
IncPIRD: Fast Learning-Based Prediction of Incremental IR Drop
Chia-Tung Ho2 and Andrew B. Kahng1,2

1CSE and 2ECE Departments, UC San Diego, La Jolla, CA, USA
{c2ho, abk}@ucsd.edu

Abstract—The on-chip power delivery network (PDN) is an essential
element of physical implementation that strongly determines function-
ality, quality and reliability of a given IC product. To meet IR drop
requirements, a denser power grid is desirable. On the other hand, to
meet timing and layout density requirements, a sparser power grid leaves
more resources for routing. Often, numerous time-consuming iterations
among PDN design, IR analysis, and floorplanning or placement are
needed during the physical implementation of modern high-performance
designs. Thus, fast and accurate incremental IR prediction has emerged as
a critical need, as it can potentially reduce the turnaround time between
design and analysis and help improve design convergence. In this work,
we apply superposition and partitioning techniques to extract relevant
electrical features of a given SOC floorplan and PDN. We then use a
machine learning model to predict the updated static IR drop for each
power node (having tap current source attached) in the design throughout
a series of changes (PDN modification, block movement, block power
change, power pad movement) to the SOC floorplan, without needing
to rerun a golden IR drop tool. We develop our model with more than
150 generated SOC floorplans with different PDN structures in 28nm
foundry technology. Compared to an industry-leading, golden IR drop
signoff tool (ANSYS RedHawk), we achieve 20-1000× speedup with less
than 1mV average absolute error and approximately 5mV maximum
absolute error.

I. INTRODUCTION

The on-chip PDN is a key determinant of modern SOC product
quality, as it affects both performance (IR drop, timing) as well
as area and cost (routability, layout density, metal stack). Today,
SOC physical implementation requires many iterations among PDN
design, IR analysis, and floorplan/placement updates. Hence, there
is a need for fast and accurate incremental IR prediction to reduce
turnaround times in the design-analysis loop, and to help improve
design convergence. This need has been well-noted in the research
literature, e.g., [1] proposes an incremental IR drop analysis flow for
use in a physical synthesis iteration, and [2] [3] study the conflict
between PDN robustness and routability.

Fig. 1: Illustration of a typical on-chip PDN structure.

Figure 1 illustrates a typical on-chip PDN structure. Power pads
connect to the high (upper-most) metal layers and deliver power to
cells through intermediate metal layers and lower metal layers. Often,
the higher layers are used with maximum density to reduce IR drop;
lower metal layers’ pitch is determined by the standard-cell height.
Thus, track usage of intermediate metal layers becomes a major lever
to satisfy both IR drop and routability constraints. Note that our work
assumes a locality of power integrity analysis that is a consequence
of the flip-chip packaging that is used for modern high-performance
designs – i.e., affording high density of (C4 bump) power/ground
connections in the core region of the SOC.

Modified nodal analysis (MNA) [25] gives the well-known PDN
circuit network equation

Gx = b (1)

where G is an M×M system matrix, x is an M×1 nodal voltage and
current variable vector, b is an M×1 vector of current and voltage
source values, and M is as defined in Table I below. The PDN circuit
network equation will change after incremental modification of PDN
and/or floorplan layout. With a change or move of macros/cell blocks
in the floorplan, which will change locations and values of tap current
sources, the equation becomes

Gx = b + ∆b (2)

where x denotes the voltage of each node after modification. When
the PDN structure or power pad locations are modified, the equation
becomes

Gx = b (3)
where G denotes the new system matrix after PDN structure or power
pad modifications.1

Incremental Prediction of IR Drop (IncPIRD) Problem State-
ment. Traditional layout-based techniques for fixing IR drop viola-
tions include (i) macro/cell block movement, (ii) macro/cell block
change, (iii) modification of the PDN to have a denser grid, and (iv)
adding/moving power pads. On the other hand, designers can reduce
(overdesigned) PDN resources by replacing with sparser PDN grids,
removing power pads, etc. We therefore study the following problem
of Incremental Prediction of IR Drop (IncPIRD).2

Given: LEF, DEF, current distribution, ANSYS RedHawk (RH)
v15.1 [28] technology file, RH IR drop file, and RH power pad file
of floorplan design after modifications.
Train: Extract features from input and train a learning-based model
to predict static IR drop.
Output: Static IR drop of each power node that has tap current source
attached.
Contributions of This Paper. We present IncPIRD, a learning-based
approach to address the incremental IR drop prediction problem.
We use KVL, KCL, branch equations [25], and superposition to
efficiently extract relevant electrical features. Along with layout
features (PDN structure and chip/block attributes), these enable
prediction of static IR drop through incremental changes to the SOC
floorplan, without needing to rerun the golden IR drop tool. Our main
contributions are as follows.
• Our IncPIRD methodology can handle macro/cell block mod-

ification, PDN structure modification, and power pads modifi-
cation, and can be used across different block/chip sizes and
designs without retraining the model.

• We use KVL, KCL, branch equations and superposition to
efficiently extract relevant electrical modeling features. Since we
capture the IR drop in view of circuit analysis, our model can
be used on different designs with different current distributions,
power pad locations and PDN structures without retraining as
long as the floorplan design’s extracted circuit remains within a
range that is determined by the training set.

1For example, if M3 stripes are removed from the PDN, there are fewer
crossovers/vias between M3 and neighboring-layer stripes. Therefore, there
are fewer KCL, KVL, and branch equations. Both N and M decrease, and
the values in G change with changed conductance between power nodes.
Similarly, if the designer removes power pads, both Npad and M decrease.

