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ABSTRACT
The Prim-Dijkstra (PD) construction[1] was first presented over 20
years ago as a way to efficiently trade off between shortest-path
and minimum-wirelength routing trees. This approach has stood
the test of time, having been integrated into leading semiconduc-
tor design methodologies and electronic design automation tools.
PD optimizes the conflicting objectives of wirelength (WL) and
source-sink pathlength (PL) by blending the classic Prim and Dijk-
stra spanning tree algorithms. However, as this work shows, PD can
sometimes demonstrate significant suboptimality for both WL and
PL. This quality degradation can be especially costly for advanced
nodes because (i) wire delays form a much larger component of to-
tal stage delay, i.e., timing-driven routing is critical, and (ii) modern
designs are severely power-constrained (e.g., mobile, IoT), which
makes low-capacitance wiring important. Consequently, achieving
a good timing and power tradeoff for routing is required to build a
market-leading product[2]. This work introduces a new problem
formulation that incorporates the total detour cost in the objective
function to optimize the detour to every sink in the tree, not just
the worst detour. We then propose a new PD-II construction which
directly improves upon the original PD construction by repairing
the tree to simultaneously reduce both WL and PL. The PD-II ap-
proach achieves improvement for both objectives, making it a clear
win over PD, for virtually zero additional runtime cost. PD-II is a
spanning tree algorithm (which is useful for seeding global rout-
ing); however, since Steiner trees are needed for timing estimation,
this work also includes a post-processing algorithm called DAS to
convert PD-II trees into balanced Steiner trees. Experimental results
demonstrate that this construction outperforms the recent state-of-
the-art academic tool, SALT [36], for high-fanout nets, achieving
up to 36.46% PL improvement with similar WL on average for 20K
nets of size ≥ 32 terminals from DAC 2012 contest benchmark
designs[37].
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1 INTRODUCTION
In recent technology nodes, wire capacitance has become a key chal-
lenge to design closure, and this problem only worsens with each
successive technology node[2]. Today, a digital implementation
flow cannot simply use minimum wirelength (WL) trees for routing
estimates in placement and optimization, nor can they be used for
timing-driven routing of critical nets. Routing an advanced-node
design with minimum WL trees leads to untenable source-to-sink
distances, yielding high delays for many nets. On the other hand,
one cannot afford to use a shortest path tree which achieves optimal
source-to-sink pathlength (PL) for each sink, due to the increased
WL which degrades dynamic power and worsens routing conges-
tion. For these reasons, timing-driven tree construction that trades
off WL and PL becomes a critical technology for modern designs.

The Prim-Dijkstra (PD)[1] construction is generally regarded as
the best available spanning tree algorithm for achieving this tradeoff
and has the additional advantage of simplicity[4].1 This algorithm
has been used for over 20 years to construct high-performance
routing trees in leading semiconductor design methodologies and
electronic design automation (EDA) tools, as can be seen by related
patents assigned to IBM, Synopsys, Cadence and other entities
([25] [26] [27] [28] [29] [30] [31] [32]). Further, the authors of [9]
performed an evaluation that compared PD to other spanning tree
constructions such as BRBC[10], KRY[11], etc. in 2006; they con-
cluded that PD obtained the best tradeoff between WL and PL. That
paper [9] argues that the PD wirelength cost is minimal enough to
be practically free. However, this claim is now suspect because to-
day’s designs are significantly more power-sensitive than a decade
ago: now, a 1% reduction in power is viewed as a big win for today’s
design teams performing physical implementation. Consequently,
even a small WL savings with similar timing can have a high impact
on value. A deeper discussion of prior art is given in Section 2.

The PD construction balances betweenWL and source-to-sink PL
by blending the Prim andDijkstra spanning tree constructions[5][6]
via a weighting factor, α . When α = 0, PD is identical to Prim’s
algorithm[5] and constructs a minimum spanning tree (MST). As α
increases, PD constructs a tree with higher WL but better PL; when
α = 1, PD is identical to Dijkstra’s algorithm[6] and constructs
a shortest-path tree (SPT). PD begins with a tree consisting just
the source node, then iteratively adds the edge ei j that minimizes
di j + α · li , where node vi is in the current tree and vj is not in the
current tree, di j is the distance between nodes vi and vj , and li is
the PL from the source to vi in the current tree.

One problem with the PD algorithm is that it greedily adds edges,
which becomes problematic with higher fanout trees. Once an edge
is added, it is never removed from the final solution, making it
1For global routing, spanning trees are often preferred to Steiner trees since global
routing commonly decomposes multi-fanout nets into two-pin nets. A spanning tree
provides the router with an obvious decomposition. However, Steiner trees are not
well-suited for this because the Steiner points become unnecessary constraints that
restrict the freedom of the router to resolve congestion.
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Figure 1: An example instance showing suboptimality of PD.
The red node is the source. (a) shows theMST obtainedwhen
α = 0.2, (b) shows the SPT obtained when α = 0.8, and (c)
shows the solutionwhen α = 0.4. The tradeoff in (c) is clearly
suboptimal in both WL and PL, as compared to (d).

impossible for PD to recover from a potentially poor choice. This
can lead to trees that are suboptimal in both WL and maximum
PL. Figure 1 shows such an example. When α is small (0.2), PD
obtains the MST solution (a) withWL = 150 and PL = 130. When
α is large (0.8), PD obtains the SPT solution (b) withWL = 240 and
PL = 80. However, when α = 0.4, PD obtains the solution (c) with
suboptimal values of both WL and PL (WL = 190 and PL = 120).
This solution (c) is inferior for both objectives than the solution
(d) withWL = 160 and PL = 90. Thus, α = 0.4 generates a poor
solution for both WL and PL.

