
The Tao of PAO: Anatomy of a Pin Access Oracle for
Detailed Routing

Andrew B. Kahng†‡, Lutong Wang‡ and Bangqi Xu‡
†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA

{abk, luw002, bangqixu}@ucsd.edu

Abstract—Pin accessibility has been widely studied, particularly in
recent works that span detailed placement optimization, standard cell
layout optimization and new design rule-aware access model. However,
to our knowledge, no previous work has described a full solution for pin
access analysis, with validations on real detailed routing benchmarks.
This paper presents a complete, robust, scalable and design rule-
aware dynamic programming-based pin access analysis framework that
is capable of both standard cell-based and instance-based pin access
analysis. Integration into the open-source TritonRoute router results in
superior solution quality compared to previous best-known results for
the official ISPD-2018 benchmark suite.

I. INTRODUCTION

Pin accessibility has been one of the most crucial issues in
advanced node enablement [1][9]. Various related topics have been
widely studied in recent works; these include detailed placement
optimization, standard cell layout optimization, and a new design
rule-aware access model.

The works of [6][15] perform detailed placement optimization
using a global routing solution as guidance, with pin accessibility
modeled only in the form of pin density. Ding [2] develops a dynamic
programming and linear programming-based detailed placement op-
timization considering pin access per instance pin. Ye [14] proposes
an integer linear programming formulation to solve the unidirectional
cell layout optimization under middle-of-line structure. However, the
above models are over-simplified with assumptions of 1D gridded
design and distance-based cost function, with no precise awareness
of design rules. Ozdal [8] proposes a multicommodity flow-based
method with Lagrangian relaxation to solve the escape routing prob-
lem for dense pin clusters. However, the proposed method has limited
scalability due to its per-net analysis nature. Recently, works of Xu
et al. [11][12][13] have developed a series of pin access planning
and regular routing techniques for self-aligned double patterning.
These works, still under the assumption of 1D gridded design, are
the first in the open literature that try to address both cell-level
and instance-level pin accessibility. However, the methodology has
drawbacks: (i) there is no robust flow to generate “hit points” given
any 1D/2D, gridded/non-gridded design, with or without specific
(e.g., self-aligned double patterning) design rules; (ii) the flow is
unrealistic in that the number of “hit point combinations” is very
large, resulting in a complex lookup table that is impractical to use;
and (iii) the benchmark suite is not public and includes testcases
only up to 12K cells. These small testcases nevertheless consume as
much as 800 seconds of wall time in multithreaded mode, which is a
prohibitive runtime cost for real industry testcases and use contexts.

To our knowledge, no works present a complete, fully-defined pin
access analysis flow, or demonstrate robustness with a real detailed
routing contest benchmark suite. In this work, we present a real,
robust, scalable and design rule-aware dynamic programming-based
pin access analysis framework that performs both standard cell-based
and instance-based pin access analysis. Through integration to the
open-source TritonRoute [4][20], we demonstrate superior solution

quality over the best known results [5] using the official ISPD-
2018 benchmark suite [7]. Our main contributions are summarized
as follows.

• We propose a multi-level, standard cell-based and instance-based
pin access analysis framework with intra-cell and inter-cell pin
accessibility awareness.

• We propose a robust and design rule-aware pin access point
generation methodology for unique instances, supporting both
planar and via access, and both on-track and off-track access.

• To achieve intra-cell pin compatibility, we propose a dynamic
programming-based, design rule and boundary conflict-aware
access pattern generation methodology for unique instances.

• We propose a dynamic programming-based access pattern se-
lection methodology for standard cell instance clusters, which
minimizes inter-cell pin access conflicts. To the best of our
knowledge, this proposed framework is the only scalable so-
lution in the open literature.

• We improve the pin access over the open-source TritonRoute
v0.0.6.0 [19] (the latest release as this paper is finalized),
achieving design rule check (DRC)-clean via access for all
of ISPD-2018 benchmark suite testcases. With the integration
to TritonRoute, we demonstrate superior solution quality over
the best known results using the official ISPD-2018 benchmark
suite.

The remainder of this paper is organized as follows. Section II
provides background information for pin access. Section III describes
our pin access methodology. Section IV presents our experimental
setup and results. Section V gives conclusions and directions for
future work.

