
Wot the L: Analysis of Real versus Random Placed Nets, and
Implications for Steiner Tree Heuristics ∗

Andrew B. Kahng1,2, Christopher Moyes1, Sriram Venkatesh1 and Lutong Wang2
1CSE and 2ECE Departments, UC San Diego, La Jolla, CA 92093

{abk, cmoyes, srvenkat, luw002}@ucsd.edu
ABSTRACT
The NP-hard Rectilinear Steiner Minimum Tree (RSMT) problem
has been studied in the VLSI physical design literature for well
over three decades. Fast estimators of RSMT cost (which reflects
routed wirelength) are a required ingredient of modern physical
planning and global placement methods. Constructive estimators
build heuristic RSMTs whose costs are used as wirelength estimates;
notably, these include FLUTE [8]. Analytic and lookup table-based
estimators include the methods of Cheng [7] and Caldwell et al. [3];
the latter is based on both the number of points and the aspect ratio
of the pointset in the RSMT instance. We observe that the physical
design literature has numerous evaluations of RSMT heuristics
and estimators on random pointsets, and that the relative merits
of heuristics and estimators have been determined based on this
use of random pointsets. In this paper, we show that a pointset
attribute which we call L-ness highlights the difference between
real placements and random placements of net pins. We explain
why placements of netlists in practice result in pointsets with much
higher L-ness than random pointsets, and we confirm this difference
empirically for both academic and commercial placement tools.
We further present an improved lookup table-based RSMT cost
estimator that includes an L-ness parameter. Last, we illustrate how
differences between Steiner tree heuristics can change depending
on whether real or random pointsets are used in the evaluation.
ACM Reference Format:
Andrew B. Kahng1,2, Christopher Moyes1, Sriram Venkatesh1 and Lutong
Wang2. 2018. Wot the L: Analysis of Real versus Random Placed Nets, and
Implications for Steiner Tree Heuristics . In Proceedings of 2018 International
Symposium on Physical Design (ISPD’18). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3177540.3178238

1 INTRODUCTION
VLSI global placement seeks to minimize routed wirelength (WL)
along with timing path delays, dynamic power and other design
metrics, subject to the constraint that placeable instances do not
overlap. Because signal nets are routed as Steiner trees, their routed
wirelengths are ideally modeled as the costs of respective Recti-
linear Steiner Minimum Trees (RSMTs) over pin locations. Since
the RSMT problem is NP-hard, placement tools typically minimize
the sum over all nets of the bounding box half-perimeter of pin
locations – i.e., the half-perimeter wirelength (HPWL) objective [13].
An important element of efficient placer implementation is the fast
estimation of RSMT costs, e.g., by weighting HPWL according to a
lookup table of scaling factors [3][7].
∗Merriam-Webster https://www.merriam-webster.com/dictionary/wot defines “wot”
as the old English verb meaning “know (of)”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISPD’18, March 25–28, 2018, Monterey, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5626-8/18/03. . . $15.00
https://doi.org/10.1145/3177540.3178238

Our present work focuses on the qualitative difference between
real pointsets corresponding to pin locations of placed nets, and
random pointsets that have often been used to characterize the
performance and relative merits of RSMT heuristics or RSMT cost
estimators. As discussed below, placement tools will tend to move
the pins of a net up against two adjacent edges of the net bounding
box, as shown in Figure 4 below. This phenomenon is due to the
HPWL objective in conjunction with each placeable instance having
multiple incident nets. By contrast, with random pointsets, all point
locations inside the pointset bounding box are equiprobable. We
define the L-ness of a placed net’s pin locations to capture how close
they are to two adjacent edges of the net bounding box:
Definition:Given a pointset P , the bounding box of P is theminimum-
area rectangle that contains all points of P ; we use B(P) to denote
the bounding box area. The L-ness of P is measured as R(P)/B(P),
where R(P) is the area of the largest empty (isothetic) rectangle that
(i) is contained in the bounding box of P , (ii) contains one corner of
the bounding box of P , and (iii) contains no points in P .

Figure 1: Illustration of largest empty (isothetic, i.e., with
axis-parallel edges) rectangle. The L-ness of this 5-pin
pointset is 24/56.
High R(P)/B(P) ratio corresponds to large L-ness. If B(P) = 0, then
we consider the L-ness of P to be 1. Figure 1 shows a pointset with
R(P)/B(P) = 24

56 .

1.1 Motivation: Non-uniformity of Net Pin
Placements

As a motivating study, we first confirm the non-uniform distribu-
tion of real placed pointsets (i.e., pins of signal nets). We use the
leon3mp [15] and theia [20] design blocks mapped to a 28nm LP
foundry enablement, with place-and-route performed using Ca-
dence Innovus Implementation System version 15.2 [19]. Two types
of placements are studied: pseudo-1D and 2D. To obtain a pseudo-
1D placement, we create a floorplan with width/height aspect ratio
(AR) of 10:1 following the methodology described in [5]. We collect
the point (pin) location distribution for each net along the x-axis,
within a normalized range of 0 (left boundary of each given net)
to 1 (right boundary of each given net). We categorize nets into
three types – L, R, and O, defined as follows. A net n is of type L if,
for each cell c of the net, no fanin/fanout net of c has a pin to the
right of the rightmost pin of the net n, and at least one has a pin to
the left of the leftmost pin of the net n. A net n is of Type R if for
each cell c of the net, no fanin/fanout of c has a pin to the left of
the bounding box (BBox) of net n, and at least one has a pin to the
rightmost pin of net n. A net n is otherwise of type O. For example,
in Figure 2, nets A and D are of type L; net B is of type R; and net
C is of type O.

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

2

https://doi.org/10.1145/3177540.3178238
https://doi.org/10.1145/3177540.3178238

Figure 3 shows results of this empirical study on the designs
mentioned above. We see that a “real” placement tool will clearly
push cells (pins) of a type L net (respectively, a type R net) toward
the left (respectively, right) boundary. There are virtually no cells in
themiddle, and only a few cells are pushed to the opposite boundary.
From our study, we believe that there are two explanations for
cells occurring at the opposite boundary: (i) we plot cell locations
according to the center of the cell, which has error with respect
to exact pin locations; and (ii) nets with short x-span can exhibit
this behavior since the placer does not see a significant wirelength
penalty for doing this. For a type O net, the cell distribution still
shows preference to the bounding box boundary, indicating non-
uniform distribution.

