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ABSTRACT
In the late-CMOS era, semiconductor and electronics companies
face severe product schedule and other competitive pressures. In
this context, electronic design automation (EDA)must deliver “design-
based equivalent scaling” to help continue essential industry trajec-
tories. A powerful lever for this will be the use of machine learning
techniques, both inside and “around” design tools and flows. This
paper reviews opportunities for machine learning with a focus
on IC physical implementation. Example applications include (1)
removing unnecessary design and modeling margins through corre-
lation mechanisms, (2) achieving faster design convergence through
predictors of downstream flow outcomes that comprehend both
tools and design instances, and (3) corollaries such as optimizing
the usage of design resources licenses and available schedule. The
paper concludes with open challenges for machine learning in IC
physical design.
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1 CONTEXT: THE LAST SCALING LEVERS
Semiconductor technology scaling is challenged on many fronts
that include pitch scaling, patterning flexibility, wafer processing
cost, interconnect resistance, and variability. The difficulty of contin-
uing Moore’s-Law lateral scaling beyond the foundry 5nm node has
been widely lamented. Scaling boosters (buried interconnects, back-
side power delivery, supervias), next device architectures (VGAA
FETs), ever-improving design-technology co-optimizations, and
use of the vertical dimension (heterogeneous multi-die integration,
monolithic 3D VLSI) all offer potential extensions of the indus-
try’s scaling trajectory. In addition, various “rebooting computing”
paradigms – quantum, approximate, stochastic, adiabatic, neuro-
morphic, etc. – are being actively explored.

No matter how future extensions of semiconductor scaling ma-
terialize, the industry already faces a crisis: design of new products
in advanced nodes costs too much.1 Cost pressures rise when in-
cremental technology and product benefits fall. Transitioning from
40nm to 28nm brought as little as 20% power, performance or area
(PPA) benefit. Today, going from foundry 10nm to 7nm, or from
7nm to 5nm, the benefit is significantly less, and products may
1The 2001 International Technology Roadmap for Semiconductors [40] noted that “cost
of design is the greatest threat to continuation of the semiconductor roadmap”.
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well realize only one – possibly two – of these PPA wins. The 2013
ITRS roadmap [40] highlighted a gap between scaling of available
transistor density and scaling of realizable transistor density. This
design capability gap, which adds to the spotlight on design cost, is
illustrated in Figure 1 [20]. The recent DARPA Intelligent Design
of Electronic Assets (IDEA) [38] program directly calls out today’s
design cost crisis, and seeks a “no human in the loop,” 24-hour
design framework for RTL-to-GDSII layout implementation.

Figure 1: Design Capability Gap [40] [20].

More broadly, the industry faces three intertwined challenges:
cost, quality and predictability. Cost corresponds to engineering
effort, compute effort, and schedule. Quality corresponds to tra-
ditional power, performance and area (PPA) competitive metrics
along with other criteria such as reliability and yield (which also
determines cost). Predictability corresponds to the reliability of the
design schedule, e.g., whether there will be unforeseen floorplan
ECO iterations, whether detailed routing or timing closure flow
stages will have larger than anticipated turnaround time, etc. Prod-
uct quality of results (QOR) must also be predictable. Each of three
challenges implies a corresponding “last lever” for scaling. In other
words, reduction of design cost, improvement of design quality, and
reduction of design schedule (which is the flip side of predictability;
recall that Moore’s Law is “one week equals one percent”) are are
all forms of design-based equivalent scaling [19] [20] that can ex-
tend availability of leading-edge technology to designers and new
products. A powerful lever for this will be the use of machine learn-
ing (ML) techniques, both inside and “around” electronic design
automation (EDA) tools.