II. PRELIMINARIES

In this section, we describe fundamental concepts that underlie
pin access analysis: unique instance, access point, access pattern,
and coordinate types.

A. Unique Instance

A unique instance is defined by a signature, which consists of (i)
the cell master of the instance (e.g., NANDX1, NORX4, etc.); (ii) the
orientation of the instance (e.g., R0, R180, MX, MY); and (iii) offsets
to all track patterns that exist in the design DEF. Two instances having
different signatures require separate intra-cell pin access analysis
flows. Figures 1(a) and (b) illustrate two different unique instances.
Although the two instances share the same cell master and orientation,
they are considered as different unique instances because they have
different offsets to routing track patterns, resulting in different on-
track, off-track conditions for the same pin access location (relative
to the origin of the cell master). Thus, these instances require separate
intra-cell pin access analyses. By contrast, two instances having the
same signature would have exactly the same intra-cell pin access

Fig. 1. Illustration of two different unique instances that have the same cell
master and orientation, but different offsets to track patterns.

Fig. 2. Illustration of access points.

analysis result. Thus, we only need to perform intra-cell pin access
analysis once for each unique instance.

B. Access Point and Access Pattern

1) Access Point: For each pin, an access point is an x-y coordinate
on a metal layer where the detailed router ends routing. Each access
point stores one or more directions from which the router can access
the pin.1 For example, in Figure 2, pin A has an access point
indicating the up direction. We use a via12 enclosure to show that
an up-via (i.e., a via connecting the pin to the upper metal layer)
is valid to escape from this access point. Similarly, pin B (resp. C)
has an access point indicating that routing to the east (resp. south)
is valid. In our implementation, each access point may store, i.e.,
indicate, multiple valid access directions. For the up direction, we
also store which vias are valid to use, among which one via is primary
(preferred to use). The access point must be on the pin shape.

2) Access Pattern: For each unique instance, an access pattern
consists of one access point per pin, such that the primary vias from
these access points are compatible (i.e., DRC-clean) with each other.

C. Coordinate Type

To accommodate a broad range of technology nodes, we define four
coordinate types (and respective cost values, given in parentheses) as
follows.
• An on-track (0) coordinate is on a preferred or non-preferred

routing track. We always use the upper-layer preferred direction
routing tracks as the non-preferred direction routing tracks for
the current metal layer so that the on-track up-via access aligns
to both the current and its immediately above metal layers.

• A half-track (1) coordinate is at the midpoint between two
neighboring routing tracks.

• A shape-center (2) coordinate is at the midpoint between the
left and right (or top and bottom) coordinates of a rectangular pin
shape. If the pin consists of polygon(s), we generate the max-
imum rectangles of the polygon(s) (all overlapping rectangles
that are maximal in area) to obtain shape-center coordinate(s).
We skip the shape-center x (resp. y) coordinate if the x-span
(resp. y-span) of the rectangle touches at least two tracks; we do
this to reduce the occurrence of unique, off-track coordinates.

1We only consider access points that have valid up (via) direction access
for standard cells, since via access is preferred as compared to planar access
in advanced technology nodes.

Fig. 3. Illustration of four y-coordinate types, overlaid with same-layer up-
via enclosure at the access point: (a) on-track; (b) half-track; (c) shape-center;
and (d) enclosure boundary. Only (c) and (d) are DRC-clean.

• An enclosure boundary (3) coordinate satisfies the via-in-pin
requirement for an up-via access and the via enclosure alignment
with the pin shape boundary.

Figure 3 illustrates examples of the coordinate types for a horizon-
tal preferred direction. In Figures 3(a) and (b), we see that up-vias at
the on-track and half-track coordinates cause minimum step DRCs. In
such cases, we need shape center or enclosure boundary access points,
even though they are off-track, as illustrated in Figures 3(c) and (d).
The above four types of coordinates are concise, while satisfying a
broad range of technology nodes – from mature nodes where 2D,
off-track pin access is required, to advanced nodes where 1D, on-
track pin access is required. The cost serves as the priority (the
lower, the better) when we loop through different types of coordinates
to generate access points (cf. Lines 3 and 4 in Algorithm 1, in
Section III-A below).