We have also performed the above experiment for 2D placements
with floorplan height = width, i.e., aspect ratio = 1. In they direction,
“bottom” and “top” are respectively equivalenced to “left” and ”right”
in the x direction. Then, we sum up the pointset distribution in
both directions. The results look similar to Figure 3. We see a very
strong deviation from the uniform distribution that is seen with
random pointsets.1

Figure 2: Illustration of L, R, and O types of nets.

Figure 3: Empirical results from pseudo-1D placements.

Figure 4: Pins of a net from an industrial placer, clustered
towards the left and bottom edges of the bounding box.

1.2 Related Works
Previous works have estimated RSMT cost based on characteris-
tics of placed pin locations. Caldwell et al. [3] demonstrate how
RSMT cost depends on both the cardinality and the aspect ratio of a
pointset. This improves upon the earlier work of Cheng [7], which
estimates RSMT cost based only on the pointset cardinality. Quite
notably, Cheng [7] appears to point out the concept of L-ness in
real placed pin locations when discussing the modeling of routing
resource demand. However, this observation does not seem to have
been followed up in the RSMT estimation or placement literatures.2

1While this motivating study uses the Cadence Innovus placer, Section III below shows
similar non-uniformity across multiple academic and commercial placers’ outputs.
2Section 3 of [7] states, “The high wiring probability at the top and bottom boundaries
comes from the following two facts: (1) the probability of having two pins located
at the same boundary is high because of bounding box. (2) when finding an optimal
Steiner tree, either a left-L or a right-L is used to reduce the wire length of a minimum
spanning tree.”

In the computational geometry literature, Chazelle et al. [6] present
an O(n log3 n) divide-and-conquer algorithm which calculates the
area of the largest empty (isothetic) rectangle in a set of n points. By
using a semi-dynamic heap, Naamad et al. [14] calculate the largest
empty rectangle in a set of n points in O(s log n) time where s is
the number of possible empty rectangles.

With regard to RSMT heuristic constructions, Chu and Wong [8]
give a well-knownO(n loд n) RSMT heuristic, FLUTE, which is the
most accurate of the RSMT heuristics that we study in Section 4.1.
The Prim-Dijkstra heuristic of Alpert et al. [1] “blends” classic
minimum spanning tree and shortest-paths tree constructions using
a weighting factor α to obtain a heuristic “shallow-light” spanning
tree. Below, in our experimental studies, we augment the Prim-
Dijkstra construction with the edge-overlapping method of Ho et
al. [11] to obtain a heuristic RSMT from the Prim-Dijkstra spanning
construction.

1.3 Contributions and Outline of This Paper
The main contributions of this paper are as follows.
• We propose a formal definition of L-ness of a pointset in the
Manhattan plane.
• We empirically characterize a qualitatively significant dif-
ference in L-ness between real placed net pins and random
pointsets. As seen in Section 3.1, real placed pointsets have
significantly higher L-ness than random pointsets.
• We describe a pointset generator which can be used to gen-
erate more realistic pointsets with prescribed L-ness distri-
bution. This can be used to assess RSMT heuristics and cost
estimators with randomly generated pointsets that match
AR and R(P)/B(P) distributions (as well as RSMT costs - see
Subsection 4.2) of real placed pointsets.
• We give a new lookup table-based RSMT cost estimator
which improves over the method of [3] by adding L-ness as
a parameter. Our implementation of this lookup table gives
a non-dominated (speed, accuracy) option for RSMT cost
estimation.

In the following, Section 2 presents notation and analyses of
L-ness in planar pointsets. Section 3 describes empirical characteri-
zations of real placed pointsets, contrasted with random pointsets.
Section 4 discusses the impact of L-ness on the relative performance
of various RSMT heuristics. Section 5 presents a new lookup table-
based RSMT cost estimate that improves upon [3] by adding an
L-ness dimension. Section 6 summarizes our results and concludes
the paper.

2 PRELIMINARIES
In this section, we first give notations and facts used in this work.
We then analyze different properties of pointsets, and discuss the
relationship of L-ness to other pointset characteristics. Last, we
provide methods to generate realistic pointsets, and an algorithm
to compute R(P) in Θ(n loд n) time.

2.1 Notations
Notations that we use in this paper are summarized in Table 1.
The layout region is assumed to have lower-left corner (0, 0) and
upper-right corner (H ,W). A random p-pin pointset consists of p
points chosen randomly from a uniform distribution in the H ×
W layout region. As noted above, the bounding box of pointset P
is the minimal isothetic (axis-parallel) rectangle that contains all
points of P . The half-perimeter of a given bounding box is half the
perimeter of the bounding box. For example, the half-perimeter of
the bounding box in Figure 1 is 15, and its AR is 8

7 .
Our discussion furthermore assumes that points of a random

pointset are in general position, i.e., all x-coordinates and all y-
coordinates are distinct. To validate this assumption, we extract

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

3

Table 1: Notations.
Notation Meaning

p net degree (# pins of a signal net) (p ≥ 2)
P a net (pointset), P = (x1, y1), ..., (xp , yp)

B(P) the area of the minimum bounding box of P
R(P) the area of the largest empty rectangle of P

RSMT (P) the rectilinear Steiner minimum tree over P
(H,W) chip dimensions, i.e., height and width of the chip
AR aspect ratio (W/H) of the bounding box

R(P)/B(P) L-ness, the ratio of R(P) divided by B(P)

Table 2: Probability that any two points in a pointset share
the same x- or y-coordinate.

p ICC/Innovus Capo ePlace
2 9.88% 7.48% 7.65%
3 10.98% 7.90% 7.46%
4 7.57% 6.84% 6.01%
5 8.03% 7.99% 6.32%
6 7.50% 7.69% 7.49%
7 7.45% 8.27% 5.28%
8 7.68% 4.86% 3.90%
9 8.48% 6.13% 4.37%
10 7.46% 4.35% 3.81%
11 6.78% 4.51% 3.59%
12 6.18% 4.27% 3.50%

placed pin coordinates from the placements of seven design blocks,
including leon3mp and netcard from [15]; theia, jpeg, aes and mpeg
from [20]; and an ARM Cortex A53 [18]. The placements are ob-
tained using two leading commercial place-and-route tools, Ca-
dence Innovus 15.2 [19] and Synopsys ICC L-2016.03-SP4 [22] with
foundry enablements at 28nm and 16nm. We also extract the place-
ments of the DAC-2012 benchmark suite [17] from two well-known
academic placers, i.e., Capo [4] and ePlace [12]. These placements
are collectively referred to as real pointsets in the rest of this pa-
per. Table 2 shows that the percentage of any two points in a real
pointset sharing the same x-coordinate or y-coordinate is less than
11%, supporting our assumption of distinct x- and y-coordinates.