The remainder of this paper reviews opportunities for machine
learning in IC physical implementation. Section 2 reviews exam-
ple ML applications aimed at removing unnecessary design and
modeling margins through new correlation mechanisms. Section 3
reviews applications that seek faster design convergence through
predictors of downstream flow outcomes. Section 4 gives a broader
vision of how ML can help the IC design and EDA fields escape
the current “local minimum” of coevolution in design methodology
and design tools. Section 5 concludes with open challenges for ML
in IC physical design. Since this paper shares its subject matter and
was written contemporaneously with [23], readers are referred to
[23] for additional context.
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2 IMPROVING ANALYSIS CORRELATION
Analysis miscorrelation exists when two different tools return dif-
ferent results for the same analysis task (parasitic extraction, static
timing analysis (STA), etc.) even as they apply the same “laws of
physics” to the same input data. As illustrated in Figure 2, better
accuracy always comes at the cost of more computation. 2 Thus,
miscorrelation between two analysis reports is often the inevitable
consequence of runtime efficiency requirements. For example, sig-
noff timing is too expensive (tool licenses, incremental analysis
speed, loops of timing window convergence, query speed, number
of corners, etc.) to be used within tight optimization loops.

Figure 2: Accuracy-cost tradeoff in analysis.
Miscorrelation forces introduction of design guardbands and/or

pessimism into the flow. For example, if the place-and-route (P&R)
tool’s STA report determines that an endpoint has positive worst
setup slack, while the signoff STA tool determines that the same
endpoint has negative worst slack, an iteration (ECO fixing step)
will be required. On the other hand, if the P&R tool applies pes-
simism to guardband its miscorrelation to the signoff tool, this will
cause unneeded sizing, shielding or VT-swapping operations that
cost area, power and design schedule. Miscorrelation of timing
analyses is particularly harmful: (i) timing closure can consume
up to 60% of design time [12], and (ii) added guardbands not only
worsen power-speed-area tradeoffs [3, 9, 12], but can also lead to
non-convergence of the design.
Signoff Timer Correlation. Correlation to signoff timing is the
most valuable target for ML in back-end design. Improved correla-
tion can give “better accuracy for free” that shifts the cost-accuracy
tradeoff (i.e. achieving the ML impact in Figure 2) and reduces iter-
ations, turnaround time, overdesign, and tool license usage along
the entire path to final design signoff.3 [27] uses a learning-based
approach to fit analytical models of wire slew and delay to estimates
from a signoff STA tool. These models improve accuracy of delay
and slew estimations along with overall timer correlation, such that
fewer invocations of signoff STA are needed during incremental
gate sizing optimization [34]. [16] applies deep learning to model
and correct divergence between different STA tools with respect to
flip-flop setup time, cell arc delay, wire delay, stage delay, and path
slack at timing endpoints. The approach achieves substantial (mul-
tiple stage delays) reductions in miscorrelation. Both a one-time
training methodology using artificial and real circuit topologies, as
well as an incremental training flow during production usage, are
described (Figure 3(a)). [30] achieves accurate (sub-10ps worst-case
error in a foundry 28nm FDSOI technology) prediction of SI-mode
timing slacks based on “cheaper, faster” non-SI mode reports. A
combination of electrical, functional and topological parameters
are used to predict the incremental transition times and arc/path
delays due to SI effects. From this and other works, an apparent
“no-brainer” is to use Hybrid Surrogate Modeling (HSM) [28] to
combine predicted values from multiple ML models into final pre-
dictions (Figure 3(b)).
2The figure’s y-axis shows that the error of the simplest estimates (e.g., “Elmore delay”)
can be viewed as having accuracy of (100 − x )%. The return on investment for new
ML applications would be higher when x is larger.
3Given that miscorrelation equates with margin, it is useful to note [18].

Figure 3: Flow and results for machine learning of STA tool
miscorrelation: (a) [16]; (b) [30]. HSM approaches are de-
scribed in [28] [29].