III. METHODOLOGY

In this section, we describe our methodology to analyze pin acces-
sibility for detailed routing. We perform three analyses in a multi-
level sequence of three steps: (i) pin-based access point generation;
(ii) unique instance-based access pattern generation; and (iii)
cluster-based access pattern selection. The first step enumerates
valid access points per unique instance, without consideration of
intra-cell or inter-cell pin access compatibility. The second step picks
good access points per pin within a given unique instance, forming
an access pattern, within which intra-cell pin accesses are mutually
compatible. The third step selects the best access pattern for each
instance in the design, with awareness of inter-cell pin compatibility.

A. Step 1: Pin-Based Access Point Generation

Although we could enumerate all coordinate types to generate
every access point per pin, in a reasonable detailed routing-driven pin
access analysis framework the number of generated access points per
pin should be neither too small nor too large. Too small a number of
access points will overly restrict the solution space in detailed routing,
resulting in degraded solution quality. On the other hand, given the
heuristic, cost-based nature of modern detailed routing [5][20], too
large a number of access points will provide excessive options (e.g.,
many off-track access points) for the detailed router, again resulting
in degraded solution quality. Thus, the access point generation flow
must be robustly designed to generate a proper amount of access
points. In our flow, for example, to generate an access point at (x, y)
on Metal1, where the preferred routing direction is horizontal, we
consider all four coordinate types for the y coordinate (corresponding
to the preferred direction), but only consider the first three coordi-
nate types for the x coordinate (corresponding to the non-preferred
direction), so as to reduce unique, off-track coordinates. We explain
below the determination of “proper amount” after the description of
Algorithm 1.

Algorithm 1 Pin-based access point generation
1: Inputs: pin, track patterns tps, viadefs vias
2: Output: valid access points aps
3: for all nonPreferredDirCoordType t1 ∈ {0, 1, 2} do
4: for all preferredDirCoordType t0 ∈ {0, 1, 2, 3} do
5: tmpAps ← genAccessPoint(pin, tps, vias, t0, t1)
6: for all ap ∈ tmpAps do
7: if isValid(ap) then
8: aps += ap
9: end if

10: end for
11: if |aps| ≥ k then
12: return
13: end if
14: end for
15: end for

Algorithm 1 describes the pin-based access point generation. In
Lines 3 – 4, we loop through different combinations of x and y
coordinates sequentially according to their cost. For example, we
first generate all (on-track, on-track) points, then (off-track, on-track)
points, etc. In Line 5, for each type of coordinates, we first generate
all access points. Then in Lines 6 – 10, we add all valid access points
to the output. An access point is valid if a via can be dropped DRC-
free to access the pin. We use an accurate DRC engine similar to
the one used in [20] to perform the design rule check, considering
all design rules existing in the specific design. Next, in Lines 11 –
13, we check whether we have generated enough access points for a
pin, and early-terminate the procedure once the number of generated
access points is equal to or greater than our required number k.
Given the above, all access points of given coordinate types are
generated, DRC-checked and added before we try to early-terminate
the procedure. Therefore, the number of access points generated
may be slightly larger than k. This behavior allows more access
points to be generated when we are given a large pin shape, while
also reducing the occurrence of unique, off-track coordinates. In our
implementation, k = 3 for both standard-cell and macro-cell pins.

B. Step 2: Unique Instance-Based Access Pattern Generation

For each unique instance, we now describe how to pick a good
access point per pin to form an access pattern in which the chosen
access points are compatible with each other. Figure 4 illustrates
our unique instance-based access pattern generation flow. The access
pattern generation mainly consists of (i) pin ordering, (ii) graph con-
struction, and (iii) dynamic programming-based pattern generation.

Fig. 4. Iterative access pattern generation flow.