We define L-ness of P as the ratio of R(P) to B(P), where R(P) is
the area of the largest empty (isothetic) rectangle that (i) is contained
in the bounding box of P , (ii) contains one corner of the bounding
box of P , and (iii) contains no points in P . High R(P)/B(P) ratio
corresponds to large L-ness.

2.2 Probability that k Points Define the
Bounding Box

A bounding box can be represented by four extreme coordinate
values, i.e., xmin , xmax , ymin and ymax . Given unique x- and
y-coordinates, at most four points of a pointset can define the
pointset’s bounding box, where each of the points provides exactly
one of the four extreme coordinates. Further, at least two points
define the bounding box, where each of the points contains one ex-
treme x-coordinate and one extreme y-coordinate. We use Pr (p,k)
to denote the probability that the bounding box of a pointset P
(having cardinality p) is defined by k points (k ∈ {2, 3, 4}).

For k = 2, assume that points p1 = (x1,y1) and p2 = (x2,y2)
define the bounding box. Then, x1 (resp. y1) must be xmin or xmax
(resp.ymin orymax) out of thep x-coordinates (resp.y-coordinates),
and x2 (resp.y2) can only be the other extreme x (resp.y)-coordinate
out of p − 1 x-coordinates (resp. y-coordinates). Thus, Equation (1)
gives the probability Pr (p, 2).

For k = 4, each of four points can define only one extreme
coordinate of the bounding box. Assume that these points are
p1 = (xmin ,¬(ymin ∨ ymax)), p2 = (xmax ,¬(ymin ∨ ymax)), p3 =
(¬(xmin ∨ xmax),ymin), and p4 = (¬(xmin ∨ xmax),ymax). Then,
the probability that four points define the bounding box is as given
in Equation (3). Supplemental equations using chain rules to derive
probabilities are given in Equations (4)–(7). For example, Pr (p1) is
computed by finding the probability that a point has the minimum
x-coordinate and not an extreme y-coordinate. These probabilities
are each computed separately and are then multiplied together
since they are independent. The remaining probabilities in Equa-
tions (4)–(7) are computed in a similar fashion.

Table 3: Pr (p,k) for p ∈ [3, 10] and k ∈ {2, 3, 4}.

p Pr (p, k = 2) Pr (p, k = 3) Pr (p, k = 4)
3 0.3333 0.6667 0.0000
4 0.1667 0.6667 0.1667
5 0.1000 0.6000 0.3000
6 0.0667 0.5333 0.4000
7 0.0476 0.4762 0.4762
8 0.0357 0.4286 0.5357
9 0.0278 0.3889 0.5833
10 0.0222 0.3556 0.6222

Pr (p,k = 2) =
(
p

2

) (2
p

)2 (1
p − 1

)2
(1)

Pr (p,k = 3) = 1 − Pr (p,k = 2) − Pr (p,k = 4) (2)

Pr (p,k = 4) = 4!
(
p

4

)
Pr (p1 p2 p3 p4)

= 4!
(
p

4

)
Pr (p1)Pr (p2 |p1)Pr (p3 |p1p2)Pr (p4 |p1p2p3)

=

(
p

4

) (4!
(p2)(p − 1)2

)
(3)

For the remaining case of k = 3, we can calculate the probability
Pr (p, 3) using Equation (2). Table 3 provides a lookup table for
Pr (p,k) for k ∈ {2, 3, 4} and p ∈ [3, 10].

Pr (p1) =
(1
p

) (p − 2
p

)
(4)

Pr (p2 |p1) =
(1
p − 1

) (p − 3
p − 1

)
(5)

Pr (p3 |p1 · p2) =
(p − 2
p − 2

) (1
p − 2

)
(6)

Pr (p4 |p1 · p2 · p3) =
(p − 3
p − 3

) (1
p − 3

)
(7)

We use this probability in Algorithm 2 to determine the parame-
ter k . Subsequently, we use Algorithm 2 to create the real ′ pointsets,
as described in Section 4.

2.3 Independence of AR and R(P)/B(P)
To justify the experimental methodology used below, we prove the
intuitive claim that R(P)/B(P) is preserved when a 2D pointset P
is “stretched” (by scaling of x-coordinates and of y-coordinates)
into a pointset P ′ that has a different aspect ratio. We refer to this
property of pointsets as independence of AR and R(P)/B(P). We
show this independence of AR and R(P)/B(P) by (i) exhibiting an
appropriate 1-1 correspondence between pointsets P with bounding
box area B(P) and pointsets P ′ with bounding box area B(P ′), then
(ii) showing that the ratio R(P)/B(P) = R(P ′)/B(P ′) is preserved
by this correspondence. In Subsection 3.1, we measure R(P)/B(P)
without considering the effect of AR on L-ness of pointsets. Hence,
we prove the independence of R(P)/B(P) with AR below.
Fact 1. Scaling of x- and y-coordinates provides a (bidirectional)
1-1 mapping between pointsets P having unit square bounding box
B(P), and pointsets P ′, with |P | = |P ′ | and bounding box B′ having
an arbitrary aspect ratio.
Fact 1 is established as follows. Denote the width and height of B′
arew and h, respectively. We obtain pointset P ′ from P by scaling
x- and y-coordinates of points in P by w and h, respectively. As
a result, the x- and y-coordinates of the bounding box edges of
P ′ are also scaled by w and h. The inverse scaling procedure can
be applied to restore any such P ′ to the original P . The scaling of
coordinates thus provides a 1-1 correspondence between pointsets
having the same cardinality but different bounding box ARs.

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

4

Next, we say that the point (xi ,yi) in P corresponds to a point
(x ′i ,y

′
i) in P ′ if (x ′i ,y

′
i) = (w · xi ,h · yi). A bounding box-edge of P

analogously corresponds to a scaled bounding box-edge of P ′. For
example, Figure 5(b) shows a pointset P ′ obtained by scaling P (in
Figure 5(a)) by (w,h) = (w, 1). From our definitions, we say that
the point (xi ,yi) in P corresponds to the point (x ′i ,y

′
i) in P ′, and

the edge x = xsp of P corresponds to the edge x = x ′sp of P ′.
The following Fact 2 holds for pointsets (i) P with its largest

empty rectangle defined by two edges of the bounding box, x = xsp
and y = ysp , and two points, (x1,y1) and (x2,y2); and (ii) P ′, which
is created by scaling the x- and y-coordinates of points in P byw
and h, respectively.
Fact 2. Given P and P ′, the edges and points that define R(P)/B(P)
correspond to edges and points that define R(P ′)/B(P ′).