2In what follows, we use the ANSYS RedHawk tool [28] as a represen-
tative “golden”, signoff-quality power integrity analysis tool. Our proposed
methodology is applicable in conjunction with any power integrity analysis
tool for which users seek to reduce incremental analysis runtimes.

• The IncPIRD methodology offers scalability since the model
input feature set is independent of design size, power distribution
and cell library for a fixed technology node and subset of metal
layers used for the PDN.

• We propose a criterion by which users can automatically decide
when to launch new golden tool runs to update a trained
model. This criterion is based on the delta between new input
features and the feature training range of the current model (see
Section IV-D and Figure 3 below).

The remainder of this paper is organized as follows. Section II
reviews related works. Section III presents our flow, KCL and KVL-
based feature extraction methodology, and the IncPIRD prediction
model. Section IV describes experimental confirmations. We con-
clude in Section V.

II. RELATED PREVIOUS WORKS

We summarize two key threads of relevant works within the large
literature on IR drop analysis and mitigation.
Simulation-Based IR Analysis Works. Numerous IR drop analysis
methods span hierarchical methods [4], Krylov-subspace methods [5]
[6], multi-grid techniques [7] [8] [9] [10], random walk algo-
rithms [11], and vectorless verification methods [12]. While these
can perform well on power grid analysis, they may reanalyze a
modified design as a whole even when the power grid has been
modified only locally. Incremental methods that take advantage of
known information to simulate or verify an updated power grid have
been proposed in [13] [14] [15] [16]. The authors of [13] [14] [15]
use sparse recovery and orthogonal matching pursuit to reduce the
dimensionality of the incremental IR drop problem. However, runtime
complexity is highly dependent on the number of changed regions; if
the design is changed significantly, runtime complexity is similar to
that of performing from-scratch power grid simulation on the entire
design.

Compared to previous IR drop simulation methods, our IncPIRD
approach can directly and quickly predict IR drop at each instance
node without solving Equation (1) for the entire system. Furthermore,
IncPIRD can efficiently predict updated IR drop values even when
significant PDN structure modifications are made, such as changing
the pitch of PDN structure (note that a small change in PDN stripe
pitches can have a large impact on the dimension of G).
Machine Learning-Based (Incremental) IR Estimation Works.
Machine learning-based methods have been used in recent works
on design-stage IR drop classification or prediction. A fast power
integrity classifier is proposed in [17] to detect IR/EM hotspots.
However, it does not provide the hotspot location or the worst IR
value, both of which may be needed in the context of PDN design.
ECO-based dynamic IR drop prediction methods are proposed in [18]
and [19] to reduce analysis turnaround time for ECO steps involving
cell location changes. The model in [18] requires retraining for
different designs, and its error increases with the number of ECOs.
[19] uses a regional model to predict dynamic IR drop, with more
than 10× speedup (at the cost of analysis error) compared to a leading
industry tool.

In contrast to the previous machine learning-based methods, our
(IncPIRD) work handles layout modifications to macro/cell block
locations, PDN structure, and power pads. It can also be used across
different block/chip sizes and designs without model retraining.
Thus, for incremental IR analysis, IncPIRD makes progress toward
combining the flexibility of simulation-based methods (e.g., to handle
larger ECOs than cell placement changes) with the speedups and
scalability of machine learning-based methods.

III. INCREMENTAL IR DROP PREDICTION

We now describe specifics of our IncPIRD prediction methodology:
(i) overall modeling flow, (ii) methodology for feature extraction, (iii)
model input features, (iv) complexity analysis of feature extraction,
and (v) use of XGBoost for modeling.

Fig. 2: Left: Illustration of partitions in the PDN. Black dashed lines
delimit the four partitions. Blue dashed lines delimit the current load
windows CW1 and CW3 of Partitions 1 and 3. Note that a given
partition’s current load window has overlaps with other partitions’
current load windows. Purple dots indicate power pads, and red dots
represent tap current sources. Right: Power distribution map of a
generated design from RedHawk.
ML-Based Modeling Flow. Figure 3 shows our proposed training
and prediction flows. In the training phase, we generate different PDN
structures, power pad locations, current distributions, and chip/block
sizes with a foundry 28nm technology in Cadence Innovus Im-
plementation System v17.1 [29].3 Layout including power/ground
networks is output in DEF format. We then run IR drop simulation
in the golden RH tool; IR drop of each node and current distribution
are used to train our model.

In the prediction phase, we first input DEF, LEF, RH technology
file, RH GSR (global system requirements) file, and RH power pad
and current distribution files [28] to build an initial database. In our
envisioned usage scenario, a designer will make modifications to the
PDN or macro/cell block (i.e., to fix IR violations). IncPIRD will then
extract the input features and automatically check whether its model
is up-to-date with respect to the feature constraints in Equations
(10) and (11) (see Section IV.D below). If the input features satisfy
the constraints, the IR drop value of every power node (having tap
current source attached) is predicted with the model. Otherwise, we
export modified DEF and run RH and update the model with the
design data. If IR violations remain, the designer will perform another
round of incremental fixing and iterate the prediction flow again.
In consideration of continuous learning methodology [20] [30], we
also propose running RH to update the model whenever a counter
of incremental modifications exceeds max_iter. Terminologies and
notations used in this paper are given in Table I.
Methodology of Extracting Electrical Input Features. To exploit
the spatial locality characteristics of (flip-chip) power grids [21], we
divide the PDN into several smaller partitions. In Figure 2 (left),
black dashed lines show four partitions and blue dashed lines show
two current load windows CW1 and CW3 of Partitions 1 and 3. The
current load window of each partition overlaps with other partitions’
current load windows. Larger and overlapped current load windows
are used to accurately extract the pulldown component, PCdown, on
boundary nodes.4 For a given partition, we calculate the PCdown of
internal nodes of the partition by considering the tap current sources
in its current load window.