Next Targets. [23] identifies two near-term extensions in the realm
of timer analysis correlation. (1) PBA from GBA. Timing analysis
pessimism is reduced with path-based analysis (PBA), at the cost of
significantly greater runtime than traditional graph-based analysis
(GBA). In GBA, worst (resp. best) transitions (for max (resp. min)
delay analyses) are propagated at each pin along a timing path,
leading to conservative arrival time estimates. PBA calculates path-
specific transition and arrival times at each pin, reducing pessimism
that can easily exceed a stage delay. Figure 4 shows the frequency
distribution of endpoint slack pessimism in GBA. This pessimism
harms the design flow, e.g., when GBA reports negative slack when
PBA slack is positive, schedule and chip resources are wasted to fix
false timing violations; when both GBA and PBA report negative
slack, there is waste from from over-fixing per the GBA report;
etc. Similar considerations apply to accuracy requirements for pre-
diction of PBA slack itself. (2) Prediction of timing at “missing
corners”. Today’s signoff timing analysis is performed at 200+ cor-
ners, and even P&R and optimization steps of physical design must
satisfy constraints at dozens of corners. [23] [24] note that predic-
tion of STA results for one or more “missing” corners that are not
analyzed, based on the STA reports for corners that are analyzed,
corresponds to matrix completion in ML [6] - and that the outlook
for this ML application is promising. An implicit challenge is to
identify or synthesize the K timing corners that will enable the most
accurate prediction of timing at all N production timing corners.
Product teams can also inform foundries and library teams of these
K corners, so that the corresponding timing libraries can be the
first to be characterized.

Figure 4: Frequency distribution of ((PBA slack) − (GBA
slack)) at endpoints of netcard, 28FDSOI.
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(3) Other analysis correlations. There are numerous other anal-
ysis correlation opportunities for ML. Often, these are linked with
the prediction of tool and flow outcomes discussed below. Examples
include correlation across various “multiphysics” analysis trajec-
tories or loops [7] [22], such as those involving voltage droop or
temperature effects in combination with normal signal integrity-
aware timing. And, prominent among many parasitic estimation
challenges is the prediction of bump inductance as early as possible
in the die-package codesign process [22].

3 MODELS OF TOOLS AND DESIGNS
Convergent, high-quality design requires accurate modeling and
prediction of downstream flow steps and outcomes. Predictive mod-
els (e.g., of wirelength, congestion, timing, etc.) become objectives
or guides for optimizations, via a “modeling stack” that reaches
up to system, architecture, and even project and enterprise levels.
There is an urgent, complementary need for improvedmethods to (i)
identify structural attributes of design instances that determine flow
outcomes, (ii) identify “natural structure” in netlists (cf. [37]), and
(iii) construct synthetic design proxies (“eye charts”) [13][25][39]
to help develop models of tools and flows. More broadly, tool and
flow predictions are needed with increasing “span” across multiple
design steps: the analogy is that we must predict what happens at
the end of a longer and longer rope when the rope is wiggled.

Several examples of predictive models for tools and flows are
reviewed in [23]. [8] demonstrates that learning-based models can
accurately identify routing hotspots in detailed placement, and en-
ablemodel-guided optimization whereby predicted routing hotspots
are taken into account during physical synthesis with predictor-
guided cell spreading. This addresses today’s horrific divergence
between global routing and final detailed routing, which stems from
constraints on placement and pin access. Figure 5 [8] illustrates the
discrepancy between routing hotspots (DRCs) predicted from global
routing congestion, versus actual post-detailed routing DRCs. False
positives in the former mislead routability optimizations and cause
unnecessary iterations back to placement, while false negatives lead
to doomed detailed routing runs. As with all other PD-related ML
efforts thus far, the model of [8] incorporates parameters identified
through domain expertise and multiple phases of model develop-
ment. (Reducing this dependence could be a long-term goal for
the field.) The work of [15] combines several simple predictions of
layout and timing changes to predict clock buffer placement ECOs
that will best improve clock skew variation across multiple timing
corners. The work of [7] uses model parameters extracted from
netlist, netlist sequential graph, floorplan, and constraints to predict
post-P&R timing slacks at embedded memory instance endpoints.
There are two clear takeaways from these experiences. First, there
has been no escape from the need for deep domain knowledge and
multiple, “highly curated” phases of model development. Second,
results provide some optimism for the prospect of tool and flow
prediction, based on models of both tools and design instances.
The three reviewed works give a progression of “longer ropes”: (i)
from global/trial routing through detailed routing (and from ECO
placement through incremental global/trial routing); (ii) from clock
buffer and topology change through automated placement and rout-
ing ECOs, extraction, and timing analysis; and (iii) from netlist and
floorplan information through placement, routing, optimization
and IR drop-aware timing analysis.
Next Targets. [23] identifies two near-term targets for modeling of
tools, flows and designs. (1) Predicting doomed runs. Substantial
effort and schedule can be saved if a “doomed run” is avoided. Fig-
ure 6 shows four example progressions of the number of design rule

