, Eout) With Eoyr C E
1S« V

2: forv eV do

kw, < sum of Manhattan distances to the

K closest neighbors of v

: end for

: Sort vertices in S by kw,

: while |S| > X do

v1, v2 ¢ vertices in |.S| that are closest to each other
by Manhattan distance

Remove vy <;<2 such that kw,,; > kwy
9: end while

10: Add the center-most terminal to |S|

11: Initialize Tpess < 0

12: for all O-, 1-, 2- and 3- combinations of terminals C' do
13: for « = 0,0.1,...,0.9,1.0 do

W DN —

Sowus

*®

i

14: T = Run multi-source PD with V', C, and «
15: if 7" has better solution quality than T3+ then
16: Trest < T

17: end if

18: end for

19: end for

o Lines 1-4 populate a set of vertices, .S, and sort S by
kw,, which is the sum of Manhattan distances to the
closest neighbors, of each vertex v.

« Lines 5-8 remove vertices in S until |S| has size A, by
(i) finding the closest pair of vertices in |S|, then (ii)
removing the vertex with lower kw; value in that pair.

e Line 9 adds the center-most point with respect to the
bounding box, based on Manhattan distance, to |.S|.

o Lines 10-18 construct and return the best tree by gen-
erating combinations of 1 to 3 vertices in S to be the
multi-sources, and crossing these combinations with «
values in the range [0, 1].

The parameter A allows us to control computational ex-
pense, by upper-bounding the number of calls to multi-source
PD by 11 * O(\3). Larger values of \ will generally improve
the quality of the best MSPD tree found. The heuristic takes
O(N?%log N+\3) time to create a candidate set of sources and
construct combinations of sources and « values. We achieve
this runtime by pre-computing closest pairs of vertices, and
traversing this array of pairs until we come across a pair
that contains two vertices in S (O(N?log N) runtime). We
also pre-compute the N — 1 nearest neighbors to each vertex
(O(N?log N) runtime). When taking into account the number
of times the MSPD algorithm is called, the total runtime of
our heuristic is O(N2(log N + \?)).

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We now present experimental studies of the Multi-Source
Selection heuristic (Algorithm 2). Our main experiment
runs Multi-Source Selection with |V| = {10, 15,25, 30, 35,
40,45,50} x k = {1,2,3,4} x A = {1,2,3,4}. For each
tree 1" returned by Multi-Source Selection, we compare the
L. + S’ value, using both the K% suboptimality and J%
rank metrics, to the best result obtained from running MSPD
with all possible 1-, 2-, and 3-source combinations X a =
{0,0.1,...,0.9,1}. We do this using (i) PDRev [24], which
is comprised of (PD+HVW+DAS), and (ii) STT, which is
comprised of (stt+DAS), where stt is the implementation of
[4]. We call DAS on the stt output because it significantly
improves wirelength with a minimal computational expense.

Study 1: K% and J% Suboptimalities. Tables II (for
PDRev) and III (for STT) each show the K% solution quality
suboptimality metric and the J% rank suboptimality metric on
the left and right, respectively. For PDRev runs, we randomly
generate nets according to the following experimental design:’
e N =1{10,15,25,30} x T = 1000
o N ={40,45,50} x T = 500

For STT runs, we randomly generate nets according to the
following experimental design:

« N ={10,15,25,30,40, 45,50} x T' = 5000

TABLE II: K% (left) and J% (right) suboptimalities for best heuristic-
generated trees compared to the best of all R’ MSPD PDRev trees.