3We use industry-standard commercial EDA tools as the experimental
testbed for our work. No “benchmarking” of any commercial EDA tool is
intended in, or should be inferred from, the data that we report.

4Throughout this paper, we fix the size of partitions at 500µm × 500µm,
the size of current load windows at 750µm × 750µm, and εth at 0.001.

Fig. 3: Overall flow: (a) Training flow, and (b) Prediction flow.

TABLE I: Terminology and notation table.
Name Description
N Number of power nodes after PDN circuit extraction.
L Number of metal layers used in PDN.
Npad Number of power pads in the design.
Ntap Number of tap current sources in the design.
Ntrack

l Number of tracks on metal layer l.
Ntrack

l,max Maximum number of tracks among L metal layers.
M Dimension of system matrix G, where M = N +Npad.
Ntap

p Number of tap current sources in partition p.
Ntap

p,max Maximum number of tap current sources among partitions.
Ntap

p,w Number of tap current sources in current load
window of partition p.

Ntap
p,w,max Maximum number of tap current sources in current

load window, among all partitions.
Npart Number of partitions.
Nimpacted_part Number of impacted partitions during feature

extraction in Algorithm 1.
CWp Current load window of partition p.
Ik kth tap current source.
Rslk

Effective resistance of shortest path resistance
between power pads and kth tap current source in Equation (4).

Rsn Effective resistance of shortest path resistance
between power pads and node n.

Rnlk
Shortest path resistance value between
kth tap current source and node n.

IRn,k,symbolic Symbolic IR drop value at node n caused by
kth tap current source in Equation (6).

IRn,symbolic Symbolic IR drop value at node n in Equation (7).
PCup Pullup component.
PCdown Pulldown component.
PCup,n Pullup component of node n.
PCdown,n Pulldown component of node n.
PCdown,n,ori Pulldown component of node n before calculation in Algorithm 2.
Listtap A set of tap current sources that need to be considered in

the calculation of PCdown.
Rf Feature training range defined in Section IV-D.
Qimpacted_part A container which stores impacted partitions and

corresponding Listtap’s.

We further limit PCdown extraction error with a threshold
parameter εth. If PCdown on the boundary caused by Listtap of a
given partition exceeds the threshold εth, we say that each neighbor
partition is impacted, i.e., the neighbor partition must consider the
effect of Listtap of the given partition. We calculate and extract
PCup considering all the power pads in design.

Fig. 4: (a) An example of three power pads and node n. (b) An
example of a simplified power mesh structure.

Whenever the designer makes any modification, IncPIRD will
update an internal database and extract the electrical features based
on the type of modification made. (i) If only macro/cell blocks are
modified, then PCdown is updated to consider the difference of tap
current sources, ∆b, in the impacted partitions in Equation (2). (ii)
If PDN structure or power pads are modified, i.e., Rslk , Rsn, and
Rnlk in Equation (7) are changed, then the electrical features must
be recalculated in every partition. Algorithm 1 shows the IncPIRD
prediction flow.

Model Input Features. We now describe the extraction of electrical
features for each PDN node. Besides these electrical features,
chip/block sizes and PDN stripe pitches per layer are also used as
input features.
Pullup Component. The pullup component of node n is the effective
resistance between itself and power pads, Rsn. Figure 4(a) shows an
example with three power pads. Rsn can be obtained by calculating
parallel resistance values from the power pad nodes to n. Here, rp1n,
rp2n, and rp3n are shortest path resistances. With Npad voltage
sources,

PCup,n = Rsn =
1∑Npad

p=0
1

rpn

(4)

Pulldown Component. Based on the superposition methodology, only
one tap current source is turned on at a time. Therefore, the sum of
currents from all the power pads is equal to the turned-on kth tap

Algorithm 1 IncPIRD prediction algorithm.

Procedure IncPIRD
Input: DEF, LEF, RedHawk power pad / technology file, and current distribution

Output: Static IR drop of each power node attached by tap current sources

1: Partition the PDN and create partition database.
2: for each partition p in all partitions do
3: Listtap = tap current sources in CWp;
4: CalcPartitionElectricalFeature(Qimpacted_part,True, Listtap);
5: end for
6: CalcImpactPartitionFeature(Qimpacted_part, True);
7: num_iter = 0
8: Violations = getIRViolations;
9: while Violations > 0 do

10: Enter IncPIRD rudimentary interactive shell;
11: if Macro/Cell block modification has been made then
12: if Add/Move macro/cell block then
13: Update tap current sources location;
14: end if
15: Find set of modified partitions, Pmod;
16: for each partition p in Pmod do
17: Listtap = delta tap current sources in CWp;
18: CalcPartitionElectricalFeature(Qimpacted_part, False, Listtap);
19: end for
20: CalcImpactPartitionFeature(Qimpacted_part, True);
21: end if
22: if PDN structure or power pad modification has been made then
23: if PDN structure change then
24: Update PDN structure database;
25: Distribute tap current sources to new PDN power nodes;
26: end if
27: if power pad change then
28: Update power pad database;
29: end if
30: for each partition p in all partitions do
31: Listtap = tap current sources in CWp;
32: CalcPartitionElectricalFeature(Qimpacted_part,True, Listtap);
33: end for
34: end if
35: if (Equations (10) and (11) satisfied) && (num_iter < max_iter) then
36: Perform model prediction;
37: else
38: Export DEF, LEF, RedHawk GSR file, RedHawk power pad file;
39: Run RH static IR analysis;
40: Update model with new data;
41: end if
42: num_iter++;
43: Violations = getIRViolations;

44: end while

Algorithm 2 Calculation of electrical features in each partition.