Figure 5: Post-route design rule violations (DRCs) predicted
from global routing overflows (left); actual post-route DRCs
(middle); overlay (right).

violations during the (default) 20 iterations of a commercial router.
Unsuccessful runs are those that end up with too many violations
for manual fixing (e.g., the red and orange traces); these should be
identified and terminated after as few iterations as possible. How-
ever, ultimately successful runs (e.g., the green trace) should be
run to completion. Tool logfile data can be viewed as time series to
which hidden Markov models [35] or policy iteration in Markov de-
cision processes (MDPs) [4] may be applied. For the latter, collected
logfiles from previous successful and unsuccessful tool runs can
serve as the basis for automated extraction of a “blackjack strategy
card” for a given tool, where “hit” analogizes to continuing the
tool run for another iteration, and “stay” analogizes to terminating
the tool run.4 (2) Feeding higher-level optimizations. As noted
above, predictive models must provide new objectives and guid-
ance for higher-level optimizations. [1] points out that the scope
for application extends up to project- and enterprise-level schedule
and resource optimizations, with substantial returns possible.

Figure 6: Four example progressions of the number of design
rule violations (shown as a base-2 logarithm) with iterations
of a commercial detailed router.

(3) Other Modeling and Prediction Needs. A first direction for
future tool and flow modeling is to add confidence levels and prob-
abilities to predictions. There is a trajectory of prediction from “can
be achieved” to “will achieve” to “will achieve within X resources
with Y probability distribution”. A second direction is to improve
the link between generation of data for model creation, and the
model validation process. While physical design tools are not em-
bedded in real-time, safety-critical contexts (i.e., impacts of poor
modeling are likely limited to quality, cost and schedule), model
accuracy must be as high as possible, as early as possible. Third,
ML opportunities in physical design are clustered around “linch-
pin” flow steps: floorplan definition, logic synthesis, and handoff
from placement to routing. For the logic synthesis step alone: since
there is exactly one netlist handed off to implementation, what
are the “magic” corners and constraints (including per-endpoint
constraints [10]) that will induce the post-synthesis netlist that
leads to best final implementation? Fourth, additional opportunities
4In the MDP paradigm, the state space used could consist of binned violation count
and change in DRVs since a previous iteration; actions could be “go” or “stop”, and
rewards at each state used to derive the policy could include a small negative reward
for a non-stop state, a large positive reward for termination with low number of DRVs,
etc.
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lie in finding the fixed point of a chicken-egg loop, as noted in [7]
[22]. An example challenge today is to predict the fixed point for
(non-uniform) power distribution and post-P&R layout that meets
signoff constraints with maximum utilization.