Figure 5: The pointsets (a) P and (b) P ′with the largest empty
rectangle colored green.

Fact 2 is established as follows. P contains p points, i.e.,
P = {(x1,y1), (x2,y2), · · · , (xp ,yp)}. Without loss of generality, we
assume that the bounding box of P has AR = 1, and we only scale
points in pointset P in the x-direction byw (i.e.,w > 0, h = 1) to ob-
tain P ′. P ′ also containsp points, P ′ = {(x ′1,y1), (x

′
2,y2), · · · , (x

′
p ,yp)},

where (x ′j ,yj) = (w · x j ,yj) for k ∈ [1,p]. The following treats the
case illustrated in Figure 5, namely, the case with the empty rectan-
gle at the lower-left corner of the bounding box, i.e., xsp < x1 < x2,
and ysp < y2 < y1. The other three cases are similarly analyzed.
R(P) is defined as

R(P) = (x2 − xsp) · (y1 − ysp) (8)
Assume toward a contradiction that the edges x = w · xsp ,

y = ysp , and the points (x ′1,y1) and (x
′
2,y2) do not form the largest

empty rectangle of P ′. Then, there must exist an empty rectangle
of P ′ such that

R(P ′) > w · R(P) (9)
Suppose that the largest empty rectangle of P ′ is defined by the

edges w · xsp and ysp and two points (x ′m ,ym) and (x ′n ,yn), with
{n,m} , {1, 2} and x ′sp < x ′m < x ′n and ysp < yn < ym . Then,
R(P ′) is calculated as

R(P ′) = (x ′n − x ′sp) · (ym − ysp) (10)
= (w · xn −w · xsp) · (ym − ysp) (11)
= w · (xn − xsp) · (ym − ysp) (12)

According to the definition of R(P), (xn − xsp) · (ym − ysp) ≤ R(P).
Therefore,

R(P ′) ≤ w · R(P) (13)
which contradicts Equation (9). This establishes Fact 2.

2.4 Efficient Calculation of R(P)
We now describe an efficient method to obtain R(P). Each of the
four corners of the bounding box may be the intersection of the two
edges that form R(P). For simplicity, we only describe our algorithm
for the corner (xmin ,ymin). The final result can be obtained by

invoking the algorithm on each corner of the bounding box of P
with small modifications and then returning the largest value, at
the cost of a constant-factor complexity increase.

Algorithm 1 describes the calculation of R(P). The algorithm
begins with pointset P sorted in ascending order of x-coordinates.
Lines 1 and 2 perform initializations. In Lines 3 – 8, we check
whether the current point has a smaller y-coordinate than the
stored value of y0. If so, the lower-left corner will form an empty
rectangle, and we update the maximum known rectangle area. The
same procedure is followed to compute the largest empty rectangle
at the remaining corners. We step through the sorted list of points,
check if each pair of points forms an empty rectangle, and if so,
update the maximum known rectangle area. The time complexity of
the algorithm is lower-bounded by the implied sorting step, which
gives a Θ(p loд p) time complexity.

Algorithm 1 CalcRP (Assuming lower-left corner is selected).
Input: P with x -coordinates in ascending order
Output: R(P)

1: R(P) = 0
2: y0 = y1
3: for i = 2 to p do
4: if yi ≤ y0 then
5: R(P) ← max (R(P), (xi − xmin) · (y0 − ymin))
6: y0 ← yi
7: end if
8: end for
9: return R(P)

3 REAL VS. RANDOM POINTSETS
In this section, we empirically demonstrate the significant difference
in L-ness between real and random pointsets. We then present a
method for generating pointsets with prescribed L-ness and aspect
ratio.

3.1 L-ness of Real vs. Random Pointsets
We experimentally compare the R(P)/B(P) distribution of 100K ran-
dom pointsets with the R(P)/B(P) distribution of real (placed net
pins) pointsets. Figure 6 shows the distributions of R(P)/B(P) in
random and real pointsets. In each plot, the x-axis denotes the
R(P)/B(P) ratio and the y-axis denotes the fraction of nets for
each R(P)/B(P) value. From the figure, we see that the placements
from commercial and academic placers result in pointsets with sig-
nificantly larger L-ness (i.e., larger R(P)/B(P) ratio) than random
pointsets.3 We also observe that the qualitative difference from
random pointsets holds across academic and commercial placers.

We believe that this large L-ness arises due to the following
reasons. Given a large chip area and a relatively small bounding
box (b0) area for any netn0, it is intuitive that the other nets incident
to the cells of net n0 have their bounding boxes outside b0. This
causes the cells to get pulled towards the boundary, and extend
the boundaries of net n0 due to multiple inter-related nets (i.e.,
intersecting hyperedges of the netlist). Further, low net degrees
usually result in a geometrically asymmetrical cell distribution,
increasing the L-ness of a particular net.

To confirm the statistical difference for p ∈ [3, 12], we perform
two tests: (i) bootstrapping the mean with a 95% confidence inter-
val [2], and (ii) Two-Sample Kolmogorov-Smirnov (KS) Test [16].
The bootstrap test provides a 0.95 confidence interval on the av-
erage of R(P)/B(P) for 10000 random pointsets. We compare the
means of R(P)/B(P) values for real pointsets with the 0.95 confi-
dence interval. Figure 7 shows that the means of real pointsets
do not lie within the confidence intervals of random pointsets for
3We have separately extracted net pin locations from an advanced processor design
from a leading semiconductor company, and confirmed that the R(P)/B(P) distribu-
tions follow the same trend as in Figure 6.

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

5

Table 4: Dnm for p ∈ [3, 12] using ICC/Innovus, Capo and
ePlace placers.

p ICC/Innovus Capo ePlace
3 3.363 6.160 3.256
4 3.788 6.204 3.926
5 5.159 6.913 4.240
6 4.641 5.605 3.341
7 3.658 5.150 2.884
8 3.219 4.500 2.481
9 1.737 2.953 2.747
10 4.754 3.413 3.777
11 5.790 3.987 3.162
12 7.106 4.028 4.708

any p ∈ [3, 12]. Hence, real pointsets have a statistically significant
larger R(P)/B(P) compared to random pointsets.

Figure 6: Distribution of R(P)/B(P) from (a) random
pointsets, (b) ICC [22] and Innovus [19] placements, (c)
Capo [4] placements, and (d) ePlace [12] placements.

