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Abstract 
We address the two-pole simulation of interconnect 

trees via the moment matching technique. We simulate 
the interconnect network by modeling the distributed 
lines with non-uniform lumped segments and using the 
two-pole methodology. To this end, we derive new non- 
uniform equivalent circuits which match the general dis- 
tributed line transfer function up to  the second term. 
Using the recursive equation for the admittance of a tree, 
we give the exact expressions for the first and second mo- 
ments of the transfer function of the interconnect tree. 
Our results show that delay estimates using our method 
are within 13% of SPICE-computed delays. As routing 
trees become bigger and interconnection lines become 
longer, e.g., in MCM design, our approach has advan- 
tages in both accuracy and simulation complexity. sig- 
nificant. 

1 Introduction 
As feature sizes decrease and operating frequencies 

increase, interconnect delays come to  dominate gate de- 
lays. Thus, interconnects are a major factor in the per- 
formance of high-speed integrated circuit, multichip and 
system-level designs. Various techniques have been pro- 
posed for the simulation of interconnects. Direct simula- 
tion techniques such as SPICE give the most accurate 
insight into arbitrary interconnect structures, but are 
computationally expensive. Asymptotic waveform eval- 
uation (AWE) [PR90] simulates transmission line net- 
works based on moment computations: individual inter- 
connects are modeled using distributed 2-port parame- 
ters and the node voltages are recursively calculated by 
solving the circuit equations. 

Faster techniques such as the two-pole approach 
[Hor84, ZSTGC941 have been used to calculate the re- 
sponse using the first and second moments. Tradition- 
ally, with these and previous approaches interconnects 
are modeled using uniform lumped RC and RLC seg- 
ments. However, as interconnect lengths and operating 
frequencies increase, such uniform models can lead to  
errors, typically because only a few uniform lumped seg- 
ments are computationally reasonable in modeling the 
interconnects, and moments are not captured exactly.' 
In [KM941 the two-pole response was obtained using 

*This work was supported by NSF MIP-9257982. 
'Also, Zhou et al. [ZSTGC94] calculate the response using an 

empirical relationship for the moment computation and approxi- 
mate the off-path impedance as the sum of total subtree capac- 
itance. This error in the second moment and pole computation 
becomes significant as the size of off-path subtrees increases, as in 
MCM interconnects. 

non-uniform segment models which exactly match the 
first two or three moments of the transfer function of an 
open-ended distributed transmission line. The resulting 
response and delay estimates were found to  be more ac- 
curate than those of previous approximate methods in 
[Hor84, ZSTGC941. 

In this paper, we make the following contributions. 
First, we propose new accurate non-uniform RLC seg- 
ment models for general distributed interconnect lines. 
Second, we present exact expressions for the first and 
second moments of the interconnect tree transfer func- 
tion, via a recursive expression for the admittance of a 
subtree which captures off-path subtree admittance ac- 
curately. We then simulate interconnect trees using the 
non-uniform segment models and the two-pole methodol- 
ogy [Hor84, ZSTGC941. For estimation of 90% threshold 
delay, our method is within 13% of the SPICE-computed 
delays for a range of interconnect parameter values and 
routing structures. While we use two-pole techniques 
for response calculations, the new segment models can 
be incorporated within RLC model libraries for other 
circuit simulators. Improvements in accuracy and sav- 
ings in simulation costs can be significant in the design 
of high-speed systems. 

2 Lumped Segment Models 

off-path subtrees 

main path 

Figure 1: The main path of the routing tree between 
source I and load T .  

To model distributed RLC and RC lines, uniform L, 
T or ll models have traditionally been used. The accu- 
racy of these models is highly dependent on the number 
of segments used for each distributed line. As the num- 
ber of segments tends to  infinity, the L type model ap- 
proaches the RLC distributed line model [KM93]. Saku- 
rai [Sak83] showed that for both the T and II models, as 
the number of segments tends to  infinity the equivalent 
circuit transfer function also converges to the distributed 
RLC transfer function. In [Raj74, KM941 non-uniform 
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segments for interconnect lines are developed by compar- 
ing with the open-ended transfer function of the trans- 
mission line. Using only a few non-uniform segments 
to model distributed RCIRLC lines, the coefficients of 
the open-ended transfer function are matched accurately. 
A comparison of various lumped models approximating 
the distributed RLC line is given in [KM94]. Gerzberg 
[Ger79] surveyed different non-uniform models and pro- 
posed a model in which the segment RC values are in 
geometric progression (the “Uniform Distributed RC” 
(URC) line model in SPICE is derived from Gerzberg’s 
model) .2 We now develop non-uniform equivalent cir- 
cuit models for a general interconnect line with source 
and load impedances. 