4 SOC IMPLEMENTATION: A VISION
Physical design tools and flows today are unpredictable. A root
cause is that many complex heuristics have been accreted upon pre-
vious complex heuristics. Thus, tools have become unpredictable,
particularly when they are forced to try hard. Figure 7 (left), from im-
plementation of the PULPino low-power RISC V core in a foundry
14nm enablement, shows that post-P&R area can change by 6%
when target frequency changes by just 10MHz near the maximum
achievable frequency. Figure 7 (right) illustrates that the statistics
of this noisy tool behavior are Gaussian [32] [17]. Unpredictability
of design implementation results in unpredictability of the design
schedule. However, since product companies must strictly meet
design and tapeout schedules, the design target (PPA)must be guard-
banded, impacting product quality and profitability. Put another
way: (i) our heuristics and tools are chaotic when designers de-
mand best-quality results; and (ii) when designers want predictable
results, they must aim low.

Figure 7: Left: SP&R implementation noise increases with
target design quality. Right: Observed noise is essentially
Gaussian.

SOCDesign: Today. From Figure 7, a genesis of today’s SOC phys-
ical implementation methodology can be seen, as illustrated in Fig-
ure 8(a). The figure illustrates that with unpredictable optimizers,
as well as the perceived loss of “global optimization” of solution
quality when the design problem is partitioned, designers demand
as close to flat methodologies as possible. Hence, today’s prevail-
ing SOC methodology entails having as few large hard macros
as possible. To satisfy this customer requirement in the face of
Moore’s-Law scaling of design complexity, EDA tools must add
more heuristics so as to turn around ever-larger blocks in the same
turnaround time. To recover design quality (e.g., in light of “aim
low”) designers seek as much flexibility as possible in their imple-
mentation tools.5 This leads to poor predictability in design, which
then leads to more iterations, and turnaround times become longer.
Further, the lack of predictability induces larger design guardbands.
As a result of these cause-effect relationships, the achieved design
quality worsens, and the design capability gap grows. This is the
unfortunate tale of coevolution between physical design tools and
physical implementation methodology.
SOC Design: Future. To close the design capability gap, EDA and
IC design together must “flip the arrows” of Figure 8(a). A vision
for future SOC design is suggested in Figure 8(b). The physical
implementation challenge is decomposed into many more small
subproblems, by hyperpartitioning or “extreme partitioning”; this
5A modern P&R tool has thousands of, and even more than ten thousand, command-
option combinations.

reduces the time needed to solve any given subproblem, and smaller
subproblems can be better-solved (see [33]). At the same time, in-
creasing the number of design partitions without undue loss of
global solution quality demands new placement, global routing and
optimization algorithms, as well as fundamentally new RTL parti-
tion and floorplan co-optimization capabilities. Further, reducing
design flexibility by giving designers “freedoms from choice” with
respect to RTL constructs, power distribution, clock distribution,
global buffering, non-default wiring rules, etc. would increase pre-
dictability, leading to fewer iterations (ideally, single-pass design).
Turnaround time is then minimized. Improved predictability and
fewer iterations result in smaller design guardbands. The end result:
improvement of achieved design quality, which shrinks the design
capability gap. As pointed out in [24], achieving this vision of fu-
ture SOC design methodology would improve quality, schedule and
cost – i.e., “the last scaling levers”. A number of new mindsets for
tool developers and design flow engineers are implicit: (i) tools and
flows should never return unexpected results; (ii) designers should
see predictability, not chaos, in their tools and flows; (iii) cloud
deployment and parallel search can help to preserve or improve
achieved quality of results; and (iv) the focus of design-based equiv-
alent scaling is on sustained reduction of design time and design
effort.

Figure 8: SOC design (a) today, and (b) in the future.

5 A ROADMAP FOR ML IN PD
This section describes a “roadmap” for the insertion of ML within
and around physical design flow steps. Four high-level stages of
insertion are described. Then, a list of specific, actionable challenges
is given.