Procedure CalcPartitionElectricalFeature
Input: Qimpacted_part, isCalcPullU, Listtap

Output: Qimpacted_part

1: for each power node, n, with tap current source in Listtap attached do
2: if isCalcPullU == True then
3: for each power pad, p, in PowerPadList do
4: Calculate shortest path resistance rpn (Section III);
5: G = G+ 1

rpn

6: end for
7: PCup,n = 1

G
8: end if
9: Restore PCdown,nb,ori

for each boundary node before calculation;
10: for each tap current source, Ik , in Listtap do
11: Calculate Rnlk

;

12: PCdown,n = PCdown,n + Ik(
Rslk

Rsn+Rslk
+Rnlk

)Rsn;

13: end for
14: end for
15: for each boundary node, nb do
16: if PCdown,nb

− PCdown,nb,ori
> εth then

17: pn = neighbor partition of ps;
18: Add pn and Listtap information to Qimpacted_part;
19: end if
20: end for

Algorithm 3 Impacted partition feature calculation.

Procedure CalcImpactPartitionFeature

Input: Qimpacted_part, isCalcPullU

1: while Qimpacted_part is not empty do
2: Pop out partition p and Listtap in Qimpacted_part;
3: Listtap = Listtap excludes tap current sources in CWp;
4: p -> CalcPartitionElectricalFeature(Qimpacted_part, isCalcPullU, Listtap);

5: end while

current source, Ik.
Npad∑
i=0

Ii = Ik (5)

The power grid network with only one turned-on tap current source
could be simplified as shown in Figure 4(b). From KVL and KCL,
the symbolic IR drop of node n in this simplified network could be
derived from Equation (6). Here, the Rslk is calculated with n = lk
in Equation (4).

IRn,k,symbolic = Ik(
Rslk

Rsn +Rslk +Rnlk

)Rsn (6)

By superposition, the symbolic IR drop caused by each tap current
source of node n can be summed as

PCdown,n = IRn,symbolic =

Ntap∑
k=1

Ik(
Rslk

Rsn +Rslk +Rnlk

)Rsn

(7)
Design and Technology Information. The IR drop is closely related to
the technology parameters and power grid design. Sheet resistances
of metal layers are used when we calculate Rslk , Rsn, and Rnlk , and
PDN stripe pitches per metal layer greatly affect the IR drop. Last,
chip/block dimensions affect power density for a given total power
consumption. Hence, these parameters are used as input features of
our model.
Electrical Features of Neighbor Nodes. Due to the locality character-
istics [21] of power grids, a nodal voltage is greatly affected by its
neighbor nodes. Therefore, the PCup and PCdown of neighbor nodes
are used as input features. We choose the neighbor nodes based on
the physical metal direction. For example, if the direction of metal
layer of the targeted power node is horizontal (resp. vertical), the
nodes immediately to its left and right (resp. immediately above and
below) are considered as its neighbor1 and neighbor2, respectively.

In summary, the input features for our model are as listed in
Table II. Our model is independent of power distribution because
we use superposition to extract PCdown. Different cell libraries have
different tap current values of each cell. Our model is independent of
cell libraries because we consider the tap current value to extract
features. Model training with different chip/block sizes enables
our model to handle different layout dimensions. In this way, our
methodology enables model independence from PDN structure, cell
libraries, and chip/block sizes.

TABLE II: Input features for our IR drop prediction model.
Input Feature Description

width Width of the Chip/Block.
length Length of the Chip/Block.

Pitchtop,h Pitch of top horizontal metal layer.
Pitchtop,v Pitch of top vertical metal layer.
Pitchinter,h Pitch of intermediate horizontal metal layer.
Pitchinter,v Pitch of intermediate vertical metal layer.
Pitchlower Pitch of lower metal layer.
PCdown,n Pulldown component at node n.
PCup,n Pullup component at node n.

PCdown,neighbor1 Pulldown component of node n’s Neighbor1.
PCup,neighbor1 Pullup component of node n’s Neighbor1.
PCdown,neighbor2 Pulldown component of node n’s Neighbor2.
PCup,neighbor2 Pullup component of node n’s Neighbor2.

Feature Extraction Complexity Analysis. We now discuss time
complexity of electrical feature extraction considering a design
with Npad power pads, N tap tap current sources, and N power
nodes. We note that Npad�N and N tap�N , because tap current
sources are attached to only the lower metal layers of PDN (recall
Figure 1). After partitioning the PDN, we obtain N tap

p , N tap
p,max,

N tap
p,w , and N tap

p,w,max as defined in Table I. To predict the IR drop
value of each instance, we extract the electrical features of the
power node with tap current source attached. Before calculating the
electrical features, we need to calculate the shortest path resistances.
Here, we use map structure to store tracks of each metal layer;
hence, the complexity to find the via points between two metals
is O(N track

l log(N track
l)). Finding the shortest path between two

nodes has complexity O(
∑L

l=1N
track
l log(N track

l)), where L is the
number of metal layers between these two nodes. Therefore, finding
the shortest path between any two nodes in the PDN has complexity
bound O(LN track

l,max log(N track
l,max)), where N track

l,max�N tap�N .
In more detail: (i) For the PCup, the complexity of calculat-

ing PCup is O(N tapNpad(LN track
l,max(log(N track

l,max))).5 (ii) For the
PCdown, after partitioning the PDN, the complexity of calculat-
ing PCdown is O(NpartN

tap
p,maxN

tap
p,w,max(LN track

l,max log(N track
l,max))).