2.1 Distributed RLC Line Model 
Consider the interconnect line AB shown in the tree 

example (Figure 1). To model this interconnect line, we 
consider the source resistance and inductance, which are 
respectively equal to the resistance and inductance of the 
main path from the source to the interconnect line. We 
approximate the load impedance by the total subtree ca- 
pacitance at  the end of the line. A representation of the 
interconnect line AB with source and load impedances 
is shown in Figure 2. The ABCD parameters of a dis- 
tributed RLC transmission line (Figure 2) are 

I R, L, A B T  
I I 

Distributed RLC line 1-y 

Figure 2: 2-port model of a distributed RLC line with 
source impedance 21. 

where Q = d m ,  h = length of the line, and 
r = f ,  1 = 4 and c = f are the resistance, inductance 
and capacitance per unit length. By modeling the in- 
terconnect line using the 2-port parameters the transfer 
function between nodes I and T is given by [KM94]: 

VI(.) - 1 

) 
H ( s )  = - - 

where ZT = A, ZI = RI + S L I ,  2 0  = JW and 
Bh d m .  Expanding cosh and sinh as infinite 
series and collecting terms up to the coefficient of s2 in 

vT(s) cosh(8h) (1 + g) + sinh(8h) (E + 

2The concept of non-uniform equivalent circuits has also been 
employed in other areas, e.g., O’Brien et al. [OS891 and Gopal et 
al. [GNPSl] obtain a non-uniform segment model for driving-point 
impedance a t  the gate output using moment matching techniques. 

the denominator, we get3 

(1) 
1 

1 + sbfT + s2b$T + . . . H ( s )  = 

where 

RC 
2 

b:T = RIC i- RICT + - + RCT 

R1RC2 RIRCCT (RC)2 R 2 C G  +-+- 
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2.2 Computation of Equivalent Circuit 
Models 

‘I RI ‘1 ‘Ytl RN ‘N ‘N $4 ‘N.1 ‘N.1 ‘2  ‘I ‘I ’ 
.. . -. . .-. .- I :  I 

O b . -. -.. - 
Figure 3: N-segment distributed RLC transmission line 
model with source resistance RI, source inductance LI 
and load capacitance CT. 

In [Raj74, KM941 non-uniform equivalent circuits for 
RLC lines were developed by assuming an open-ended 
line. Under this assumption two non-uniform RLC seg- 
ments are sufficient to  match the transfer function and 
the input impedance of the line up to  the coefficient of s2 .  
Here, to derive non-uniform equivalent circuits for a dis- 
tributed line with general load and source impedances, 
we need three non-uniform RLC segments to  match up 
to the coefficient of s2 in the transfer function. Consider 
the interconnect line AB of Figure 1, represented with 
N RLC segments as shown in Figure 3. To match the 
transfer function coefficient up to  the required accuracy, 
we use the following expression for the k th  coefficient b k  
from [KM93]: 

N N 

From this recursive equation the k th  coefficient of the 
transfer function between nodes I and T can be com- 
puted as 

N 

j=1 

Similarly, the transfer function of the open-ended distributed 
RLC line is given by 

1 
H ( s )  = 1 + Fs + (Pc2 + 9 ) S Z  + (W + *).3 + ... 

24 
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N 

j = l  

N N N 

i=l . .  j= l  a =j 

N N N 

. .  j=l a =j 

where bo = 1 and b-1 = 0. Therefore] 

N N  N 

. .  j = 1  j= l  a = j  

N 

+ ~ i )  
i=l 

These are the source resistance ( R I )  term, the source 
resistance and load capacitance (RICT)  term, the line 
resistance and capacitance (RC term, and the line re- 
sistance and load capacitance ( R 9 )  term. However, 
the source resistance and load capacitance (RICT)  term 
in the coefficient of s does not yield any Constraints, so 
there are a total of 4k - 1 constraints in matching up to 
k coefficients in the equivalent circuit. The number of 
non-uniform 1, or II segments required to  match these 
constraints is a t  least 2k - I [KM93]. In particular] to  
derive equivalent circuits which match up to the coeffi- 
cient of s2 we need to  satisfy 7 constraints; this can be 
achieved by using 3 L or II segments. (Note that with L 
segments we get an overspecified system of equations.) 