Figure 7: 95% confidence interval for R(P)/B(P) in random
pointsets and mean R(P)/B(P) for real pointsets.

The Two-Sample Kolmogorov-Smirnov (KS) Test [2] states that
for a confidence interval of 95%, we have a statistically significant
difference if the KS statistic Dnm > 1.36. The KS statistic is com-
puted as

Dnm =
√
nm/(n +m) · sup |F (x) −G(x)| (14)

where n andm are sample sizes of random and real pointsets re-
spectively, F and G are cumulative distribution functions (CDFs)
(with 100 bins of width 0.01) of R(P)/B(P) values of random and
real pointsets respectively. sup is the maximum distance between
F and G for 0 ≤ x ≤ 1. Table 4 shows the KS statistics. We see
that Dnm > 1.36 for all random versus real pointsets, again con-
firming the statistically significant difference between R(P)/B(P)
distributions of random and real pointsets.

Algorithm 2 GenRandPointset.
Input: p , k , RPBP , ∆er r , AR
Output: P with R(P)/B(P) ∈ [RPBP − ∆er r , RPBP + ∆er r]

1: P ← �
2: R(P)/B(P) ← 0
3: P ← дetBBoxPts(P, k, RPBP, ∆er r , AR)
4: while |P | < p do
5: P ← AddPoint (P)
6: if calcRP (P) < RPBP − ∆er r then
7: RemovePoint (P)
8: end if
9: end while
10: if calcRP (P) ≤ RPBP + ∆er r then
11: return P
12: else
13: return −1
14: end if

3.2 Pointset Generation
Since random pointsets differ significantly from real placed pin loca-
tions, and since it is challenging to obtain real placement data, there
is a need to generate pointsets with prescribed L-ness. Here, we
present an algorithm (Algorithm 2) to generate a random pointset
with prescribed R(P)/B(P) (L-ness) and aspect ratio (AR). The in-
puts include #pins p, intended number of points k that define the
bounding box (see Section 2.2), intended L-ness range [RPBP −
∆err ,RPBP + ∆err], and aspect ratio AR. The output is a pointset
P that satisfies the L-ness range constraint.

Lines 1 and 2 perform initializations. In Line 3, we generate k
points on the bounding box. Since R(P)/B(P) will monotonically
decrease as we add one more point to an existing pointset, the
function дetBBoxPts comprehends the desired L-ness range and
always gives k points with R(P)/B(P) ≥ RPBP − ∆err . These k
points form a bounding box with area 1M x 1M and aspect ratioAR.
In Lines 5 – 9, we iteratively add one point with random location
strictly inside the bounding box and check L-ness. If we do not
meet the L-ness lower bound, the last added point is removed and
reselected. The points are added with unique x- and y-coordinates,
following the assumption of points in general position in Section 2.1.
In Lines 11 and 12, we return the pointset satisfying the L-ness
range constraint and discard the result otherwise. In our actual
implementation, we can reuse discarded pointsets when generating
for a different L-ness range – e.g., during the process of reproducing
a distribution such as in Figure 6(b)-(d).

Algorithm 2 is qualitatively equivalent to randomly generat-
ing a pointset and checking if the pointset is valid, i.e., having
R(P)/B(P) ∈ [RPBP − ∆err ,RPBP + ∆err]. If we assume towards
a contradiction that it does not, then at least one of the points we
remove in Line 8 would contribute to a valid pointset. Since adding
points within the bounding box cannot increase the R(P)/B(P)
value of a pointset, the points in this pointset cannot be part of a
pointset with R(P)/B(P) within the prescribed L-ness range. Hence,
Algorithm 2 returns qualitatively the same pointsets as repeated
generation of a pointset and checking whether the pointset has
R(P)/B(P) within the prescribed L-ness range. However, Algorithm
2 is much more efficient, e.g., we can produce 100K pointsets tar-
geted to match the distribution of Figure 6(d) with p = 7 in 75.54
seconds with a 2.7 GHz Intel Xeon server.

4 IMPLICATIONS FOR RSMT HEURISTICS
In this section, we perform experiments to analyze the impact of
L-ness on the performance (tree cost / wirelength estimation) of
various RSMT heuristics. We first show how wirelength changes
with different L-ness. Then, we show the RSMT cost difference
between random and real pointsets.

4.1 Impact of L-ness on RSMT Heuristics
In this subsection, we study the change inwirelengthwithR(P)/B(P)
(L-ness). We generate 10K pointsets for each R(P)/B(P) from 0.2

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

6

to 0.8, with a step of 0.1 and ∆err = 0.02. We use a fixed B(P) size
of 1M×1M. We evaluate the wirelength cost of four heuristics: (i)
rectilinear MST implementation by Kahng et al. [21] using Prim’s
algorithm, (ii) Prim-Dijkstra (PD) [1] with α = 0.3 (PD 0.3) and
with α = 1.0 (PD 1.0 constructs a shortest path tree, and is equiv-
alent to Dijkstra’s algorithm [9]), (iii) HVW [11] algorithm as a
post-processing of PD 0.3 (HVW 0.3) and PD 1.0 (HVW 1.0), and
(iv) FLUTE [8].

Figure 8 shows the wirelength values. The x-axis denotes the
R(P)/B(P) ratio and the y-axis represents the total wirelength for
all 10K pointsets per each R(P)/B(P). Each row of figures represents
a particular value of AR = {1, 2, 4}; each column represents a value
of p = {4, 5, 7}. We see that wirelength decreases as R(P)/B(P)
increases, indicating that we should expect lower wirelength for
real pointsets which tend to have larger R(P)/B(P) than random
pointsets. Also, difference in wirelength among heuristics decreases
with increase in R(P)/B(P). Although PD 0.3 and HVW 0.3 have dif-
ferent optimization objectives (i.e., radius and wirelength balance)
from FLUTE, wirelength follows the same trend with R(P)/B(P)
for all heuristics. These results suggest that assessments of cost or
accuracy benefit versus runtime overhead when using these heuris-
tics may have been misguided by the use of random pointsets in
experimental studies, and that random pointsets might not give suf-
ficient insight into the benefits of RSMT heuristics. We also observe
that crossovers between heuristics tend to decline as AR increases.

4.2 RSMT Cost on Real Pointsets
Previous works [1][11] use random pointsets to verify the accu-
racy of RSMT heuristics. However, we reevaluate their accuracy
and show their performance difference considering L-ness in real
pointsets. We first generate real’ pointsets with R(P)/B(P) and AR
distributions of real pointsets from academic and commercial place-
ments, and show that our Algorithm 2 generates statistically similar
pointsets to real placements. We then use real’ pointsets to analyze
the accuracy of heuristic WL estimation.