From superposition, the symbolic IR drop of every power node
with tap current source attached needs to be calculated N tap

p,w

times as shown in Equation (7), and we need to calculate Rnlk

each time. Here, we use the upper bound N tap
p,max and N tap

p,w,max

in the complexity calculation. In general, we can approximate
Nimpacted_part+Npart to Npart with sufficiently large partition
size [21]. As a result, the complexity is multiplied by Npart. (iii) For
design and technology information feature extraction, the complexity
is O(1). In summary, the total complexity of feature extraction is
O((LN track

l,max log(N track
l,max)(NpadN tap+NpartN

tap
p,maxN

tap
p,w,max)),

where Npart�N track
l,max. With fixed partition size, the complexity

grows by (LN track
l,max log(N track

l,max)) times when N track
l,max increases.

Modeling With XGBoost. We use XGBoost [24] as our machine
learning model. XGBoost implements machine learning algorithms
under a gradient boosting framework. The parallel gradient boosted
regression tree (GBRT) achieves state-of-the-art results on many
machine learning problems. A given data set is of form D = (xi, yi),
where (|D| = N tap, xi ∈ Rm, yi ∈ R). Here, N tap is the number
of power nodes having attached tap current sources in the training
set; m is the number of input parameters in Table II; and yi is the
golden IR drop value. In Equation (8), the predicted IR drop, ŷi, is
an ensemble of K additive functions

ŷi =

K∑
k=1

fk(xi), fk ∈ F (8)

where F is the space of regression trees. Our goal is to minimize

L(φ) =
∑
i

l(yi, ŷi) +
∑
k

Ω(fk) (9)

where each l(yi, ŷi) is a differentiable convex function that measures
the difference between the predicted IR drop ŷi, and the golden
IR drop yi. (In our work, we seek to minimize mean absolute
error.) Ω is a function that penalizes the complexity of the model.
We use grid search and 10-fold cross-validation [23] in-built to
XGBoost to determine the values of hyperparameters, such as
min_child_weight, max_depth, subsample, colsample_bytree,
and eta.

5For every power node with tap current source attached, we must calculate
the shortest path resistance from the power node to each power pad and
calculate the Rsn.

TABLE III: Training data information.
Technology 28nm foundry technology
Package Flip Chip
Chip/Block Size 6000µm− 30000µm
Power 10W − 20W
Intermediate Metal Layer Track Usage 10%− 20%
Supply Voltage 1V
Power Pad Pitch 250µm− 1000µm [22] [31]
Max Number of Instances 756850

TABLE IV: Design information.
Name # of Nodes Total Power (W) # of tap current sources

Design1 5.4 million 10.8756 95250
Design2 9.6 million 14.3402 263950
Design3 17 million 19.2701 481150
Design4 27 million 24.8753 742300
Design5 10.6 million 14.3485 182900

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement our work in C++ with LEF/DEF reader/writer
parsers [27] and OpenMP [26]. All experiments are performed on
a 2.6GHz Intel Xeon Dual-CPU server with 256GB RAM.

Table III shows the information of generated SOC floorplan
designs. We generate 150 SOC floorplan designs with different power
distributions, PDN structures, and power pad pitches to train our
model. In Figure 2 (right) depicts one of the SOC floorplan designs
generated with nonuniform power distribution. The training flow is
as shown in Figure 3. First, we split the generated data to 80%
training data and 20% testing data. Second, we use 10-fold cross-
validation [23] for setting the parameters of our model. Third, we split
the 80% training data such that 64% of original data is used for model
training and 16% of original data is used for model validation. The
total runtime to extract input features from generated SOC floorplan
designs and to train the model is around 2.5 hours. However, running
RedHawk to obtain the golden IR for training for a given SOC
floorplan design takes more than 12 hours.

B. Experiment 1: Model Accuracy

Figures 5(a) and (b) show predicted IR drop values versus golden
IR drop values for training and testing sets. The solid blue line
in the middle indicates a perfect correlation between golden IR
drop and predicted IR drop. The upper and lower green and black
solid lines are 2mV and 5mV away from the solid blue line,
respectively. Figure 5(c) shows that errors of predicted IR drop in
training and testing sets are less than 5mV . The mean average error
is -4.26 × 10−3mV , with standard deviation of 0.52mV (hence,
99.7% of predicted IR drop values are within the 3-sigma range of
+/-1.5mV).

C. Experiment 2: Incremental IR Prediction

For each of Design1 to Design4 in Table IV, we perform one
incremental modification and validate the predicted IR drop using
the golden IR drop tool. We separately perform modifications of
macro and cell blocks, power pads, and intermediate metal layer
track usage. Table V reports average absolute error eavg , maximum
absolute error emax, absolute worst IR (WIR) error eWIR, relative
absolute WIR error eWIR,rel, feature extraction time tfx, and
prediction time tpred. The delta power of changed region (for
modifications of macro and cell blocks), delta track usage (for
modification of metal layer usage), and power pad modification are
shown in the table’s Modifications columns.