Our methodology uses numerical search to  solve for 
the equivalent circuit parameters. The equivalent L cir- 
cuit parameters (Figure 4) foic matching up to the second 
moment are given by 

R1 = 0.20Rl R2 = 0.40R, R3 = 0.40R 

L1 = O.%OLl Lz = O.4OL1 L3 = 0.40L 

C1 0.42C, Cz = 0.41C1 C3 = 0.17C 
Similarly, the equivalent II circuit parameters (Figure 5) 
are obtained a.s 

i = l  . .  j=1 a =I 
RI = 0.34R1 Rz = 0.32R, R3 = 0.34R 

N N  N 

+ Ccj L~ + cT L~ (4) L1 = 0.341;, Lz = 0.32L, L3 = 0.34L 
CO = 0.15C1 C1 = 0.35C, Cz = 0.35C, C3 = 0.15C i=l . .  j= l  " j  

F~~ a uniformly distributed segment model with Ri = g1 
Li = 5 and Ci = $, the transfer function coefficients 
from Eauation ( 3 )  in the limit as N -+ cc are the same 

Note that the n Circuit parameters are symmetrical, in 
contrast to  the L circuit model. The coefficients of the 
transfer function using the M circuit parameters are 

as those given in Equation (2). >RC 
b:B = RrC + RICT + y- + RCT 

T 
C l  

T 
c3 

A R. L. R, L, R, L, B 
1 1  L L  s s  Figure 4: Non-uniform three L segment model for a dis- 

tributed RLC line with source and load. 0 "  

We obtain our non-uniform equivalent circuit param- 
eters by computing the coefficients using Equation ( 3 )  
and matching with the distributed transfer function co- 
efficients given by Equation ( 2 ) .  From Equation (3) we 
can see that the constraints imposed on the resistance 
parameters are the same as the constraints on the induc- 
tance parameters, i.e., for any non-uniform RLC equiv- 
alent circuits the resistances and inductances are identi- 
cally distributed: 

Ri = Li Q i .  

Therefore, we need derive constraints only for resistance 
and capacitance parameters of the equivalent circuit. 
Observe that there are four different terms with resis- 
tance and capacitance values in each coefficient of sk. 

- 
T 

c2 
T 

- 
T 

CO - 
T 

Figure 5: Non--uniform three II segment model for a dis- 
tributed R L C  line with source and load. 

These new equivalent circuit models should be con- 
trasted with previous models in [KM94], which were de- 
rived under the open-ended assumption and by matching 
the transfer function coefficients up to s3. For instance, 
our previous three L segment, model for the open-ended 
line had parameters 

RI = 0.30R, R2 =0.20R, R3 = 0.50R 
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L1 =0.30L,  Lz = O.20Lc, L3 10.50L 
C1 0.40C, Ca = 0.44C, C3 = 0.16C 

Because non-uniform equivalent circuits match the 
distributed line moments accurately, using such equiva- 
lent circuits in a two-pole or higher-order approximation 
of the transfer function will achieve a more accurate volt- 
age response than simply using uniform segment models 
(e.g., as in [ZSTGC94]). For large routing trees such 
as in MCM substrates, the use of non-uniform equiva- 
lent circuit models will reduce computation time signif- 
icantly. The non-uniform equivalent circuits can also be 
employed in place of the lumped T and II models that 
are traditionally used for clock skew minimization and 
other performance-driven routing applications. 

3 Interconnect Tree Analysis 
We now describe the approach for calculating the re- 

sponse at a given sink of a general interconnection tree. 
Previous two-pole methods calculate the two dominant 
poles of the transfer function from the first and sec- 
ond moments by modeling each distributed line sepa- 
rately with uniform equivalent circuits [Hor84, GZ931. 
To improve the accuracy of the response, Zhou et al. 
[ZSTGC94] consider a special polynomial function that 
describes the poles by heuristically incorporating a model 
proposed by [ZPKSl]. To further improve accuracy, the 
authors of [ZSTGC94] model each tree branch by many 
(uniform) shorter segments. This method may not be 
practical for trees with long wire segments (e.g., on an 
MCM substrate, where a lossy transmission line model 
is most relevant). 

We propose to  compute the poles of the transfer func- 
tion by modeling each distributed line with the above 
non-uniform equivalent circuits. In computing the mo- 
ments of the tree, we represent the off-path subtrees by 
their respective admittance values instead of approxi- 
mating by total subtree capacitance. Thus, we must 
derive the exact expressions for the first and second mo- 
ments in terms of the lumped segment parameters used 
to  model the distributed lines. 

3.1 Tree Moment Computations 

Figure 6: Representation of the main path in the tree, 
where each distributed line is modeled using RLC seg- 
ments. Y,  indicates the off-path subtree admittance. 

Consider the mazn p a t h  between the source and sink 
of interest, and replace each subtree by its respective 
admittance. To calculate the response at  the sink we use 
an approach similar to  that of Gao et al. [GZ93]. Figure 
6 shows an example of a main path where each branch 
in the tree is replaced by a single RLC segment, and 
subtrees are replaced by their respective admittances. 