This paper makes the following contributions:
• To fix the shortcomings in PD, one needs to directly optimize
PL in the tree construction, which requires a new problem
formulation. We propose incorporating total detour cost, the
amount of suboptimal PL for each node, into the tradeoff.
The correct formulation of the objective is paramount since
it drives any optimization which follows. This work seeks to
optimize the detour cost to all sinks instead of just the worst
one, as proposed in prior works [36].
• Next, a new algorithm, which we call PD-II, is proposed. The
idea is to recover the tree, that has any edges poorly chosen
by PD, using an iterative improvement method according to
the proposed objective function.
• Since Steiner trees are most commonly useful for timing
prediction and physical synthesis, an algorithm for convert-
ing balanced spanning trees into balanced Steiner trees is
proposed. The resulting Detour-Aware Steinerization (DAS)
algorithm optimizes both WL and detour cost to achieve a
tree with similar properties to those obtained by the PD-II
spanning tree algorithm.
• Finally, three sets of experiments are presented. The first
shows that PD-II is able to meaningfully shift the Pareto
curve obtained by the PD algorithm, obtaining up to 18%
improvement in PL for the same WL. The second experi-
ment demonstrates the value of the DAS algorithm versus
more standard Steinerization methods. The third experiment
shows that the proposed Steiner construction outperforms
those of SALT [36] for medium- and high-fanout nets, a re-
cent state-of-the-art academic tool, achieving up to 36.48%
PL improvement for similar WL.

The remainder of this paper is organized as follows. Section 2
briefly reviews related works in the areas of spanning and Steiner
tree constructions. Section 3 presents the proposed problem formu-
lation that incorporates bothWL and detour cost. Section 4 presents

the PD-II heuristic for spanning tree optimization, and Section 5
presents the DAS heuristic for Steiner tree optimization. Section 6
reports our experimental results, and Section 7 concludes the paper.

2 PREVIOUS WORK
There is a rich history on spanning tree and Steiner tree construc-
tions. Many focus on minimizing WL or minimizing longest PL.
(Our present work studies constructions that consider both metrics.)

Spanning Tree Constructions. As discussed previously, the
Prim and Dijkstra constructions achieve optimal WL and PL, re-
spectively. Spanning tree algorithms that optimize both are called
shallow-light constructions [10] [12]; they seek to optimize WL and
PL simultaneously to within constant factors of optimal. Shallow-
light constructions have in many ways been a “holy grail” in VLSI
CAD literature for over 25 years. The PD algorithm is “shallow-light
in practice”, but no such formal property has ever been established[1].
Cong et al.[13] give the Bounded Prim (BPRIM) extension of Prim’s
MST algorithm[5], which produces trees with low average WL and
bounded PLs, but possibly unbounded WL. The BRBC algorithm of
Cong et al.[10] produces a tree that has WL no greater than 1+ 2/ϵ
times that of an MST, and radius no greater than 1 + ϵ times that
of an SPT. Khuller et al.[12] contemporaneously develop a method
similar to BRBC.

Minimum WL Heuristic Steiner Tree Constructions. Sev-
eral works describe heuristic algorithms for Steiner tree construc-
tions with minimized WL. Kahng and Robins[15] give the iterated
1-Steiner (I1-S) heuristic which greedily constructs a Steiner tree
through iterative Steiner point insertion, resulting in trees with
close to optimalWL. Ho et al.[7] propose an algorithm (HVW) to op-
timally edge-overlap separable MSTs to obtain Steiner trees, while
Borah et al.[16] present a greedy heuristic (BOI) to convert span-
ning trees to RSMTs with performance similar to the I1-S heuristic.
Chu and Wong[33] propose FLUTE which uses pre-computed look-
up tables for Steiner construction to find solutions more efficiently
than the prior art.

Rectilinear SteinerArborescence (RSA)Constructions.The
NP-complete[17] rectilinear Steiner arborescence (RSA) problem
seeks to find a minimum-WL tree in the Manhattan plane that
achieves optimal PL for every sink. Rao et al.[3] present the first
heuristic for the RSA problem. Cong et al.[18] address the construc-
tion of RSAs with the A-tree algorithm, while Kahng and Robins[19]
give a simple adaptation of their Iterated 1-Steiner algorithm to the
RSA problem.