We see from Table V that our method achieves 22 to 919× speedup
compared with the golden IR tool, even as eavg is less than 1mV and
emax is 5.07mV . IncPIRD’s fast runtimes are further advantaged in
that the tool does not need to read the input files again after designers

TABLE V: Incremental modification table.
PDN info Modifications RedHawk Our Proposed Method (IncPIRD) Speedup

Name ∆Powerregion ∆Track Usage Power Pad Runtime WIR tfx tpred eavg emax eWIR eWIR,rel RedHawk
(%) (mV) (%) Modification (sec) (mV) (sec) (sec) (mV) (mV) (mV) (%) (×)

Design1 272 20.0 - - 308 25 0.11 0.28 0.55 3.94 0.57 2.3 787
- - V 308 25 5.76 0.27 0.32 2.51 0.45 1.9 51
- 5 - 370 22 4.98 0.38 0.31 2.47 0.47 2.1 69

Design2 200 50.0 - 562 24 0.75 0.55 0.29 3.40 0.44 1.8 432
- - V 562 24 24.11 0.56 0.28 3.25 0.44 1.8 22
- -10 - 473 21 10.13 0.34 0.45 3.70 1.40 6.7 45

Design3 400 23.4 - - 2021 27 0.48 1.72 0.34 4.16 0.32 1.2 919
- - V 2021 26 48.84 2.26 0.33 5.07 0.12 0.5 40
- -10 - 1489 31 32.65 1.42 0.39 4.07 1.13 3.7 44

Design4 500 76.9 - - 3273 21 0.70 3.34 0.27 3.04 0.41 2.0 810
- - V 3273 19 72.94 3.01 0.27 3.84 0.53 2.7 43
- -10 - 2653 22 52.10 1.87 0.29 3.90 1.27 5.9 49

Fig. 5: Predicted IR drop versus golden IR drop of (a) training set and (b) testing set, along with (c) error distribution.

Fig. 6: (a) Predicted IR drop after modifications and original golden IR drop versus golden IR drop after modifications of Design1 in Table V.
(b) Golden IR drop map versus predicted IR drop map of lower metal layer (M2) after the 4 modifications in Table VI.

TABLE VI: Results from an example chain incremental modification.
Moves RedHawk Proposed Method Speedup

Runtime WIR tfx tpred eavg emax eWIR eWIR,rel RedHawk
(sec) (mV) (sec) (sec) (mV) (mV) (mV) (%) (×)

1st Move 640 53 0.20 0.43 0.23 1.93 0.67 3.76 1015
2nd Move 634 53 0.19 0.38 0.23 1.93 0.67 3.76 1112
3rd Move 638 52 8.68 0.35 0.23 2.12 0.04 0.24 71
4th Move 2033 48.8 42.57 0.68 0.25 2.37 0.80 5.60 47

perform layout modifications. The runtimes we report for RedHawk
include parsing and static IR solving time.6

Figure 6(a) shows for Design1: (i) the original golden IR drop
values, (ii) the IncPIRD-predicted IR drop values after power pad
modification, and (iii) the golden IR drop values after power pad
modification. We observe that even though the difference between
original golden IR and golden IR after modification can exceed
10mV , our model successfully predicts the IR drop after addition
of a power pad near one of the original IR hotspots.

6Note that RedHawk runtimes do not change with modifications of macro
and cell blocks, or of power pads; this is because the number of power nodes
in the design does not change significantly. IncPIRD has better speedup with
modification of macros/cell blocks because we just need to update features in
the affected region.

Table VI summarizes prediction results for chain incremental
modifications of Design5. We perform four modifications in suc-
cession: (i) change the power of one cell block from 10mW to
100mW , (ii) move a macro, (iii) add a power pad, and (iv) use denser
intermediate metal layer. We validate the prediction results after each
of these incremental modifications. After changing the intermediate
metal layer, there are 17 million power nodes. Figure 6(b) shows the
golden IR drop map and predicted IR drop map of lower metal layer
(M2) after the chain of four incremental modifications. (We export
the golden IR drop on M2 from RH and reconstruct the golden IR
map with DEF using python. The predicted IR drop map is also
reconstructed with DEF using python.)
D. Experiment 3: Robustness of Model

We propose a methodology to determine when to update our
model based on the delta of input features between the changed
design and the designs in the training set. This is prudent to have
in our methodology since the accuracy of our model is related
to the diversity of training data. In general, using the current
trained model, W∗, to predict new data, dnew, could be written
as W∗T (dtrain + δ) = ŷnew, where dnew = dtrain + δ.

The prediction error, epred, equals ŷnew − ynew. We have
empirically study how to calibrate a bound on delta of the input

Fig. 7: Prediction error and L∞ norm of feature delta vector (left) with varying power density (Robustness Expt. 1); (middle) with varying
intermediate metal layer track usage (Robustness Expt. 2); and (right) with varying power pad pitch (Robustness Expt. 3).

Fig. 8: Prediction error with different amounts of training data: (left) with varying power density (Robustness Expt. 1); (middle) with varying
intermediate metal layer track usage (Robustness Expt. 2); and (right) with varying power pad pitch (Robustness Expt. 3).

Fig. 9: Left: Golden WIR versus predicted WIR with varying power pad pitch. Middle and right: prediction error of uniform and nonuniform
power distribution test designs, respectively.

features, δbound, which leads to unacceptable epred. (For example,
here we consider 5mV as our threshold for acceptable epred.)
In the experiments that we now describe, we vary power density,
intermediate metal layer track usage, and power pad pitch until the
maximum epred exceeds the threshold. From this, we can obtain a
δbound of electrical features.

1) Robustness Experiment 1: We fix the intermediate metal layer
track usage, power pad location, and chip/block size. We vary
only the power, and test the trained model to find the bound
δ1. The power density range is 0.1 to 0.2 in the training set.7

2) Robustness Experiment 2: We fix the power, power pad
location, and chip/block size. We vary only the intermediate
metal layer track usage, and test the trained model to find the
bound δ2. The intermediate metal layer track usage range is
10% to 20% in the training set.

3) Robustness Experiment 3: We fix the power, intermediate
metal layer track usage and chip/block size. We vary only the
power pad pitch, and test the trained model to find the bound
δ3. The power pad pitch range is 250µm to 1000µm in the
training set.