Four Stages of ML Insertion
Insertion of ML into and around physical design algorithms, tools
and flows could be divided into four qualitatively distinct stages.
Figure 9(a) conveys why IC implementation and design resource
requirements are so challenging: there are thousands of potential
options at each flow step (don’t-use cells, timing constraints, pin
placements, density screens, allowed netlist transforms, alternate
commands-options and environment variables, ...), resulting in an
enormous tree of possible flow trajectories. Today, even identify-
ing a “best” among alternative post-synthesis netlists or physical
floorplans to carry forward in the flow is beyond the grasp of hu-
man engineers. Thus, the likely first stage of ML insertion into
IC will entail creating robots: mechanizing and automating (via
expert systems, perhaps) 24/7 replacements for human engineers
that reliably execute a given flow to completion.6 Figure 10 shows
6This goes beyond today’s typical ‘make chip’ flow automation in that real expertise
and human-seeming smarts are captured within the robot engineer. As discussed
below, robots will likely also fill in last-mile or small-market tasks that are unserved
by available tools.
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how primitive “multi-armed bandit” (MAB) sampling can achieve
resource-adaptive commercial synthesis, place and route with no
human involvement – in a “robotic” manner that is distinct from
expert systems approaches. Past tool run outcomes are used by
the MAB to estimate the probability of meeting constraints at dif-
ferent parameter settings; future runs are then scheduled that are
most likely to yield the best outcomes within the given (licenses ×
schedule) design resource budget. The figure shows the evolution
of sampled frequencies versus iterations in the MAB’s “robotic”
execution.

Figure 9: (a) Tree of options at flow steps. (b) Phases of ML
insertion into production IC implementation.

Figure 10: Trajectory of “no-human-in-the-loop” multi-
armed bandit sampling of a commercial SP&R flow, with 40
iterations and 5 concurrent samples (tool runs) per iteration.
Testcase: PULPino core in 14nm foundry technology, with
given power and area constraints. Adapted from [21].

Once a robot engineer exists, the second stage of ML insertion
is to optimally orchestrate N robot engineers that concurrently
search multiple flow trajectories, where N can range from tens
to thousands and is constrained chiefly by compute and license
resources. Here, simple multistart, or depth-first or breadth-first
traversal of the tree of flow options, is hopeless. Rather, it seems
likely that strategies such as “go-with-the-winners” (GWTW) [2]
will be applied. GWTW launches multiple optimization threads, and
periodically identifies and clones the most promising thread while
terminating other threads; see Figure 11(a). The GWTW method
has been applied successfully in, e.g., [26]. Another promising direc-
tion may be adaptive multistart [5] [14], which exploits an inherent
“big valley” structure in optimization cost landscapes to adaptively
identify promising start configurations for iterative optimization.
This is illustrated in Figure 11(b), where better start points for opti-
mization are identified based on the structure of (locally-minimal)
solutions found from previous start points.
The third stagewill integrate prediction of tool- and design-specific
outcomes over longer and longer subflows, so as to more surgically

Figure 11: (a) Go-with-the-winners [2]. (b) Adaptive multi-
start in a “big valley” optimization landscape [5] [14].

prune, terminate, or otherwise not waste design resources on less-
promising flow trajectories. Implicit in the third stage is the im-
provement of predictability and modelability for PD heuristics and
EDA tools. Finally, the fourth stage will span from reinforcement
learning to “intelligence”. At this stage, there are many obstacles.
For example, the latency and unpredictability of IC design tool runs
(we can’t play the IC design game hundreds of millions of times in
a few days, as we would the game of chess), the sparsity of data
(there are millions of cat and dog faces on the web, but not many
10nm layouts), the lack of good evaluation functions, and the huge
space of trajectories for design all look to be difficult challenges.
Hopefully, aspects of the vision for future SOC design given above,
and solutions to the initial challenges given below, will provide
help toward realization of the fourth stage.