Pin ordering. Pin ordering is a preparation step for graph con-
struction and dynamic programming-based pattern generation. Given
a unique instance and an ordering of the pins in the unique instance,
we assume only the neighboring ordered two-pin pairs might have

conflicting access points (i.e., the two access points cause DRCs).
For example, if we have a pin order of <A, B, C, Z>, then our
assumption is that only <A, B>, <B, C> and <C, Z> could have
conflicting access points, while <A, C>, <A, Z> and <B, Z>
should not have conflicting access points. In this way, the access
patterns can be generated within a reasonable amount of time, without
the need to perform design rule check among all two-pin pairs. For
corner cases where non-neighboring two-pin pairs have conflicting
access points, we can still avoid such cases by a post-processing
method, described at the end of the discussion below of DP-based
access pattern generation. As shown in Section IV, this method works
well in all ISPD-2018 benchmark suite testcases.

For a pin, if the averaged coordinates of all its access points are
(xavg, yavg), then given a unique instance, we sort the pins according
to (xavg + α · yavg). Figure 5 illustrates an example of a unique
instance with four pins. If α = 0, then the pin ordering is equivalent
to the ordering of xavg . Thus, we obtain a pin order of <A, B, C,
Z>. The first and last pins according to the pin order are boundary
pins, which receive special treatment in access pattern generation as
described below. Generally, given a reasonably small α (α < 1), the
first and last pins are the leftmost and the rightmost pins in the unique
instance, respectively. In our implementation, we use α = 0.3.

Fig. 5. Pin ordering.

Graph construction. We build a graph for dynamic programming.
Figure 6 shows the directed graph corresponding to the unique
instance shown in Figure 5, assuming α = 0. All edges are directed
from left to right in the figure. The leftmost (resp. rightmost) vertex in
the graph is the (virtual) starting (resp. ending) vertex, which serves
as the starting (resp. ending) point in the dynamic programming that
we describe below. Vertices between the starting and ending vertices
represent access points; these are grouped by the owner pin of the
access point, and ordered sequentially following the aforementioned
pin order. We label all access points according to the pin index (m)
and access point index (n). For example, the access point with label
{3,2} in Figure 6 is the second access point (n = 2) of the third
pin (m = 3). We build complete bipartite graphs over neighboring
groups’ respective vertex sets. A path from the starting vertex to
the ending vertex visits one access point vertex per pin. The visited
access points represent an access pattern.

Fig. 6. Graph for dynamic programming-based access pattern generation.

DP-based access pattern generation. Algorithm 2 describes the
procedure of dynamic programming-based access pattern generation.
The input is the graph. Line 3 initializes the dynamic programming
array dp. The array stores the minimum cost up to the current vertex,
and its previous vertex. The minimum cost is initialized to infinity for
every vertex except for the source. In Lines 4 – 17, we loop through
all vertices (access points) of the current pin. For each vertex of the
current pin, we find one vertex from the previous pin, from which
the total path cost is minimized. Line 9 gets the edge cost from one
previous access point vertex to the current access point vertex. Line
10 gets the total cost. The total path cost equals the previous path
cost plus the edge cost. In Lines 11 – 14, we update the path cost
up to the current vertex if the path cost is smaller than the existing
path cost stored in the vertex. We also update the previous vertex,
from which the path comes from, so that we can trace back the path
to obtain the access pattern solution. Line 18 traces back the dp
array and returns the access pattern with the lowest cost. We perform
Algorithm 2 several times to generate access patterns. Each time, the
edge costs are slightly different (according to Algorithm 3, below),
so as to obtain different access patterns.

Algorithm 2 Access pattern generation
1: Inputs: graph G(V,E)
2: Output: access patterns APs
3: Initialize array dp[m][n] G(V,E)
4: for all currPinIdx m do
5: for all currApIdx n do
6: for all prevApIdx n′ do
7: prev ← aps[m− 1][n′]
8: curr ← aps[m][n]
9: edgeCost ← getEdgeCost(prev, curr)

10: pathCost ← prev.cost + edgeCost
11: if pathCost < curr.cost then
12: curr.cost ← pathCost
13: curr.prev ← prev
14: end if
15: end for
16: end for
17: end for
18: APs ← traceBack()
19: return APs