To generate real’ pointsets, we extract the distributions ofR(P)/B(P)
and AR from real pointsets for p ∈ [3, 12] and use these distribu-
tions to create 10K real’ pointsets for each p. We run FLUTE on
all pointsets and perform the two-sample Kolmogorov-Smirnov
test (KS) test on the wirelength distributions with a 95% confidence
interval, using 50 bins to generate the CDFs. Table 5 shows that
eight of nine values are smaller than the minimum Dnm value in
Table 4. This shows that real’ pointsets give a good representation
of real pointsets for most cases. Figure 9 shows one case with a
Kolmogorov-Smirnov failure. However, the probability distribu-
tions of wirelengths from real’ and real pointset distributions are
still similar in appearance.

Table 5: Dnm for wirelengths on real and real’ pointsets.

p 4 5 6 7 8 9 10 11 12
Dnm 1.189 1.063 1.402 1.788 1.690 1.621 1.026 1.086 1.601

We use the above real’ pointsets to evaluate the accuracy of each
heuristics. Tables 6 and 7 report the errors of these heuristics versus
FLUTE4, and compare the differences in errors for real and random
pointsets. A positive value in Table 6 means a larger wirelength is
given compared to FLUTE.

Table 7 reports the percentage difference for each heuristic be-
tween real and random pointsets as Errorr eal − Errorrandom . A
negative value means a smaller error when using real pointsets, and
a positive value means a larger error, compared to using random
pointsets. Hence, Tables 6 and 7 show that the errors of heuristics
4Errors are calculated relative to FLUTE, since FLUTE is optimal for p ≤ 9 and
introduces on average 0.16% RSMT error for p ∈ [10, 17] [8].

Table 6: Percent error of heuristics vs. FLUTE for random
and real pointsets.

p Percent error of heuristics vs. FLUTE on random pointsets
HVW 0.3 RMST PD 0.3 HVW 1.0 PD 1.0

4 1.93% 10.41% 12.35% 13.57% 44.05%
5 2.76% 11.15% 13.94% 16.14% 51.22%
6 3.38% 11.46% 14.96% 19.00% 56.94%
7 3.91% 11.52% 15.44% 21.08% 61.72%
8 4.47% 11.68% 16.02% 23.06% 65.29%
9 4.80% 11.77% 16.44% 24.72% 68.69%
10 5.07% 11.72% 16.71% 26.04% 71.06%
11 5.49% 11.80% 17.20% 27.34% 73.57%
12 5.57% 11.73% 17.24% 28.55% 75.81%
p Percent error of heuristics vs. FLUTE on real pointsets

HVW 0.3 RMST PD 0.3 HVW 1.0 PD 1.0
4 1.54% 8.96% 10.43% 15.29% 50.04%
5 1.92% 9.03% 10.90% 18.09% 58.06%
6 2.35% 9.31% 11.64% 20.37% 63.56%
7 2.99% 9.86% 12.77% 22.52% 68.10%
8 3.37% 10.19% 13.42% 24.42% 72.17%
9 4.01% 10.75% 14.58% 26.05% 74.38%
10 3.93% 10.38% 14.18% 28.00% 78.88%
11 4.19% 10.46% 14.44% 29.78% 82.00%
12 4.57% 10.60% 15.05% 30.89% 83.70%

Table 7: Difference in % error between heuristics and FLUTE
for real and random pointsets.

p Difference in % error between real and random pointsets
HVW 0.3 RMST PD 0.3 HVW 1.0 PD 1.0

4 -0.39% -1.45% -1.92% 1.72% 5.99%
5 -0.84% -2.12% -3.04% 1.95% 6.84%
6 -1.03% -2.15% -3.32% 1.37% 6.62%
7 -0.92% -1.66% -2.67% 1.44% 6.38%
8 -1.10% -1.49% -2.60% 1.36% 6.88%
9 -0.79% -1.02% -1.86% 1.33% 5.69%
10 -1.14% -1.34% -2.53% 1.96% 7.82%
11 -1.30% -1.34% -2.76% 2.44% 8.43%
12 -1.00% -1.13% -2.19% 2.34% 7.89%

HVW 0.3, RMST and PD 0.3 are overestimated, whereas the errors
of heuristics HVW 1.0 and PD 1.0 are underestimated. Since FLUTE
is the most accurate of these heuristics and wirelength can only be
overestimated when constructing spanning trees, all values in the
tables are positive.

Table 7 can also be seen as a lookup table to improve the accuracy
of existing RSMT cost estimators. For a given heuristic, more accu-
rate wirelength values can be obtained by subtracting the errors
reported in Table 7 from the wirelength of random pointsets.

5 AN IMPROVEDWL ESTIMATION LOOKUP
TABLE

In this section, we present a lookup table (LUT) for improved wire-
length estimation. Previously, Caldwell et al. [3] constructed a
lookup table indexed with p and AR. We build upon this table
and add R(P)/B(P) as a third parameter dimension for improved
accuracy of wirelength estimation, as shown in Section 4. We use
FLUTE to obtain the RSMT wirelength (see Footnote 4).

Table 8 shows a portion of our lookup table. 5 In the table, we
report three sets of values for each p. The first row (W 1) shows
the FLUTE wirelength value by generating and averaging the wire-
length over 1000 pointsets with AR = {1, 2, 4}. These values are
equivalent to the wirelength values reported by Caldwell et al. [3].
The second row (W 2) shows the FLUTE wirelength with specific
R(P)/B(P) = {0.2, 0.4, 0.6, 0.8} (generated using Algorithm 2), av-
eraged over 1000 pointsets. The third row (W 3) is the percent error
betweenW 1 andW 2, i.e., W 2−W 1

W 1 · 100%. For example, with p = 6
and AR = 1, we see that theW 1 row contains the value 2.39; this
is the single value for estimated RSMT cost given by [3]. TheW 2
row contains four values, 2.71, 2.37, 2.22 and 2.10; these are our
estimated RSMT costs with R(P)/B(P) ratios of 0.2, 0.4, 0.6 and 0.8,
respectively. TheW 3 row gives the four corresponding percentage
differences between the L-ness dependent estimates and the single
5The entire lookup table is available at http://vlsicad.ucsd.edu/~sriram/Final_WL_
estimate_LUT.htm

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

7

http://vlsicad.ucsd.edu/~sriram/Final_WL_estimate_LUT.htm
http://vlsicad.ucsd.edu/~sriram/Final_WL_estimate_LUT.htm

Figure 8: Change in wirelength with R(P)/B(P) for nets with AR = 1 (a, b, c), AR = 2 (d, e, f) and AR = 4 (g, h, i) for p ∈ {4, 5, 7}.