by by
VI ke — 2 3 |V F 2 3 4
15.83% | 4.71% | 3.63% | 2.77% 1| 3.45% | 2.44% | 1.71% | 1.28%
10 [ 2[5:69% | 4.06% [ 2.95% [ 2.08% || |, [2]322% | 2.18% | 1.43% | 1.03%
4 5.72% | 3.86% | 2.81% | 1.98% 4(332% | 1.97% | 1.36% | 0.95%
8 [5.06% | 3.81% | 2.77% | 1.95% 8 [3.18% | 1.97% | 137% | 1.01%
16.16% | 5.12% | 4.24% | 3.90% 1 245% | 1.77% | 1.35% | 1.00%
15 [2]619% | 5:09% [ 402% | 368% || |5 [ 2| 237% | 169% | 1.13% | 0.87%
4 6.09% | 5.03% | 4.05% | 3.13% 4 2.27% | 1.52% | 1.08% | 0.77%
8 [6.07% | 4.85% | 3.94% | 3.07% 8 [2.23% | 1.43% | 1.07% | 0.78%
1 5.78% | 5.45% | 4.68% | 4.54% 1 1.25% | 0.90% | 0.71% | 0.58%
55 [ 2] 569% | 5.40% | 470% | 446% || ,s [2 [1.21% | 0.88% | 069% | 0.54%
4 623% | 4.83% | 4.57% | 3.85% 4 1.23% | 0.78% | 0.59% | 0.44%
8 [5.70% | 4.78% | 4.00% | 3.82% 8 [1.17% | 0.73% | 0.52% | 0.38%
1] 6.14% | 5.41% | 5.19% | 4.43% 1] 1.09% | 0.80% | 0.61% | 0.46%
20 | 2[621% | 540% | 5.04% | 429% || 4, [2 1.12% | 0.79% | 0.55% | 0.42%
4 6.09% | 5.23% | 4.97% | 4.20% 4 1.01% | 0.71% | 051% | 0.37%
8 [ 6.09% | 5.23% | 4.49% | 4.19% 8 [1.05% | 0.69% | 0.49% | 0.37%
1 6.00% | 5.52% | 5.06% | 4.64% 10.83% | 057% | 0.42% | 0.32%
a0 |21 6:06% [ 550% [ 5.13% | 476% ||, [2[085% | 0.52% | 0.44% | 0.33%
7 591% | 532% | 4.87% | 4.47% 4] 0.72% | 0.50% | 0.40% | 0.30%
8 [5.86% | 5.28% | 4.74% | 4.25% 8 [0.71% | 0.52% | 0.38% | 0.24%
1 [5.83% | 5.36% | 4.96% | 4.60% 1[0.73% | 051% | 0.39% | 0.30%
45 | 2] 583% [ 539% | 499% | 455% || 45 [2]065% | 0.52% | 039% | 0.27%
4 5.70% | 5.29% | 4.94% | 438% 4 0.60% | 0.48% | 0.37% | 0.23%
8 [5.77% | 5.27% | 4.82% | 437% 8 [0.63% | 0.43% | 0.33% | 0.24%
1]651% | 5.93% | 5.55% | 5.20% 1]0.73% | 0.48% | 0.37% | 0.31%
so [ 2] 640% [ 6.00% | 5.53% | 5.14% || 5, [2[0.65% | 0.50% | 037% | 0.30%
1 6.42% | 5.84% | 5.43% | 4.97% 4] 0.66% | 0.45% | 0.34% | 0.28%
8 [ 6.42% | 5.86% | 5.39% | 4.95% 8 [ 0.68% | 0.46% | 0.34% | 0.26%

As expected, for fixed |V| and &, both K% and J% values
decrease as A increases. Also, in our experience, increasing x

5The PDRev implementation described in [2] uses HVW to initially
Steinerize the output of PD. The implementation in [24] uses the subroutine
generate_permutations, which has runtime exponential in the tree depth, to
find edge overlaps. Consequently, we decrease 1" for nets with 40 or more
terminals. The runtimes in Table V are due to larger tree depths seen with
larger « values.



TABLE III: K% (left) and J% (right) suboptimalities for best heuristic-
generated trees compared to best of all R’ MSPD STT trees.

TABLE IV: Relative incidence of the center-most terminal as a source in
heuristic PDRev multi-source PD trees that are within K% suboptimality
with respect to the best possible result (minimum W, + S7.).

2

for fixed |V | and A will generally increase solution quality. For
fixed k and ), as |V] increases so does the K% suboptimality.
However, the opposite is seen for the J% rank metric: as |V|
increases for a fixed A\ and k, our heuristic tree rank tends
to improve (i.e., the percentages shown in Tables II and III
decrease). This is intuitively reasonable, as the number of
multi-source trees we consider grows as |V [3. If our heuristic
generates very high-quality trees, their numerical rank might
be similar across various values of |V, but the J% metric
would decrease since the denominator (i.e., number of trees
that can be generated) grows rapidly with |V].

Study 2: Benefit from the Center-Most Point. We have also
studied the benefit derived from including the the center-most
point as a candidate source (Line 9 of Algorithm 2). Table IV
analyzes data from our main experiment that corresponds to
k = 2 and A = 4. A given entry in a table is computed as
a ratio: the denominator is the number of multi-source trees
generated by the heuristic that are within K% of the best
possible solution quality, and the numerator is the number of
these trees that use the center-most point as a source. In other
words, the table shows the frequency with which a heuristic-
generated tree within K% = {1, 2, ...,5} suboptimality of the
best possible result has the center-most point as a source. We
see that high-quality generated trees are quite likely to use
the center-most point as a source. Further, as K% increases,
the frequency generally decreases. This is anticipated since as
suboptimality threshold K% increases, so does the number of
generated trees that will fall within that threshold.