Steiner Constructions that Optimize WL and PL. Recently,
Scheifele[35] has proposed a method to construct Steiner trees for
which Elmore delays are bounded. Given an RMST solution (i.e.,
FLUTE), [35] iteratively finds the vertex that breaks its ϵ-based
metric, and reroutes the vertex to the source via a shortest path,
which indirectly balances between RMST and RSA. On the other
hand, Elkin and Solomon[34] propose a more direct shallow-light
Steiner tree construction method (ES). The main idea is to identify
breakpoints and reconnect those breakpoints to the root directly
by a Steiner SPT so that there is no detour from the root to the
breakpoints. The authors of [34] build a Hamiltonian path and
check the accumulated distance along the Hamiltonian path to find
proper breakpoints, such that the final Steiner tree meets the given
shallowness and lightness criteria. Recently, Chen et al.[36] present
SALT, which further improves the ES method[34]. The key contri-
butions are (i) tighter criteria to identify breakpoints, and (ii) using
an MST instead of a Hamiltonian path. With some post-processing
such as L-shape flipping, the method shows superior tradeoffs be-
tween pathlength and wirelength compared to any state-of-the-art
spanning/Steiner tree construction methods. Comparisons to the
method of [36] are included in Section 6 below.
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Table 1: Notation
Notation Meaning

V signal net, V = {v0, v1, .... vn−1} having n − 1 sinks
G routing graph in the spanning tree context
T routing tree, which is a spanning subgraph of G
v0 source node of the signal net V , which is the root of T
ei j edge from node vi to vj

par (vi ) parent node of vi
lj cost of the unique v0 to vj path in a tree, v0, vj ∈ T
di j cost of the edge ei j
mi j Manhattan distance from node vi to vj
WT total wirelength of a tree
Qi detour cost of node vi , Qi = li −mi0
QT detour cost of a tree, =

∑
n−1 (Qi )

C weighted cost of a tree, = α ·QT + (1 − α ) ·WT

∆Ce,e′
the change in the weighted cost that results from
removing edge e and adding e′, used in PD-II

α weighting factor used in PD and PD-II
D flipping distance used in PD-II
PT sum of pathlengths of a tree, =

∑
n−1 (lj )

3 PROBLEM FORMULATION
A signal net V = {v0,v1, ...,vn−1} is a set of n terminals, with
v0 as the source and the remaining terminals as sinks. We define
the underlying routing graph to be a connected weighted graph
G = (V ,E), where each edge ei j ∈ E has a costdi j . We are concerned
with the case where G is a complete graph with each ei j having
cost equal to the Manhattan distance di j . A routing tree T = (V ,E ′)
is a spanning subgraph of G with |E ′ | = n − 1.2 Given a routing
tree T , the cost of the unique v0 − vi path in T is li , the radius
of T is r (T ) = max1≤i≤n−1li , and the wirelength (WL) of T isWT
=
∑
ei j ∈T di j . All notations used in our work are listed in Table 1.

Initially, the tree consists only ofv0. The PD algorithm iteratively
adds edge ei j and sink vi to T , where vi and vj are chosen to
minimize

(α · lj ) + di j s .t . vj ∈ T , vi ∈ V −T (1)
The PD algorithm can result in trees with either large WL or PL,

as shown in Figure 1. To alleviate this issue, conventional shallow-
light tree constructions[10] [13][36] focus on bounding the shal-
lowness and lightness to optimize the tree cost. Lightness η means
that the WL of a tree is at most η times of the MST WL. A tree has
shallowness ζ if PL to each sink in the tree is at most ζ times the
source-to-sink Manhattan distance (MD). However, shallowness
alone does not adequately represent the quality of a routing tree.
Figure 2 shows two examples that have the same shallowness and
lightness. It is clear that Figure 2(b) is preferable to Figure 2(a) since
the left sinks have shorter PLs, but shallowness does not capture
the difference.

Figure 2: Two routing trees that have the same lightness and
shallowness.

With the above in mind, we define a new detour cost metric as
follows. Detour cost Qi of a sink vi is the difference between PL
from v0 to vi in T and the Manhattan distance from v0 to vi . The
detour cost of the tree T , denoted by QT , is the sum of the detour
cost values of all the sinks in the tree, i.e., QT =

∑
1≤i≤n−1 Qi .

2Our use of G and T pertains to the spanning tree context. In the rectilinear Steiner
tree context, the underlying routing graph would be the Hanan grid [20], and a Steiner
routing tree would be a spanning tree over {V ∪ S }, where S is a set of Steiner points
taken from the Hanan grid. For simplicity, as long as meanings are obvious, we will
use terms from the spanning tree context in the Steiner tree context as well.

Since PD iteratively adds edges and nodes to the growing tree, if a
sink vj close to the source incurs high detour, then all downstream
sinks (descendants of vj ) will also have high detour and hence
long PL. We therefore propose the following formulation to capture
the problem of simultaneously reducing WL and detour cost of a
spanning tree:
SimultaneousWLandDetourCostReduction (SWDCR)Prob-
lem. Given a spanning treeT = (V ,E), minimize the weighted sum
of WL and detour cost of the tree.

Minimize α ·
∑

Qi + (1 − α) ·WT (2)

where 0 ≤ α ≤ 1. We present a heuristic algorithm PD-II in Section 4
for tackling the SWDCR problem.

Once the spanning tree construction is converted into a Steiner
tree, there is a change in the tree topology. We propose and address
the following formulation to further optimize the detour cost of a
Steiner tree:
Detour Cost Reduction in Steiner Trees (DCRST) Problem.
Given a Steiner tree, minimize the tree detour cost.