The node vN+1 indicates the source, and VI indicates 
the sink of interest. At any node i the admittance Y,  
is equal to the capacitance at  the node i if there is no 
subtree at  node i .  If there is a subtree at  node i then Y,  
is equal to the sum of the subtree admittance and the 
admittance of the capacitance of the equivalent circuit, 
i .e. ,  

x = s c i  if no off-path subtree a t  node i 
= sCi + YsUbtTeei if node i has off-path subtree 

For this equivalent circuit the input voltage can be writ- 
ten as 

where q ( s )  = sY1,,+s2Y2,,+. . ., withY1,j andY2,j being 
the coefficients of s and s2 of the subtree admittance. 
Expressing VN+~ (s) as a series expansion of s, VN+1(s) = 
Vl(s)(l + by' ls  + b?+'s2 + bY+'s3 + ...). The general 
expression for the transfer function coefficient of sk is 

k N  

1=1 j=1 
k-1 N 

Thus, we have 

N N i 

and similarly byt1 is given by, 

N N 

N N N N 

+ zYi,j ELI + EY2,j CRi 
j = 1  k j  j z l  1=3 

We thus obtain a general expression for coefficients of the 
transfer function in terms of parameters of the main path 
and the subtree admittance coefficients. The moments of 
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the transfer function can be calculated from the transfer 
function coefficients using the recursive equation [KM93]: 

The first and second moment expressions are given by: 

N N 

. .  j = 1  % = J  

N N N N 

3.2 Computation of Subtree Admittance 

Figure 7: A single RLC segment between nodes i and j. 

O'Brien et al. [OS901 gave a recursive computation 
for calculating the admittance coefficients for RC trees. 
In their method, admittance coefficients are obtained by 
considering each element in the tree in an iterative fash- 
ion. Later Sriram et al. [SK93] obtain an expression 
for the coefficient of s and s2 for admittance for a series 
section of RLC segments, but their coefficient of s2 in 
the subtree admittance is different from what we derived 
below. In this subsection, we obtain the expression for 
the first Y1,i and second Y2,i terms of the admittance for 
a subtree. 

In general, the admittance at  node i can be expressed 
in terms of the admittance at  node j as shown in Fig- 
ure 7. In the figure, % indicates the admittance of the 
subtree rooted at node j. 

Using the above recursive equation, the admittance of 
the off-path subtrees can be computed. By writing the 
admittance Yj at node j as an infinite series, the admit- 
tance a t  node i is given by 

U, = s(Y1,j + C;) - s2(Y2,j + Ri(Y1,j + Ci)') -t . . . (6) 

and the s and s2 coefficients of the admittance are seen 
to be 

Y1,i = ci + Y 1 J . 

Y2,i = -Ri(Y1j + Ci)2 + Y2,j 

By induction, the admittance coefficients s and s2 for N 
RLC segments connected in series (Figure 3) are given 
by 

N N 

j=1  i=l Vj€S,(,) 

where ST(i) denotes the set of nodes in subtree T(i)  
rooted at  node i .  From Equation (6), we may compute 
the coefficients of s and s2 of the admittance, which are 
then used in the first and second moment calculations in 
Equation (5). 

4 Experirnental Results 

Figure 8: A tree interconiiection layout studied in 
[ZSTGC92]. 

We conclude with a practical demonstration of the 
effect of non-uniform equivalent circuit models and the 
two-pole simulation technique, using exact admittance 
calculations. We consider the tree interconnection layout 
given in Figure 8. We calculate the 90% threshold delay 
at  node 6 using both SPICE amd the two-pole methodol- 
ogy described <above. The SPICE simulation of the tree 
was performed using the built-in LTRA (Lossy TRAns- 
mission line) model for each tree segment. In our two- 
pole method we replaced each segment using the non- 
uniform II segment model (Figure 5) and calculated the 
response using the first and second moment computa- 
tion. We calculated the dela,y values for various inter- 
connect parameters, driver resistances and grid sizes as 
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Driver Interconnect Load 
resistance parameters capacitance size 

shown in Table 1. The delay values shown in the table 
indicate the rise-time delay; total delay can be computed 
by adding propagation delay to  the rise-time delay. The 
two-pole delays are within 13% of the SPICE-computed 
delays. 

As the wire length increases, the difference between 
these models becomes much more significant. For high- 
speed systems or MCM layout applications where the 
wire lengths become very large, our approach will allow 
improved accuracy and efficiency when compared with 
previous two-pole methods. 
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