Algorithm 3 details the edge cost calculation. The edge cost
calculation is boundary conflict-aware (BCA). In Lines 3 – 6, we
assign a penalty cost to the boundary pin (the first and last pins
according to the pin order) access points that have been selected
in existing access patterns. This helps to generate access patterns
with different boundary pin access points. Thus, two neighboring
instances have more flexibility choosing compatible access patterns,
as described in Section III-C. Lines 7 – 8 check whether the two
access points have design rule violations, and apply design rule
violation cost if two access points are not compatible. Lines 9 –
10 look further back by one more pin, and check whether the
two access points (indexed prev − 1 and curr) have design rule
violations. This step generates a history-based cost to avoid DRCs
between non-neighboring access points. We call this step history-
aware optimization. We note that since there can only be one
intermediate solution when we reach node curr, the nodes prev
and prev − 1 are always deterministic, and thus the cost of each
edge is still fixed. Line 12 calculates the edge cost according to the
quality metric of the two access patterns if neither the penalty nor
the violation cost applies.

Finally, for all the access patterns that we generate, we use a
DRC engine similar to the one used in [20] to validate whether there
exist unseen DRCs, i.e., between non-neighboring groups of access
points, or between multiple objects. To accelerate the access pattern
generation, only up-vias are included for DRC.

Algorithm 3 Edge cost calculation
1: Inputs: previous dp array vertex prev current dp array vertex curr
2: Output: edge cost cost
3: if isUsed(prev) and prev ∈ boundaryAp then
4: edgeCost = penaltyCost
5: else if isUsed(curr) and curr ∈ boundaryAp then
6: edgeCost = penaltyCost
7: else if isDRCClean(prev, curr) then
8: edgeCost = drcCost
9: else if isDRCClean(prev-1, curr) then

10: edgeCost = drcCost
11: else
12: edgeCost = apCost(prev) + apCost(curr)
13: end if
14: return edgeCost

C. Step 3: Cluster-Based Access Pattern Selection

Given access patterns per unique instance, we select the best
access patterns per instance so that the access patterns of neighboring
instances are compatible. Our cluster-based access pattern selection
is performed on a continuous chunk of instances. We first group
all instances according to their rows, and each continuous chunk of
instances (no empty site in between) forms a cluster. We only consider
the access pattern compatibility within a cluster while assuming
that the neighboring clusters within or across rows always allow
compatible access patterns. The cluster-based access pattern selection
works similarly to the access pattern generation. The pin ordering
step, in Algorithm 2, is now replaced with the instance ordering
step, which naturally follows the left-to-right instance ordering. The
graph construction works the same way except that now each vertex
represents an access pattern of an instance. Figure 7 shows the
ordered cell instances in a cluster and their corresponding graph.
Finally, the dynamic programming-based optimization selects the best
access pattern per instance to minimize the total cost. To accelerate
the procedure, only up-vias of boundary access points (e.g., for pin
A and pin Z of each instance in Figure 7(a)) are included for DRC.

Fig. 7. Illustration of (a) ordered cell instances and (b) corresponding graph.

IV. EXPERIMENTS

In this section, we present our experimental setup and results.

A. Experimental Setup

We implement our pin access analysis in C++ and integrate our
framework with the open-source TritonRoute [20]. We perform all our
experiments using the official ISPD-2018 initial detailed routing con-
test benchmark suite [7]. Table I summarizes the testcase information.

TABLE I
TESTCASE INFORMATION [7].

Benchmark #Standard cell #Macro cell #Net #IO pin #Layer Die size Tech. node
ispd18 test1 8879 0 3153 0 9 0.20×0.19mm2 45nm
ispd18 test2 35913 0 36834 1211 9 0.65×0.57mm2 45nm
ispd18 test3 35973 4 36700 1211 9 0.99×0.70mm2 45nm
ispd18 test4 72094 0 72401 1211 9 0.89×0.61mm2 32nm
ispd18 test5 71954 0 72394 1211 9 0.93×0.92mm2 32nm
ispd18 test6 107919 0 107701 1211 9 0.86×0.53mm2 32nm
ispd18 test7 179865 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test8 191987 16 179863 1211 9 1.36×1.33mm2 32nm
ispd18 test9 192911 0 178857 1211 9 0.91×0.78mm2 32nm
ispd18 test10 290386 0 182000 1211 9 0.91×0.87mm2 32nm

TABLE II
RESULTS FOR EXPERIMENT 1: COMPARISON BETWEEN THE ORIGINAL TRITONROUTE (TRRTE) AND OUR PIN ACCESS ANALYSIS FRAMEWORK (PAAF)

FOR ALL UNIQUE INSTANCE PINS (WITHOUT CONSIDERING INTRA-CELL OR INTER-CELL PIN ACCESS COMPATIBILITY) IN TERMS OF TOTAL #ACCESS
POINTS GENERATED (TOTAL #APS), #ACCESS POINTS WITH DRCS (#DIRTY APS), AND RUNTIME.