Minimize QT (3)
s.t.WT ,new ≤ WT ,init (4)

QT ,init ≥ QT ,new (5)

To address the DCRST problem, we present our algorithm DAS
below in Section 5.
4 THE PD-II SPANNING TREE

CONSTRUCTION
This section presents the PD-II algorithm that performs iterative
edge-swapping which simultaneously improves the detour cost and
WL. The key idea of the PD-II algorithm is to start with a spanning
tree and swap edges to improve the tradeoff between detour cost
and WL. The algorithm can take any spanning tree as input, but it
makes sense to start with the PD solution since it should already be
relatively strong for both objectives. We note that while PD can be
quite slow for higher-fanout nets, it can be sped up significantly by
using a sparsified nearest-neighbor graph instead of the complete
graph.

We initially populate the neighbors of each node using the fol-
lowing method. We say that vi is a neighbor of vj if the smallest
bounding box containing vi and vj contains no other nodes. The
worst-case number of neighbor nodes for each node is Θ(n). For
example, every red point in Figure 3 is a neighbor of every green
point, and vice versa. However, Naamad et al.[23] show that the
expected number of maximal empty boxes amidst n random points
in a plane is bounded above by O(n loд n), so it is reasonable to
expect the average number of neighbors per node to be O(loд n).

Figure 3: Example showing Θ(n2) asymptotic worst-case
complexity of the number of neighbor relationships. Each
green node is a neighbor to each red node.

Analysis of random placements of net sinks show this to be true.
The number of neighbors for 100K random point sets of size 16,
32, and 64 yields an average number of neighbors per node of 6.3,
8.7 and 11.3, respectively. Real placements should generally have
even fewer neighbors, since cells tend to align horizontally or verti-
cally. For the testcases described in Section 6.1, the average number
of neighbors is 2.58, 4.27, 6.15 and 8.24 for small, medium, large
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and huge nets, respectively. Hence, in practice, runtime complex-
ity of iterating through the neighbors of a node has logarithmic
complexity.

An O(n loд n) runtime complexity can be obtained for PD us-
ing a binary heap implementation and an adaptation of Scheffer’s
MST code[21][22]. Since PD solutions are generally good, though
sometimes suboptimal, it makes sense to post-process the PD so-
lution to obtain a better one. The key technique for PD-II is edge
flipping, whereby one edge is removed from the original tree and
replaced with a new edge. Figure 4(a) shows an example tree, rep-
resented as a DAG, representing a topological ordering starting
at the source. Figure 4(b) shows an example transform in which
one edge is removed and replaced with a new red edge, thereby
obtaining a different tree. Note that one of the directed edges in the
new (rooted) tree is reversed from its previous orientation in order
to maintain a well-formed rooted tree. This approach recalls the it-
erative improvement operation used in BOI[16], but the application
of flipping is more restricted to focus on WL vs. PL improvements.

Figure 4: Illustration of PD-II edge flipping.
For each edge pair, we define the flip cost as the cost associated

with edge flipping, i.e., the cost of removing edge ei j and adding
edge ei′j′ . Flip cost ∆Ce,e ′ = α · (QTi′ j′ − QTi j ) + (1 − α) · (di′j′ −
di j ), where α is a weighting factor;3 QTi j and QTi′ j′ are the detour
costs of the trees before and after edge flipping, respectively; and
di j and di′j′ are the lengths of edges being removed and inserted,
respectively.

Pseudocode for PD-II, Algorithm 1 is given below. Essentially,
PD-II takes an input tree and searches for edge flips that improve
flip cost.4 If the flip cost improves, the swap is taken. Considering
all pairs of possible swaps could be expensive, so we define the
flipping distance D to be equal to the number of edges in the DAG
that require a change in direction to preserve topological ordering,
i.e., rooted orientation. For the swap in Figure 4, D = 1. In practice,
using D > 1 has little benefit (but more runtime) compared to
D = 1, so we use D = 1 for all experiments.

Line 3 of Algorithm 1 initializes the best flip cost to zero. Line
5 computes the set of candidate edges Ee that can be flipped with
edge e , as restricted by the flipping distance D. For each candidate
edge e ′ ∈ Ee , we calculate the flip cost for the edge pair (e , e ′)
and find the edge pair (ebest ,e ′best ) with lowest flip cost in Lines
6-12. These edges are swapped if the lowest flip cost is less than
zero (Lines 14-16). The algorithm continues until no more flip-cost
improvement is obtained (Line 17).

The number of candidates for edge flipping can be very large
when D is unbounded. The worst-case number of edges is (n/2)2,
giving Algorithm PD-II a worst-case time complexity of O(n3),
3The parameter α can be determined by the timing constraints. If a net is critical, a
higher value of α can be used to achieve lower delays, but if arcs through the net
have positive slacks, α can be small to save wirelength. Hence, α allows topology
optimization and can be chosen to best satisfy the design specifications on a per-net
basis.
4Flipping cannot be added into the original PD cost function since the flip cost objective
cannot be correctly computed until an entire tree is constructed. Hence, we propose
PD-II as a post-processing algorithm which improves a given spanning tree.