Specific Initial Challenges
Following are several specific “initial challenges” for machine learn-
ing in physical design.
“Last-Mile” Robots. A number of today’s time-consuming, error-
prone and even trial-and-error steps in IC implementation should be
automated by systems that systematically search for tool command
sequences, and/or observe and learn from humans. (1) Automation
of manual DRC violation fixing.After routing and optimization, P&R
tools leave DRC violations due to inability to handle latest foundry
rules, unavoidable lack of routing resource in a high-utilization
block, etc. PD engineers today must spread cells and perform rip-
up and reroute manually. (2) Automation of manual timing closure
steps. After routing and optimization, several thousand violations
of maxtrans, setup and hold constraints may exist. PD engineers
today fix these manually at the rate of several hundred per day
per engineer. (3) Placement of memory instances in a P&R block. (4)
Package layout automation. The ML challenge is to be able to assess
the post-routed quality (e.g., with respect to bump inductances)
of floorplan and pin map in die-package codesign. From this will
flow bump/ball placement and placement improvement; a possible
prerequisite is the automation of manual package routing.
Improving Analysis Correlation. (1) Prediction of the worst PBA
path. For a given endpoint, the worst PBA path is not necessarily
among any the top k GBA paths: CCS loads on side fanouts, path
topology and composition, GBA common path pessimism removal,
etc. all affect the rank correlation between GBA and PBA results
of timing paths. (2) Prediction of the worst PBA slack per endpoint,
from GBA analysis. E.g., from all GBA endpoint slacks. (3) Prediction
of timing at “missing corners”. Given timing analysis reports at k
corners, predict reports at N − k corners, where k << N . Similarly:
given a prediction accuracy requirement, find k << N corners, with
k as small as possible, that enable prediction of remaining corners
with the required accuracy. (4) Closing of multiphysics analysis loops.
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I.e., as in [22] [7], with early priorities being vectorless dynamic
IR drop and power-temperature loops. (5) Continued improvement
of timing correlation and estimation as in [16] [30]. Matching the
golden tool earlier in the flow will more accurately drive optimiza-
tions and reduce ECO iterations.
Predictive Models of Tools and Designs. (1) Prediction of the
convergent point for non-uniform PDN and P&R. The PDN is defined
before placement, but power analysis and routability impact can
be assessed only after routing. (2) Estimation of the PPA response
of a given block in response to floorplan optimizations. Final PPA
impacts of feedthroughs, shape, utilization, memory placement,
etc. must be comprehended to enable floorplan assessment and
optimization (within a higher-level exploration of design partition-
ing/floorplanning solutions). (3) Estimation of useful skew impact on
post-route WNS, TNS metrics. See, e.g., [10]. A low-level related chal-
lenge: predicting buffer locations to optimize both common paths
and useful skew. (4) “Auto-magic” determination of constraints for a
given netlist, for given performance and power targets – i.e., best
settings for maxtrans, maxcap, clock uncertainty, etc. at each flow
stage. More generally, determine “magic” corners and constraints
that will produce the best netlist to send into P&R. (5) Prediction
of the best “target sequence” of constraints through layout optimiza-
tion phases. I.e., timing and power targets at synthesis, placement,
etc. such that best final PPA metrics are achieved. (6) Prediction of
impacts (setup, hold slack, max transition, power) of an ECO, across
MCMM scenarios. (7) Prediction of the “most-optimizable” cells during
design closure. Many optimization steps are wasted on instances
that cannot be perturbed due to placement, timing, power and other
context. (8) Prediction of divergence (detouring, timing/slew viola-
tions) between trial/global route and final detailed route. (9) Prediction
of “doomed runs” at all steps of the physical design flow.
And More. (1) Infrastructure for ML in IC design. Standards for
model encapsulation, model application, IP-preserving model shar-
ing, etc. are yet to be developed. (2) Standard ML platform for EDA
modeling. Enablement of design metrics collection, tool and flow
model generation, design-adaptive tool and flow configuration, pre-
diction of tool and flow outcomes, etc. would realize the original
vision of METRICS [36] [11] [31]. (3) Development of more mod-
elable algorithms and tools with smoother, less-chaotic outcomes
than present methods. (4) Development of datasets to support ML.
This spans new classes of artificial circuits and “eyecharts”, as well
as sharing of training data and the data generation task across
different design organizations.
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