Additional Data: Runtime and Elmore Delay Skew. Table
V details the runtime (in seconds, on a 1.70GHz Xeon E5-
2650L v4 server) taken by our MSS heuristic for multiple |V|
with a fixed A = 2 and K = 4. We use the same OpenMP

o

=)

X X
Mk P 3 |V P 3 3 e
1]6.11% | 4.87% | 3.82% | 2.99% 1|2.83% | 2.02% | 1.47% | 1.08% VirT5T3 17775
1o [2[607% [ 4.60% [ 340% | 2.58% || | [ 2] 278% | 1:85% | 1.26% | 0.90% 0 o5 To.80 1078 [077 T0.76
1597% | 422% 3.09? 2.25;'/0 1 2776% | 1.68% 1.14? 0.80;'/0 5 Tos7 Tosa Tos o850 079
ooy 597 0w v 1 2o [151% [T12% [055% 25 [094 [ 091 07 |07 [ 055
2 6'8.6% 5'73% 4'78% 3'97% 2 1'97% 1'36% 0'97% 0'76% 30 10951093 | 0.89 | 0.88 | 085
B I 682% [ 543% [ 443% [ 3.60% || 0 [ 1.97% [ 1.28% [ 0.85% | 0.62% ?1(5) g'gé 8‘22 g'gz gg? 8‘22
8 6.65% | 5.19% | 4.11% | 3.30% 8 [ 1.91% | 1.20% | 0.81% | 0.57% o oss Toss s Tos7 o8
1]7.03% | 6.34% | 5.71% | 5.14% 1] 125% | 097% | 0.75% | 0.57%
2 1698% | 6.25% | 5.56% | 5.00% 2 11.23% | 0.93% | 0.68% | 052% | TABLE V: Runtime (in seconds) of the MSS heuristic with an upper bound
¥ 4 [695% | 6.15% | 5.35% | 478% || > [4[121% [089% [063% [047% | of 11+ (1+ (M1 + (M) + (M41) = 11% (1 +3 + 34 1) = 88 calls
8 | 6.86% | 5.96% | 5.08% | 4.46% 8 [ 1.19% | 0.85% | 0.58% | 0.43% | to the Multi-Source PD algorithm (averaged over 100 distinct nets).
11695% | 6.37% | 5.86% | 5.40% 1]1.07% | 0.84% | 0.66% | 0.54%
30 | 2] 692% [ 6.30% | 5:71% | 522% || 5 [2]1.06% | 082% | 0.62% | 0.48% - N 25 | 30 | 40 | 50
7 6.89% | 6.19% | 5.58% | 5.04% 7 1.04% | 0.77% | 0.58% | 0.44% verage Time using PDRev (s) | 18.09 | 28.88 | 56.89 | 117.04
8 6.85% | 6.08% | 5.33% | 4.19% 8 | 1.04% | 0.74% | 0.53% | 0.39% Average Time using STT (s) | 0.06 | 0.09 | 0.19 | 0.34
1[6.75% | 6.32% | 5.88% | 5.49% 1 0.84% | 0.69% | 0.55% | 0.44% . . .
40 |2 672% [626% | 580% | 5.38% ||, [2]082% | 066% | 0.52% | 041% settings as in [2] fO? PDRev runs. The large PDRev runtimes
4[670% | 6.18% | 5.66% | 5.21% 4[081% | 0.63% | 047% | 036% | reflect the “HVW” implementation noted in Footnote 5.
8 | 6.63% | 6.04% | 5.44% | 4.97% 8 | 0.80% | 0.59% | 0.43% | 0.33%
1]6.62% | 6.25% | 5.85% | 547% 110.73% | 0.61% | 0.48% | 0.38% R
45 [ 2]661% | 622% [ 5.76% | 540% || 45 | 2]072% | 0.58% | 045% | 0.36% | . -] g .
7 657% | 6.12% | 5.68% | 5.25% 4]072% [ 056% [ 043% [ 033% | £ EEE M
8 6.57% | 6.05% | 5.53% | 5.09% 8 0.71% | 0.53% | 0.39% | 0.29% | § .. . g
1] 6.64% | 6.26% | 5.88% | 5.55% 1]0.69% | 057% | 047% | 039% | £ 312
so [2]663% | 625% | 584% | 544% || 5, [2 ] 0.68% | 0.56% | 044% | 0.35% g” . :Elo .
7 6.60% | 6.15% | 5.69% | 5.29% 41067% | 053% | 041% | 032% | 21 8
8| 6.57% | 6.07% | 5.55% | 5.13% 8 [0.66% | 051% | 0.38% | 0.29% | S10 HE .
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Fig. 7: (a) St versus St , for 550 MSPD trees (N = 40). (b) Average St
and S, for 550 MSPD trees at 11 « values (N = 40).