Figure 9: Wirelength distribution functions for (a) real
pointsets and (b) real’ pointsets for p = 12.

estimate of [3]. We omit estimates for p ∈ [2, 3] since these RSMT
costs are the half-perimeter wirelengths of the bounding boxes.

Runtime.We compare the runtime using different wirelength
estimators: (i) FLUTE, (ii) our LUT, and (iii) rectilinear MST (RMST)
implementation by Kahng et al. [21] using Prim’s algorithm.6 All
algorithms are implemented using C and are executed on a 2.7 GHz
Intel Xeon server with 8 threads. We evaluate using 500K real and
random pointsets. Table 9 shows that our improved lookup table
6We use an O (n2) implementation since it runs much faster than other O (n loд n)
algorithms for small p .

runs significantly faster than FLUTE for all values of p ∈ [2, 12]
and faster than RMST except for p = 4. We believe that this signif-
icant speedup (∼10×), at the cost of small loss of accuracy of WL
estimation, can be beneficial in modern-day contexts that involve
very large designs, highly iterative methods, and a requirement for
reduced tool turnaround times.

Accuracy. Table 10 reports the percent error, along with stan-
dard deviation and maximum error in wirelength estimates com-
pared to FLUTE, using our lookup table (LUT), Caldwell LUT [3]
and RMST implementation [21]. Percent error is calculated as
Error =

(WLheur−WLFLUT E
WLFLUT E

)
· 100%. Our lookup table dominates

that of [3] in all error metrics evaluated. However, our improved
lookup table does give a higher standard deviation and maximum
absolute error for higher values of p when compared to RMST. We
note that the LUT errors reported in Table 10 are the averages of
absolute errors, whereas RMST error is always positive. Figure 10
shows error distributions for the LUT and RMST estimators for
p = 9.

WL estimation for pointsets with p ∈ [2, 3] using our LUT has
no error. (In our studies, 68% of the nets in a 16nm implementation
of ARM Cortex A53 have p = 2 or p = 3.) The WL estimation error
using our LUT for p ∈ [4, 12] is 1 − 2% lower than the error using

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

8

Table 8: Wirelength lookup table using aspect ratio and
R(P)/B(P).

AR 1 2 4
R(P)/B(P) 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

p=4
W1 2.14 2.25 2.60
W2 2.66 2.23 2.10 2.04 2.63 2.32 2.22 2.17 2.86 2.66 2.58 2.54
W3 24.37 4.24 -2.03 -4.51 16.89 3.31 -1.48 -3.77 9.93 2.20 -0.76 -2.24

p=5
W1 2.27 2.36 2.69
W2 2.66 2.30 2.16 2.08 2.63 2.39 2.27 2.20 2.86 2.71 2.63 2.58
W3 17.02 1.22 -4.80 -8.57 11.41 1.25 -3.67 -6.84 6.38 0.66 -2.12 -4.19

p=6
W1 2.39 2.48 2.78
W2 2.71 2.37 2.22 2.10 2.70 2.45 2.34 2.23 2.93 2.77 2.69 2.61
W3 13.58 -0.90 -7.21 -12.00 8.95 -1.13 -5.81 -10.28 5.39 -0.30 -3.17 -6.21

p=7
W1 2.52 2.59 2.87
W2 2.78 2.44 2.27 2.13 2.77 2.53 2.39 2.26 3.00 2.82 2.73 2.64
W3 10.13 -3.32 -9.84 -15.42 7.12 -2.38 -7.76 -12.70 4.56 -1.58 -4.73 -8.13

p=8
W1 2.63 2.69 2.96
W2 2.83 2.50 2.32 2.16 2.86 2.59 2.44 2.29 3.06 2.89 2.79 2.67
W3 7.57 -4.81 -11.62 -17.96 6.18 -3.72 -9.30 -15.01 3.50 -2.33 -5.86 -9.96

p=9
W1 2.73 2.81 3.03
W2 2.90 2.57 2.37 2.18 2.92 2.67 2.49 2.32 3.13 2.95 2.83 2.69
W3 6.35 -5.72 -13.07 -20.02 3.99 -5.14 -11.30 -17.51 3.34 -2.72 -6.49 -11.14

p=10
W1 2.84 2.91 3.13
W2 2.98 2.65 2.42 2.21 2.99 2.73 2.54 2.34 3.19 3.01 2.88 2.72
W3 4.77 -6.80 -14.68 -22.07 2.79 -6.24 -12.71 -19.53 1.99 -3.70 -8.10 -13.16

p=11
W1 2.95 3.00 3.22
W2 3.03 2.71 2.47 2.24 3.07 2.79 2.59 2.37 3.27 3.07 2.91 2.75
W3 2.65 -8.22 -16.15 -24.15 2.38 -6.85 -13.83 -21.04 1.64 -4.52 -9.48 -14.69

p=12
W1 3.04 3.09 3.30
W2 3.11 2.77 2.52 2.27 3.15 2.85 2.63 2.40 3.33 3.13 2.97 2.77
W3 2.43 -8.85 -16.97 -25.45 1.80 -7.68 -14.89 -22.47 1.04 -5.14 -10.07 -15.97

p=13
W1 3.14 3.20 3.39
W2 3.18 2.84 2.56 2.29 3.21 2.92 2.68 2.42 3.40 3.19 3.02 2.80
W3 1.14 -9.56 -18.48 -26.94 0.17 -8.70 -16.25 -24.27 0.44 -5.80 -11.02 -17.28

p=14
W1 3.23 3.27 3.48
W2 3.24 2.90 2.62 2.32 3.28 2.98 2.73 2.44 3.47 3.25 3.05 2.83
W3 0.45 -10.08 -19.00 -28.17 0.27 -8.82 -16.49 -25.32 -0.43 -6.64 -12.22 -18.76

p=15
W1 3.34 3.38 3.55
W2 3.32 2.97 2.66 2.35 3.35 3.04 2.77 2.48 3.54 3.29 3.10 2.86
W3 -0.60 -11.01 -20.45 -29.62 -0.86 -10.06 -18.19 -26.71 -0.31 -7.20 -12.75 -19.51

Table 9: Execution time (seconds) for 0.5M pointsets withp ∈
[2, 12].