Algorithm 1 Algorithm PD-II
Input: Spanning tree Tin = (V , Ein ), with Ein ⊆ E
Output: Spanning tree Tout = (V , Eout ), with Eout ⊆ E

1: Initialize Tout ← Tin
2: repeat
3: Initialize largest detour cost reduction, ∆Cbest ← 0
4: for all e ∈ Eout do
5: Ee ← candidateEdдes(e, D)
6: for all e ′ ∈ Ee do
7: ∆Ce,e′ ← f l ipCost (e, e ′)
8: if ∆Ce,e′ < ∆Cbest then
9: ∆Cbest ← Ce,e′
10: ebest ← e ; e ′best ← e ′

11: end if
12: end for
13: end for
14: if ∆Cbest < 0 then
15: Remove ebest , insert e ′best and change direction of associate edges
16: end if
17: until ∆Cbest == 0

where n is the number of sinks. However, with the distance re-
striction, the complexity reduces to O(D · n2), and in practice it
converges rapidly. To show this, we take two large blocks from
an industrial design and run a production Steiner package on an
Intel Xeon 2.7GHz machine (CPU E5-2680), using RHEL5. The first
design has 1.9 million datapath nets, and the total runtime for the
Steiner package which uses PD for its spanning tree construction
requires 59.3 seconds. Adding PD-II to the Steiner package increases
the runtime to 62.7 seconds, for a net penalty of 3.4 seconds. The
second design with 4.0M datapath nets requires 124.0 seconds for
running the default Steiner package. Adding PD-II to the Steiner
package increases the runtime from 124.0 seconds to 125.8 seconds,
for a net penalty of 1.8 seconds. Consequently, the runtime cost of
using PD-II is negligible, averaging less than one additional second
of runtime per million nets.

5 THE DETOUR-AWARE STEINERIZATION
ALGORITHM (DAS)

For global routing, spanning tree constructions such as PD-II are
sometimes preferred to Steiner trees since global routing commonly
decomposes multi-pin nets into two-pin nets. However, for timing
estimation, congestion prediction, or general physical synthesis
optimization, a Steiner tree is required since spanning trees will
have too much WL. The previous spanning tree formulation can
easily be extended to Steiner trees; the definitions of WL and PL
do not change. However, since finding the minimum wirelength
Steiner is NP-complete, FLUTE WL is used as a proxy for minimum
Steiner tree cost.

To transform a spanning tree into a Steiner tree, the linear-time
algorithm of [7] is invoked. It maximizes edge-overlaps in the span-
ning tree by creating a Steiner node. We call the algorithm HVW
after the algorithm’s creators: Ho, Vijayan, and Wong. HVW tra-
verses the tree from the leafs and iteratively maximize overlaps
with the currently visited edge and its immediate children edges.
However, this basic construction can be inefficient both in terms of
WL and PL. Hence a new Steinerization algorithm, called DAS for
Detour-Aware Steinerization is proposed below.

DAS has two phases of optimization. The first phase seeks to
reduce WL while minimizing the detour cost penalty (Lines 1-14).
This phase does a bottom-up tree traversal and makes edge swaps
which reduce WL. For each edge eji in the Steiner tree, the edge
eji is removed from the tree and replaced with eki where vk is a
nearest neighbor of vi if the WL improves and the PL is not overly
degraded. (i.e., pi ≤ 0.5 · pmax

T ).
After the first phase, since PL (or detour cost) is not targeted,

there still may be room to improve for that dimension. Hence,
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Algorithm 2 The Detour-Aware Steinerization Algorithm (DAS)
Input: Steiner tree TSt,in
Output: Improved Steiner tree TSt,out

1: //First phase: wire recovery at the cost of small additional PL
2: pmax

T ← maximum PL of the Steiner tree
3: Do Breadth-First Search (BFS) from the leaf node
4: for all vi do
5: vj ← par (vi ) ; dji ← edge length to vi ;
6: oji ← overlap length with other edges to vi
7: ∆dji ← dji − oji
8: for all vk in {all neighbors of vi } do
9: ∆dki ← dki − oji ; pi ← PL to node vi
10: if (∆dki < ∆dji && (pi ≤ 0.5 · pmax

T ) then
11: Disconnect vi to vj and reconnect vi to vk
12: end if
13: end for
14: end for
15: //Second phase: detour cost reduction with bounded WL
16: WT ,init ← Init. Steiner tree WL; QT ,init ← Init. Steiner tree detour cost
17: Do Breadth-First Search (BFS) from the source node
18: for all vi do
19: vj ← par (vi ); dji ← Initial edge length to vi
20: for all vk in {all neighbors of vi } do
21: eki ← Edge from vk to vi ; dki ← Edge length from vk to vi
22: WT ,new ←WT ,init + dki − dji
23: QT ,new ← detour cost tree with edge eki
24: if (WT ,new ≤WT ,init ) && (QT ,new < QT ,init ) then
25: Disconnect vi to vj and reconnect vi to vk
26: WT ,init ←WT ,new ; QT ,init ← QT ,new
27: end if
28: end for
29: end for

a second phase (Lines 15-29) seeks to optimize detour cost QT
without degrading WL. This second phase performs a top-down
tree traversal to minimize QT . This is because the detour cost Qi
to a node vi affects not only the PL to the node, but also the PL to
the downstream nodes of vi . Thus, more opportunity for large QT
reductions exists in the edges near the source v0. For each edge eji
in the Steiner tree, the edge eji is removed and replaced with eki ,
where vk is the possible parent among the nearest neighbors of vi ,
to reduce QT without degrading WL. This process is repeated for
all the nodes in the tree with non-zero detour cost.