Benchmark #Unique Total #APs #Dirty APs Runtime (s)
Inst TrRte PAAF TrRte PAAF TrRte PAAF

ispd18 test1 182 2320 3102 0 0 4 2
ispd18 test2 222 3638 4867 1 0 8 4
ispd18 test3 227 3672 4970 1 0 8 4
ispd18 test4 2725 98220 99356 416 0 120 63
ispd18 test5 2733 76290 80027 385 0 142 71
ispd18 test6 2886 84012 87876 469 0 163 78
ispd18 test7 148 3982 4152 4 0 7 3
ispd18 test8 414 11814 12316 10 0 20 12
ispd18 test9 404 11832 12342 12 0 21 11

ispd18 test10 426 11749 12254 12 0 20 13

These testcases are real industry designs with up to 290K standard
cells in two technology nodes. We note that these testcases use real
industry LEF-based design rule syntax, which is much more realistic
than the testcases used in previous works [11][13]. Currently, no pin
access framework targets the ISPD-2018 benchmark suite. To our best
knowledge, no pin access framework has ever demonstrated enough
robustness and scalability in publicly accessible, large benchmark
testcases. Thus, we compare our work with the pin access framework
from the latest release of the open-source TritonRoute v0.0.6.0 [19].
Furthermore, to enable a broader horizontal comparison to other
frameworks, we also make necessary improvements to TritonRoute
in addition to the integration of pin access analysis. We compare final
routed designs to the best known academic detailed router – Dr. CU
2.0 [5]. All our experiments are performed using a Xeon 2.6GHz
server in single-threaded mode. We perform three experiments.
• Experiment 1: We compare the quality of access points for

all unique instance pins (without consideration of intra-cell or
inter-cell pin access compatibility) from this work with that from
TritonRoute v0.0.6.0.

• Experiment 2: We compare the quality of access points for
all instance pins (with consideration of intra-cell and inter-cell
pin compatibility) from this work with that from TritonRoute
v0.0.6.0.

• Experiment 3: By integrating our framework with the open-
source TritonRoute and making additional improvements, we
enable a preliminary comparison of pin accesses from the final
routed design, and also of the final routed #DRCs, between
the original TritonRoute, the best known published result from
Dr. CU 2.0 [5][17], and our pin access analysis framework.
We further demonstrate the capability to extend our PAAF into
14nm and below nodes.

B. Experimental Results

Experiment 1. Table II shows the experimental results that assess
the quality of access points for all unique instance pins, between the
original TritonRoute (TrRte) and our pin access analysis framework

(PAAF). This experiment only evaluates the quality of each access
point, but does not consider intra-cell or inter-cell pin access compat-
ibility. Total #APs means the total number of access points generated.
#Dirty APs means #access points with DRCs. Ideally, a robust pin
access point generation methodology should not generate any access
points with DRCs. In ispd18 test6, with nearly 3K unique instances,
our method generates 90K access points, all DRC-clean, within 80
seconds in single-threaded mode. Overall, our method generates only
DRC-clean access points, while the original TritonRoute produces
several hundreds of dirty access points. Also, our method generates
more access points, while consuming less runtime.