We have also confirmed fidelity of linear delay (pathlength)
skew St to Elmore delay skew St,,. Figure 7 shows data
obtained using the NanGate 45nm open-source design enable-
ment [22], with pointsets randomly generated within a 100m
x 100pm region.®

Figure 7(a) shows correlation of Elmore delay and path-
length skews, for 550 PD-generated trees obtained from 50
randomly generated pointsets N = 40, crossed with 11 «
values ({0.0,0.1,...,0.9,1}). Figure 7(b) shows averages of
Elmore delay and pathlength skews for the 550 trees.

Study 3: MSPD vs. BST-DME vs. H-Tree. Finally, we
have studied MSPD performance relative to two classical
constructions that are conscious of the cost-skew tradeoff:
Bounded-Skew DME (BST-DME) [10] and H-Tree [5]. We
obtain code for BST-DME at the GitHub repository [23]. For
our implementation of H-Tree, we recursively construct H’s
up to k levels, where a Steiner point is added to a quadrant,
relative to the current center if there are 2+ sinks in that
quadrant. We use the Steiner points generated at the k" level
as sources for MSPD.

Figure 8 shows cost-skew Pareto frontiers of L7, and S/,
for four random pointsets of N = 45. MSPD and BST-DME

In this technology, a CLKBUF_XI1 instance has estimated driver on-
resistance (r4) of 7.19 kOhm and sink input pin capacitance 7.79 % 10!
fF. Interconnect per-micron resistance is 2.18 Ohm, and per-micron ca-
pacitance is 9.45 * 10~2 fF. We calculate Elmore delay at a sink using

Ce
ED; = TdCO + Zej E.path(vo,vi) Te; (TJ + CJ) [17], where Te; and Cej
are respectively the resistance and capacitance of the edge between v; and
its parent, and C} is the total capacitance of the subtree rooted at v;.



offer solutions that optimize both criteria, whereas H-Tree
generation at k& = 2 levels produces solutions that heavily
optimize skew while increasing cost. We see that MSPD has
merits compared to previous methods, and warrants further
study.
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Fig. 8: Results for four pointsets (a), (b), (c) and (d) with N = 45 illustrate the
constrast among MSPD PDRev (red), MSPD STT (blue), BST-DME (black),
and H-Tree at &k = 2 (purple).

VII. CONCLUSION

We have studied efficient and practical methods for achiev-
ing improved cost-skew tradeoffs in Steiner routing trees. In
particular, our work has focused on a “PD-Clock Problem”,
which seeks to leverage well-established Prim-Dijkstra imple-
mentations for better cost-skew outcomes. We have character-
ized normalized cost vs. normalized skew achievable by PD,
across number of terminals, bounding box aspect ratio, cen-
trality of the root, and the PD « parameter. Our data shows a
potential unrealized “sweet spot” for use of PD for better cost-
skew tradeoff; also, our lookup tables for mean and variance
of cost and skew metrics can be used in CTS clustering and
buffer placement. To go beyond PD’s capabilities, we also
study multi-source PD variants, and propose a multi-source
selection heuristic that achieves good empirical performance
in reasonable runtimes. The src folder of [3] provides open-
source implementations of PD, MSPD and MSS (for both
PDRev and STT).

Our ongoing work pursues alternative tree metrics to capture
the cost-skew tradeoff, as well as machine learning to infer
multi-source combinations and « values that yield high-quality
multi-source PD trees with improved J% and K % metrics. In
support of this latter goal, we have set up a machine learning
contest in collaboration with The OpenROAD Project [25].
The contest folder of [3] introduces the cost-skew tradeoff
problem and the goal of identifying best multi-source com-
binations for a given MSPD instance. It also provides data
corresponding to the R MSPD trees for STT and PDRev
described in Section VI above.
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