Algorithm DAS has a worst-case time complexity ofO(n2). How-
ever, with the sparsified nearest neighbor graph implementation
described in Section 4, DAS runs much faster than O(n2) and is
closer to O(n loд n) in practice. For 100K nets, DAS runs in 0.86
seconds for 16-terminal nets, 1.71 seconds for 32-terminal nets and
4.83 seconds for 64-terminal nets.

6 EXPERIMENTAL SETUP AND RESULTS
6.1 Experimental Setup
The algorithms described above are implemented in C++. The fol-
lowing experiments are performed on a 2.7 GHz Intel Xeon server
with 8 threads. Testcases are generated from the DAC 2012 con-
test benchmarks[37], with pin locations for each net are extracted
from ePlace placement solutions[38]. Since finding a solution with
optimal WL and PL is trivial for two- and three-pin nets, our ex-
periments focus on nets with fanout larger than two. The roughly
749K total nets are divided into four groups (small, medium, large,
huge) by their terminal count, as shown in Table 2.

Table 2: Net Statistics for Superblue Benchmark Designs
small medium large huge

|V | 4 − 7 8 − 15 16 − 31 32+
#nets 533029 128463 46486 20853

While our algorithms optimizeQT ,QT itself does not adequately
capture the quality of the tree. Instead, results are reported based

on two normalized metrics,WTnorm (normalized WL) and PTnorm
(normalized PL).WTnorm is defined as the ratio of the tree WL to
the MST WL for spanning trees. PTnorm is defined as the ratio
of sum of PLs of each node in the tree to the sum of Manhattan
distances from source to each node. The optimal value any tree
could have for either metric is one, which makes the corresponding
Pareto curve more intuitive.

6.2 Experiment I - Spanning Tree Results
In the following results, PD and PD-II refer respectively to the span-
ning trees constructed using the PD and PD-II algorithms. Figure 5
shows normalized WL and PL tradeoff curves for PD and PD-II,
for the 46486 large nets. Each point in the curves represents the
average (WTnorm , PTnorm ) over all the nets for a particular value
of α . We sweep α from 0.05 to 0.95, in steps of 0.05, to obtain both
the PD and PD-II curves. We observe that the blue PD-II Pareto
curve is clearly better than the red PD curve.

The Pareto curve makes the improvement trend clear, but makes
it difficult to measure the degree of improvement of PD-II. To com-
pare the two algorithms more robustly, we analyze the results in
the following way; (1) select different percentages of permissible
WL degradation with respect to MST WL (i.e., WL thresholds = 1%,
2%, 4%, 7%, 10% and 15%), and (2) for each net, find the minimum
PTnorm solution that meets the WL threshold across all solutions
with different α . The results are averaged across all the nets and
summarized in Table 3. Each entry in the table corresponds to the
normalized PL PTnorm . To find the percentage improvement, one is
subtracted from each value, since 1.0 is a lower bound. For example,
a reduction from 1.15 to 1.12 results in an improvement of 20%, i.e.,
(1 − (1.12 − 1.0)/(1.15 − 1.0)) · 100%.

Figure 5: WL and PL tradeoff for various α .

Table 3: Comparisons of the best PTnorm for PD and PD-II
across different WL thresholds.

|V | Method WL threshold
1% 2% 4% 7% 10% 15%

small
PD 1.0972 1.0927 1.0819 1.0680 1.0569 1.0427
PD-II 1.0970 1.0923 1.0812 1.0672 1.0561 1.0420

Imp. (%) 0.26 0.42 0.78 1.15 1.36 1.63

med.
PD 1.1888 1.1746 1.1483 1.1189 1.0974 1.0723
PD-II 1.1870 1.1706 1.1423 1.1122 1.0909 1.0668

Imp. (%) 0.93 2.33 4.07 5.66 6.62 7.68

large
PD 1.2981 1.2698 1.2216 1.1723 1.1390 1.1006
PD-II 1.2895 1.2545 1.2025 1.1533 1.1219 1.0870

Imp. (%) 2.89 5.66 8.64 11.00 12.32 13.52

huge
PD 1.3952 1.3550 1.2873 1.2210 1.1777 1.1302
PD-II 1.3758 1.3238 1.2526 1.1876 1.1488 1.1056

Imp. (%) 4.91 8.79 12.06 15.14 16.27 18.87

We observe the following:
• PD-II gives better results than PD for all classes of nets. This
makes sense since it strictly improves upon an existing PD
solution.
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• Small nets obtain relatively small improvement, ranging
from 0.26% to 1.63%; however, huge nets show significant
improvements, ranging from 4.91% to 18.87%. Trends for
medium and large nets lie in between. This is because the
detour cost is close to optimal for smaller nets, but is much
larger for bigger nets. For example, with a 1% WL threshold,
the average normalized PL for PD-II is 1.097 for small nets
but 1.376 for large nets.
• When the WL threshold is tight (such as 1% or 2%), the
improvement of PD-II is much smaller as compared to looser
constraints of 10% or 15%. This makes sense because a looser
constraint gives the algorithms more freedom to reduce PL.
A threshold of 1% means the topology cannot deviate much
from the minimum-length spanning tree.