7We change chip/block power with fix chip/block size to vary the power
density. Also, because we only vary power, PCdown is the only changed
electrical feature.

To obtain the delta of features between the changed design and
designs in training set, we first pick the designs that have small
difference on the chip/block size and PDN structure. Then, we find
the range of values for each feature Rf used in the picked designs in
training set. If the input feature of the changed design is within Rf ,
the delta is zero. On the other hand, the delta equals the distance of
the input feature to closest end point of Rf . Given a changed design,
we can obtain feature delta vectors that consist of the delta value of
each power node (having tap current source attached) in the changed
design. We use the L∞ norm of feature delta vectors to determine
δbound when the maximum epred is considered. Figure 7 shows
prediction error and L∞ of feature delta vectors with varying power
density (Robustness Experiment 1), intermediate metal layer track
usage (Robustness Experiment 2), and power pad pitch (Robustness
Experiment 3).

Table VII shows the δbound when the maximum epred first
exceeds 5mV in each experiment. The L∞ of PCdown delta vector
slightly increases between 0.2 to 0.38 power density range then
increases rapidly at >0.38 power density, where the power density is
approximately 2× larger than the largest power density in the training
set. In Robustness Experiment 2, the maximum epred and average
epred remain less than 5mV , even though the delta of Pitchinter,v

and Pitchinter,h become large. We therefore do not find any δ2 from

TABLE VII: Table of robustness δ values.
Robust Expt. 1 Robust Expt. 2 Robust Expt. 3

δ1,PCdown
δ1,PCup δ2,PCdown

δ2,PCup δ3,PCdown
δ3,PCup

0.0025 0 - - 0.00846 0.4375

Robustness Experiment 2.
Figure 9(a) shows the predicted worst IR drop value and golden

worst IR drop value with different power pad pitches (Robustness
Experiment 3). Here, the maximum epred exceeds 20mV ; at the
same time, the predicted worst IR drop of our model still follows the
trend seen with golden IR drop.

Finally, we identify the minimum values of δPCdown and δPCup ,
respectively, seen in Table VII. These induce feature constraints in our
prediction flow, as given in Equations (10) and (11). It is reasonable
in practice to have such constraints on PCup and PCdown, inferred
from Robustness Experiments, since these electrical features are
closely related to IR drop.

Constraint1 : δPCdown < 0.0025 (10)

Constraint2 : δPCup < 0.4375 (11)

In Figure 3, if the electrical features of the changed design do not
satisfy the feature constraints, the model is updated with the changed
design’s data. Users and designers can obtain the feature constraints
of their trained model to decide when to update the model with this
methodology. Last, in Figure 8, we eliminate our training data based
on the power, PDN structure and power pad pitch systematically and
perform the Robustness Experiments. We observe that the error grows
faster when we remove more training data. The error from varying
metal layer track usage (Robustness Experiment 2) does not change
too much because power density and power pad pitch are fixed and
PCdown changes little. We conclude that the accuracy of our model
can be strongly affected by the diversity of the training data.

E. Experiment 4: Model Accuracy on Different Designs
To confirm the ability to predict incremental IR drop in new designs

without retraining our model, we generate 30 different non-uniform
power distribution and 30 uniform power distribution test designs and
test our model, which is trained by non-uniform power distribution
designs from Table III. Table VIII shows the information of generated
SOC floorplan designs for this testing. Figures 9(b) and (c) show the
prediction error of our model across these test designs.

The eavg and emax of uniform power distribution designs are
smaller than those seen for nonuniform power distribution test
designs. Also, we observe that most of the test designs with prediction
error larger than 5mV do not satisfy Equation (10). As a result, our
model is quite robust even when faced with totally different power
distributions and PDN structure designs as long as the new extracted
features satisfy Equations (10) and (11).

TABLE VIII: Attributes of test designs.
Technology 28nm foundry technology
Package Flip Chip
Chip/Block Size 6000µm− 8000µm
Power 5W − 30W
Intermediate Metal Layer Track Usage 5% − 25%
Supply Voltage 1V
Power Pad Pitch 250µm− 500µm

V. CONCLUSIONS
We have proposed a learning-based modeling approach, IncPIRD,

which predicts incremental IR drop at all nodes of an on-chip PDN
based on extracted electrical and structural features. The approach can
handle modifications of macro/cell block locations, PDN structure,
and power pads. In studies with a 28nm FDSOI foundry enablement,
IncPIRD achieves 22-1000X speedup compared to RedHawk with
average error less than 1mV and maximum error around 5mV . In
Section IV-D above, we also propose a methodology and criterion by

which users can automatically know when the current model must
be updated with further runs of a golden IR analysis tool, in order to
continue satisfying a user-specified error limit. Directions of ongoing
work include (i) improvement of accuracy and speed of our method,
and (ii) extension of this work to dynamic voltage drop prediction.

ACKNOWLEDGMENTS

Research at UCSD is supported by Qualcomm, Samsung, NXP
Semiconductors, Mentor Graphics, DARPA (HR0011-18-2-0032),
NSF (CCF-1564302) and the C-DEN center.

REFERENCES
[1] S. Bhattacharya, “Early IR-drop Analysis Flow for Hot-Spot Pre-Emption”,

Master’s Thesis, North Carolina State University EE Dept., 2015.
[2] Y. Cao, J. Li, A. B. Kahng, A. Roy, V. Srinivas and B. Xu, “Learning-Based

Prediction of Package Power Delivery Network Quality”, Proc. ASP-DAC, 2019,
pp. 160-166.