Experiment 2. Table III shows the experimental results that assess
the quality of access points for all instance pins, between the original
TritonRoute (TrRte), and our pin access analysis framework (PAAF).
We have two setups for PAAF. The first setup is “without BCA”
(w/o BCA): we generate only one access pattern per unique instance,
hence the access pattern is not boundary conflict-aware and there
could be inter-cell pin accessibility issues. The second setup is “with
BCA” (w/ BCA): we generate up to three access patterns per unique
instance.2 Total #pins means the total number of all instance pins
(with net attached). Since all of these pins must be connected in
detailed routing, we need a DRC-clean access point per pin. #Failed
pins means the number of pins without a DRC-clean access point. We
can see that the original TritonRoute fails to provide legal pin access
for thousands of instance pins, while our PAAF can generate intra-
cell and inter-cell DRC-clean pin access. For up to 790K instance
pins, PAAF takes less than a minute of runtime in single-threaded
mode. Note that runtime is one of the most important aspects of
a pin access analysis framework in physical design, especially for
support of placement optimizations (i.e., detailed placement, sizing,
buffering), where frequent changes in placement require a tremendous
amount of inter-cell pin access analysis.

2For the testcases we use in our experiments, three access patterns per
unique instance are enough to enable selection of mutually DRC-clean access
patterns for all instances.

TABLE III
RESULTS FOR EXPERIMENT 2: COMPARISON BETWEEN THE ORIGINAL TRITONROUTE (TRRTE) AND OUR PIN ACCESS ANALYSIS FRAMEWORK (PAAF)

FOR ALL INSTANCE PINS (CONSIDERING INTRA-CELL AND INTER-CELL PIN ACCESS COMPATIBILITY) IN TERMS OF #PINS WITHOUT A DRC-CLEAN
ACCESS POINT (#FAILED PINS), AND RUNTIME. TOTAL #PINS MEANS THE TOTAL NUMBER OF ALL INSTANCE PINS (WITH NET ATTACHED).

Benchmark Total #Pins
#Failed Pins Runtime (s)

TrRte PAAF TrRte PAAF
w/o BCA w/ BCA w/o BCA w/ BCA

ispd18 test1 17203 31 0 0 4 3 5
ispd18 test2 157990 665 0 0 7 5 8
ispd18 test3 158110 663 0 0 7 5 7
ispd18 test4 316652 1305 0 0 95 84 94
ispd18 test5 316220 2529 80 0 107 85 98
ispd18 test6 474300 4048 0 0 113 96 121
ispd18 test7 790550 7816 0 0 8 7 23
ispd18 test8 790550 7816 0 0 20 17 39
ispd18 test9 790550 7816 0 0 20 17 38

ispd18 test10 790550 7816 0 0 21 18 49

Experiment 3. By integrating our framework with the open-source
TritonRoute v0.0.6.0 [19] (the latest release as this paper is finalized)
and making additional improvements, we show a preliminary result of
pin accesses from the final routed design, and also of the #DRCs for
the final routed design, for testcase ispd18 test5. Figure 8 compares
two pin accesses from the final routed design, between Dr. CU 2.0 and
our PAAF. As noted above, PAAF is capable of generating DRC-clean
pin access for all instance pins. By using our robust PAAF, we surpass
the best known academic detailed routing result in terms of #DRCs.
The current best known result comes from Dr. CU 2.0 [5][17], with
755 DRCs. By contrast, we complete detailed routing with only two
DRCs, and with no pin access issues remaining.

Fig. 8. Comparison of pin access between Dr. CU 2.0 and PAAF: (a) Dr.
CU 2.0 (Case 1), (b) PAAF (Case 1), (c) Dr. CU 2.0 (Case 2), and (d) PAAF
(Case 2). Dashed red boxes are DRCs. Testcase: ispd18 test5.

We also perform a preliminary study on pin accessibility using
a commercial 14nm library. We perform our experiments using
the AES testcase from OpenCores [18] (20K instances, 779 unique
instances). Our preliminary study shows that our PAAF successfully
generates and selects DRC-clean access points for all 57K instance
pins in a runtime of 9 seconds. An example of standard cell pin
accesses is shown in Figure 9.

V. CONCLUSIONS

In this work, we present a multi-level, standard cell- and instance-
based, complete, robust, scalable and design rule-aware pin access
analysis framework. We describe our robust pin-based access point
generation, boundary conflict-aware access pattern generation and
cluster-based access pattern selection based on dynamic program-
ming. We achieve 100% DRC-clean pin access and demonstrate
superior final detailed routing solution compared to the best known

Fig. 9. Illustration of pin accesses in 14nm. Note that off-track pin access
is enabled automatically in PAAF.

results using the ISPD-2018 initial detailed routing benchmark suite.
Our ongoing work includes: (i) support of multi-height cells in ad-
vanced FinFET technology nodes; and (ii) support of multi-threading
to further reduce runtime.