6.3 Experiment II - Steiner Tree Results
Our next experiments compare (PD + HVW + DAS) and a base-
line flow (PD + HVW) to show the value of DAS. HVW refers to
the Steiner tree obtained after performing edge-overlapping as de-
scribed by Ho et al.[7], and DAS refers to the Steiner tree after
applying DAS algorithm to the HVW tree. Figure 6 shows the nor-
malized WL and PL tradeoff comparison for the two flows for the
set of large nets. Steiner treeWTnorm is defined as the ratio of total
WL of the tree to the FLUTE WL5[33] and PTnorm is defined as the
ratio of sum of PLs of all sinks in the tree to the sum of source-to-
sink Manhattan distances. Each point in the curve represents the
average (WTnorm , PTnorm ) over all nets, for a particular value of α .
It is clear thatDAS adds significant value to the Steiner construction,
pushing its Pareto curve further left and down compared to the one
from the baseline.

Figure 6: WL and PL tradeoff for Steiner tree constructions.

Table 4: Comparisons of the best PTnorm for (1) PD + HVW
and (2) PD + HVW + DAS across different WL thresholds.

|V | Method WL threshold
1% 2% 4% 7% 10% 15%

small
(1) 1.0233 1.0241 1.0250 1.0249 1.0236 1.0202
(2) 1.0126 1.0115 1.0097 1.0073 1.0054 1.0033

Imp. (%) 46.14 52.31 61.15 70.85 77.30 83.67

med.
(1) 1.0786 1.0821 1.0828 1.0757 1.0649 1.0489
(2) 1.0665 1.0629 1.0532 1.0385 1.0277 1.0168

Imp. (%) 15.43 23.30 35.78 49.07 57.24 65.58

large
(1) 1.1637 1.1644 1.1547 1.1275 1.1026 1.0728
(2) 1.1440 1.1347 1.1087 1.0760 1.0553 1.0357

Imp. (%) 12.01 18.07 29.73 40.36 46.08 50.93

huge
(1) 1.2278 1.2091 1.1606 1.1107 1.0812 1.0538
(2) 1.228 1.209 1.161 1.111 1.081 1.054

Imp. (%) 8.36 15.14 27.82 36.36 39.74 41.69

Similarly to Table 3, Table 4 shows normalized PL across a range
of permissible WL degradations for HVW versus HVW+DAS. We
observe the following:
5FLUTE constructs optimal RSMTs for nets with terminal sizes up to 9, and near-
optimal RSMTs for nets with higher terminal counts.

• DAS always obtains better results than HVW. Again, this
makes sense since DAS starts with an HVW solution and
further refines it to improve both WL and PL.
• Improvements for DAS can be quite significant, ranging from
8.36% to 83.67%.
• DAS improves results more significantly for smaller fanout
nets than for larger ones. This may suggest there is still
further room for improvement in Steinerization.
• Larger WL thresholds correspond to larger normalized PL
improvements, which again is likely due to more freedom
for the algorithm to find a solution that reduces detour cost.

6.4 Experiment III - Comparison with
SALT[36]

Our final set of experiments compares the best combined flow (PD-II
+ HVW + DAS) with the results from the state-of-the-art academic
Steiner tree construction, SALT[36]. SALT uses FLUTE [33] to
generate its initial input and improves the initial construction to
reduce PL. For nets with less than 10 terminals, FLUTE produces the
optimal WL and may also produce excellent or even optimal PL, in
which case running SALT is not even necessary. Hence, the cases for
which FLUTE produces excellent PL are in some sense uninteresting.
If FLUTE produces a good tradeoff curve, then SALT simply returns
the FLUTE solution. Our approach can do something similar using
the following simple metaheuristic: (1) run both FLUTE and (PD-II
+ HVW + DAS) in parallel; (2) if FLUTE is better than (PD-II + HVW
+ DAS) for both WL and PL, return the FLUTE solution, else return
the (PD-II + HVW + DAS) solution. Essentially, the metaheuristic
returns a solution identical to SALT’s when the FLUTE solution is
dominant. Note that for large and huge nets, the FLUTE solution
almost never is dominant.

Figure 7 shows normalized WL and PL tradeoff curves for the
metaheuristic flow and SALT for (a) small, (b) medium, (c) large
and (d) huge nets. For small nets, SALT actually achieves better
solutions than the metaheuristic until the normalized WL is about
2.3% higher than optimal.6 However, for medium, large and huge
nets, the Pareto curve for the metaheuristic outperforms the one
from SALT, especially as nets increase in size. For huge nets, SALT
achievesWTnorm = 1.0370, PTnorm = 1.141 for ϵ = 1.281, which
is its knee point in the tradeoff curve. The knee point in the meta-
heuristic’s tradeoff curve corresponds to WTnorm = 1.024 and
PTnorm = 1.121 at α = 0.35, which achieves 35.13%WL and 14.18%
PL improvements compared to SALT at its ϵ = 1.281.

Since SALT optimizes shallowness and not detour cost, Figure 8
presents the same set of data but using SALT’s proposed metrics.
SALT dominates our method according to the shallowness metric.
Thus, SALT is superior with respect to its proposed metric, while
PD-II + HVW + DAS is superior with respect to its metric.