[3] W.-H. Chang, M. C.-T. Chao, L.-D. Chen, Y.-C. Chiu, C.-H. Lin, S.-P. Mu and C.-
H. Tsai, “Generating Routing-Driven Power Distribution Networks with Machine-
Learning Technique”, IEEE Trans. on CAD 36(8) (2017), pp. 1237-1250.

[4] D. Blaauw, R. V. Panda, S. S. Sapatnekar and M. Zhao, “Hierarchical Analysis of
Power Distribution Networks”, IEEE Trans. on CAD 21(2) (2002), pp. 159-168.

[5] C. C.-P. Chen and T.-H. Chen, “Efficient Large-Scale Power Grid Analysis Based
on Preconditioned Krylov-Subspace Iterative Methods”, Proc. DAC, 2001, pp. 559-
562.

[6] S.-C. Chang, C.-H. Chou, C.-R. Lee, Y. Shi, N.-Y. Tsai and H. Yu, “On the
Preconditioner of Conjugate Gradient – A Power Grid Simulation Perspective”,
Proc. ICCAD, 2011, pp. 494-497.

[7] E. Acar, S. R. Nassif and H. Su, “Power Grid Reduction Based on Algebraic
Multigrid Principles”, Proc. DAC, 2003, pp. 109-112.

[8] H.-Y. Chou, P.-Y. Huang and Y.-M. Lee, “An Aggregation-Based Algebraic
Multigrid Method for Power Grid Analysis”, Proc. ISQED, 2007, pp. 159-164.

[9] K. Chen, J. Hu, M. Zhao and C. Zhuo, “Power Grid Analysis and Optimization
Using Algebraic Multigrid”, IEEE Trans. on CAD 27(4) (2008), pp. 738-751.

[10] Y.-C. Cai, Z.-W. Li, J.-L. Yang and Q. Zhou, “PowerRush: A Linear Simulator for
Power Grid”, Proc. ICCAD, 2011, pp. 482-487.

[11] S. R. Nassif, H.-F. Qian and S. S. Sapatnekar, “Power Grid Analysis Using Random
Walks”, IEEE Trans. on CAD 24(8) (2005), pp. 1204-1224.

[12] J. Wang and X. Xiong, “Vectorless Verification of RLC Power Grids with Transient
Current Constraints”, Proc. ICCAD, 2011, pp. 7-10.

[13] X. Li, P. Sun and M. Y. Ting, “Efficient Incremental Analysis of On-Chip Power
Grid via Sparse Approximation”, Proc. DAC, 2011, pp. 676-681.

[14] L.-C. Chang, Y.-T. Chang, Y.-H. Lee and Y.-M. Lee, “A Robust Incremental Power
Grid Analyzer by Macromodeling Approach and Orthogonal Matching Pursuit”,
Proc. ASQED, 2012, pp. 64-70.

[15] C.-T. Ho and Y.-M. Lee, “InTraSim: Incremental Transient Simulation of Power
Grids”, IEEE Trans. on CAD 36(12) (2017), pp. 2052-2065.

[16] Abhishek and F. N. Najm, “Incremental Power Grid Verification”, Proc. DAC,
2012, pp. 151-156.

[17] L. Kagan, H.-C. Zhang and C. Zheng, “Machine Learning Based Fast Power
Integrity Classifier”, arXiv preprint arXiv:1711.03406, 2017.

[18] E. J.-W. Fang, Y.-C. Fang, C.-M. Li, Y.-C. Li, S.-C. Lin, S.-Y. Lin, Y.-C. Liu
and T.-S. Yang, “IR Drop Prediction of ECO-Revised Circuits Using Machine
Learning”, Proc. VLSI Test Symposium, 2018, pp. 1-6.

[19] E. J.-W. Fang, Y.-C. Fang, C.-M. Li, H.-Y. Lin and M.-Y. Sui, “Machine-Learning-
Based Dynamic IR Drop Prediction for ECO”, Proc. ICCAD, 2018, pp. 1-7.

[20] A. Bifet and G. D. F. Morales, “SAMOA: Scalable Advanced Massive Online
Analysis.”, J. Machine Learning Research 16(1) (2015), pp. 149-153.

[21] E. Chiprout, “Fast Flip-Chip Power Grid Analysis via Locality and Grid Shells”,
Proc. ICCAD, 2004, pp. 485-488.

[22] B. H. Meyer, K. Skadron, M. R. Stan, K. Wang and R.-J. Zhang, “Tolerating the
Consequences of Multiple EM-induced C4 Pad Failures”, IEEE Trans. on VLSI
24(6) (2016), pp. 2335-2344.

[23] S. Arlot and A. Celisse, “A Survey of Cross-Validation Procedures for Model
Selection”, Statistics Surveys 4 (2010), pp. 40-79.

[24] T.-Q. Chen and C. Guestrin, “Xgboost: A Scalable Tree Boosting System”, Proc.
ACM Intl. Conf. on Knowledge Discovery and Data Mining, 2016, pp. 786-794.

[25] F. N. Najm, Circuit Simulation, John Wiley & Sons, 2010.
[26] OpenMP Architecture Review Board, “OpenMP Application Program Interface,

Version 4.0”.
[27] LEF/DEF reference 5.7. http://www.si2.org/openeda.si2.org/projects/lefdefnew
[28] RedHawk User Guide, http://www.ansys.com
[29] Cadence Innovus User Guide, http://www.cadence.com
[30] IBM, “Continuous Learning and Model Evaluation”,

https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/ ml-continuous-
learning.html, (2019).

[31] A. Huffman, “50 Micron Pitch Flip Chip Bumping Technology: Process and Appli-
cations”, http://www.ewh.ieee.org/soc/cpmt/presentations/cpmt0609a.pdf, (2006).