REFERENCES

[1] C. J. Alpert, Z. Li, M. D. Moffitt, G.-J. Nam, J. A. Roy and G. Tellez, “What
Makes a Design Difficult to Route”, Proc. ISPD, 2010, pp. 7-12.

[2] Y. Ding, C. Chu and W.-K. Mak, “Pin Accessibility-Driven Detailed Placement
Refinement”, Proc. ISPD, 2017, pp. 133-140.

[3] S. Dolgov, A. Volkov, L. Wang and B. Xu, “2019 CAD Contest: LEF/DEF Based
Global Routing” Proc. ICCAD, 2019, to appear.

[4] A. B. Kahng, L. Wang and B. Xu, “TritonRoute: An Initial Detailed Router for
Advanced VLSI Technologies”, Proc. ICCAD, 2018, pp. 81:1-81:8.

[5] H. Li, G. Chen, B. Jiang, J. Chen and E. F. Y. Young, “Dr. CU 2.0: A
Scalable Detailed Routing Framework with Correct-by-Construction Design Rule
Satisfaction”, Proc. ICCAD, 2019, to appear.

[6] W.-H. Liu, C.-K. Koh and Y.-L. Li, “Optimization of Placement Solutions for
Routability”, Proc. DAC, 2013, pp.153:1-153:9.

[7] S. Mantik, G. Posser, W.-K. Chow, Y. Ding and W.-H. Liu, “ISPD2018 Initial
Detailed Routing Contest and Benchmarks”, Proc. ISPD, 2018, pp. 140-143.

[8] M. M. Ozdal, “Detailed-Routing Algorithms for Dense Pin Clusters in Integrated
Circuits”, IEEE Trans. on CAD 28(3) (2009), pp. 340-349.

[9] X. Qiu and M. Marek-Sadowska, “Can Pin Access Limit the Footprint Scaling?”,
Proc. DAC, 2012, pp. 1100-1106.

[10] J. Seo, J. Jung, S. Kim and Y. Shin, “Pin Accessibility-Driven Cell Layout Redesign
and Placement Optimization”, Proc. DAC, 2017, pp. 54:1-54:6.

[11] X. Xu, B. Cline, G. Yeric, B. Yu and D. Z. Pan, “Self-Aligned Double Pattering
Aware Pin Access and Standard Cell Layout Co-Optimization”, IEEE Trans. on
CAD 34(5) (2015), pp. 699-712.

[12] X. Xu, Y. Lin, V. Livramento and D. Z. Pan, “Concurrent Pin Access Optimization
for Unidirectional Routing”, Proc. DAC, 2017, pp. 20:1-20:6.

[13] X. Xu, B. Yu, J.-R. Gao, C.-L. Hsu and D. Z. Pan, “PARR: Pin Access Planning
and Regular Routing for Self-Aligned Double Patterning”, ACM Trans. on DAES
21(3) (2016), article 42.

[14] W. Ye, B. Yu, D. Z. Pan, Y.-C. Ban and L. Liebmann, “Standard Cell Layout
Regularity and Pin Access Optimization Considering Middle-of-Line”, Proc.
GLSVLSI, 2015, pp. 289-294.

[15] Y. Zhang and C. Chu, “CROP: Fast and Effective Congestion Refinement of
Placement”, Proc. ICCAD, 2009, pp. 344-350.

[16] Cadence Innovus User Guide, http://www.cadence.com
[17] Dr. CU 2.0, https://github.com/cuhk-eda/dr-cu/releases/tag/v4.1.1
[18] OpenCores: Open-Source IP-Cores, http://www.opencores.org
[19] TritonRoute Version 0.0.6.0, https://github.com/The-OpenROAD-Project/

TritonRoute/releases/tag/0.0.6.0
[20] The-OpenROAD-Project/TritonRoute: UCSD Detailed Router, https://github.com/

The-OpenROAD-Project/TritonRoute/