Finally, Table 5 compares our best recipe to SALT using the same
methodology as Tables 3 and 4. Note that we use FLUTE WL as a
lower bound. We observe the following:
• For small nets, and WL thresholds below 10%, SALT outper-
forms the proposed approach. SALT is also better on medium
nets with WL thresholds below 2%. This makes sense since
trees in this space will closely resemble FLUTE construc-
tions. SALT starts with a FLUTE construction and iteratively
improves it, so in the space where FLUTE obtains good trees
for WL and PL, such an approach outperforms the algorithm
proposed in this work. Note that the magnitude of the im-
provement is still small. For example, for small nets and a 1%
threshold, SALT is 0.99% away from the optimal normalized
path length, while our approach is 1.26% away.

6For {small, medium, large, huge} nets, FLUTE results for {55.6, 7.9, 0.03, 0}% of nets
have smaller WL and PL than our results. As expected, FLUTE results are dominant
for small nets, but our algorithm gives better PL for large and huge nets.
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• For large and huge nets, and for medium nets with thresh-
olds larger than 2%, the proposed approach performs better,
reaching a peak of 36.46% improvement for huge nets with
a 10% threshold. This is the domain for which the optimal
tradeoff can be considerably different from FLUTE. These
arguably form the class of more interesting instances where
the tradeoff between WL and PL becomes increasingly im-
portant.
• AsWL threshold increases, the improvement of our approach
vs. SALT improves too, especially around the 7% and 10%
WL threshold ranges. However, for large and huge nets the
improvement is somewhat less at the 15% threshold.

Table 5: Comparisons of the best PTnorm for (1) SALT and (2)
PD-II + HVW + DAS across different WL thresholds.

|V | Method WL threshold
1% 2% 4% 7% 10% 15%

small
(1) 1.0099 1.0093 1.0082 1.0067 1.0053 1.0036
(2) 1.0126 1.0115 1.0097 1.0073 1.0054 1.0033

Imp. (%) -27.29 -23.85 -17.98 -8.80 -0.86 7.90

med.
(1) 1.0652 1.0619 1.0547 1.0435 1.0337 1.0213
(2) 1.0665 1.0629 1.0532 1.0385 1.0277 1.0168

Imp. (%) -1.95 -1.66 2.76 11.32 17.63 21.15

large
(1) 1.1564 1.1475 1.1261 1.0961 1.0720 1.0432
(2) 1.1440 1.1347 1.1087 1.0760 1.0553 1.0357

Imp. (%) 7.91 8.66 13.77 20.92 23.09 17.31

huge
(1) 1.2744 1.2574 1.2205 1.1688 1.1277 1.0763
(2) 1.2278 1.2090 1.1606 1.1107 1.0811 1.0536

Imp. (%) 17.01 18.79 27.18 34.44 36.46 29.71

Runtime. For the benchmarks studied, SALT’s total runtime is
2762 seconds. By contrast, the PD-II + HVW + DAS algorithms, as
implemented and optimized within a commercial EDA tool’s code
base, take 361 seconds in total. Thus, PD-II today runs more than 7
times faster than SALT.

Delay. Below, we show the impact of WL and PL improvement
on delay. We estimate delays of nets produced by our algorithms
and by SALT, based on the Elmore delay model with resistance of
37.318Ω per micron of wire, capacitance of 0.228fF per micron of
wire, and 0.67fF pin capacitance per sink. For the solutions produced
by our approach and SALT with WL threshold 2%, we calculate
the sum of all sink delays for each net, and the average of this sum
across all nets. For {small, medium, large, huge} nets, the average
sum of sink delays from PD-II is lower than the average sum of sink
delays from SALT by {-0.0005, 0.24, 1.54, 5.62}%. As seen with the
WL and PL comparison, our algorithm has slightly larger delays
for small nets and smaller delays for higher-fanout nets.

In summary, while our approach does not uniformly outperform
SALT, it does provide a superior tradeoff for the most interesting
class of nets that are far from optimal in terms of PL and WL.7

7 CONCLUSION
This work shows that the classic PD spanning tree algorithm that
balances between Prim’s and Dijkstra’s algorithm can have a bad
tradeoff that ends up with bothWL and PL being highly suboptimal.
A new spanning tree heuristic PD-II is demonstrated to significantly
improve both WL and total detour cost compared to PD. Further,
this work extends the construction to Steiner tree with the DAS
algorithm that directly improves trees according to both objectives.
The algorithms are shown to be fast and practical. They are also
suitable for integration into existing commercial routers, and can be
applied in conjunction with any existing spanning and Steiner tree
constructions for simultaneous WL and PL improvements. Com-
pared to the recent SALT algorithm, our construction generates
clear improvements according to the proposed metrics, especially
for medium-size and larger nets. Future research includes (i) re-
visiting the still-open question of worst-case detour from a PD
construction; (ii) learning-based estimation of the best α for any
7The PD-II algorithm has been released as part of a leading commercial tool, with
demonstrated improvements of timing and wirelength.

given instance (i.e., set of pin locations of a signal net); and (iii)
extending the detour cost objective to encompass sink criticality,
“global” radius, and other additional criteria.
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Figure 7: Normalized WL and PL for our metaheuristic and
SALT on nets with |V | = (a) 4 to 7, (b) 8 to 15, (c) 16 to 31 and
(d) 32+.

Figure 8: Average shallowness and lightness for our meta-
heuristic and SALT on nets with |V | = (a) 4 to 7, (b) 8 to 15,
(c) 16 to 31 and (d) 32+.
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