p Random pointsets Real pointsets
FLUTE Impr. LUT RMST FLUTE Impr. LUT RMST

2 0.051 0.003 0.012 0.050 0.003 0.012
3 0.185 0.004 0.023 0.254 0.006 0.040
4 0.229 0.047 0.045 0.295 0.065 0.050
5 0.262 0.060 0.061 0.240 0.061 0.063
6 0.299 0.077 0.095 0.328 0.116 0.109
7 0.352 0.093 0.135 0.318 0.089 0.130
8 0.431 0.111 0.173 0.368 0.104 0.171
9 0.576 0.127 0.216 0.492 0.119 0.223
10 1.192 0.146 0.258 1.248 0.134 0.259
11 1.761 0.164 0.303 1.241 0.152 0.314
12 1.804 0.184 0.378 1.607 0.166 0.360

Table 10: Error for p ∈ [2, 12] with real pointsets.

p Absolute Error Std. Dev. of Abs. Error Max. Absolute Error
Impr. Cald- RMST Impr. Cald- RMST Impr. Cald- RMST
LUT well LUT well LUT well

3 0.00% 0.00% 6.13% 0.00% 0.00% 7.81% 0.00% 0.00% 33.31%
4 4.06% 5.61% 6.01% 3.62% 3.67% 6.49% 24.51% 28.19% 46.17%
5 4.47% 7.14% 6.20% 3.76% 4.48% 6.01% 24.94% 23.44% 42.73%
6 4.70% 8.07% 6.48% 3.95% 5.44% 5.66% 25.53% 25.24% 36.02%
7 4.93% 8.75% 6.82% 4.04% 6.41% 5.36% 28.20% 25.71% 34.60%
8 5.17% 9.85% 7.15% 4.21% 7.66% 5.14% 27.56% 31.46% 32.25%
9 5.28% 9.81% 7.73% 4.21% 7.88% 4.90% 30.95% 37.03% 32.13%
10 5.75% 11.38% 7.35% 4.69% 9.39% 4.76% 32.94% 42.16% 28.06%
11 6.00% 12.47% 7.14% 4.85% 10.37% 4.59% 37.01% 46.94% 27.46%
12 6.46% 12.62% 7.18% 5.32% 10.82% 4.58% 40.35% 52.94% 28.25%

RMST as an estimate. Thus, in terms of speed and accuracy, the
new LUT provides a non-dominated wirelength estimate.7

6 CONCLUSION
In this paper, we have given a formal definition of the concept of
L-ness, that is, the phenomenon that a net’s pin locations within a
real placement tend to be clustered towards two adjacent edges of
7For p ∈ [10, 12] our LUT is approximately 10 times faster than FLUTE and twice as
fast as RMST.

Figure 10: Error distributions with (a) lookup table and (b)
RMST estimators for p = 9.

the net’s bounding box. We have provided empirical data showing
the extent to which real pointsets have larger L-ness values than
random pointsets. This data suggests at least the possibility that
previous usage of random pointsets may have led to inaccurate
assessments of RSMT heuristics and RSMT cost estimators. With
this in mind, we describe a pointset generation function which can
produce artificial pointsets that are similar to real placed pointsets.
We furthermore present an improved lookup table for RSMT cost
estimation that is sensitive to L-ness of a pointset; its implementa-
tion gives a speed-accuracy tradeoff point between FLUTE [8] and
a fast rectilinear MST implementation [21].

Our ongoing and future works seek ways to exploit the L-ness
attribute to achieve better estimates of routed WL or FLUTE heuris-
tic RSMT costs – e.g., after placement and without any running
of global/detailed routers. We are also exploring the direct opti-
mization of an L-ness-aware wirelength estimate during placement.
A high-fidelity wirelength predictor, congestion- and DRC-aware
wirelength predictor, as well as hierarchical placement-based pre-
dictors are also of interest. Other future directions include tree
topology generation considering L-ness and objectives such as
timing or power, as well as comprehension of driver vs. sink pin
locations.

7 ACKNOWLEDGMENTS
We thank the authors of ePlace [12] for providing the executable
that we used in our experiments. ABKGroup research is supported
by NSF, Samsung, Qualcomm, NXP, Mentor Graphics and C-DEN.

REFERENCES
[1] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng andD. Karger, “Prim-Dijkstra Tradeoffs for Improved Performance-

driven Routing Tree Design”, IEEE TCAD 14(7) (1995), pp. 890-896.
[2] J. Bloom and J. Orloff, 18.05 Introduction to Probability and Statistics, Cambridge, Massachusetts Institute of

Technology: MIT OpenCourseWare, 2014. https://ocw.mit.edu
[3] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A. Zelikovsky, “On Wirelength Estimations for Row-

Based Placement”, IEEE TCAD 18(9) (1999), pp. 1265-1278.
[4] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive Bisection Alone Produce Routable Placements”,

Proc. DAC, 2000, pp. 477-482.
[5] W.-T. J. Chan, A. B. Kahng and J. Li, “Revisiting 3DIC Benefit with Multiple Tiers”, Proc. SLIP, 2016, pp. 6:1-6:8.
[6] B. Chazelle, R. L. Drysdale and D. T. Lee, “Computing the Largest Empty Rectangle”, SIAM J. Computing 15(1)

(1986), pp. 300-315.
[7] C. L. Cheng, “RISA: Accurate and Efficient Placement Routability Modeling”, Proc. ICCAD, 1994, pp. 690-695.
[8] C. Chu and Y. Wong, “FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal Tree Algorithm for VLSI

Design”, IEEE TCAD 27(1) (2008), pp. 70-83.
[9] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs”, Numerische Mathematik 1 (1959), pp.

269-271.
[10] A. E. Dunlop and B. W. Kernighan, “A Procedure for Placement of Standard-Cell VLSI Circuits”, IEEE TCAD 4(1)

(1985), pp. 92-98.
[11] J. Ho, G. Vijayan and C. K. Wong, “New Algorithms for the Rectilinear Steiner Tree Problem”, IEEE TCAD 9(2)

(1990), pp. 185-193.
[12] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo, C.-C. Teng and C.-K.

Cheng, “ePlace-MS: Electrostatics based Placement for Mixed-Size Circuits”, IEEE TCAD 34(5) (2015), pp. 685-698.
[13] I. L. Markov, J. Hu and M.-C. Kim, “Progress and Challenges in VLSI Placement Research”, Proc. ICCAD, 2015,

pp. 1985-2003.
[14] A. Naamad, D. T. Lee andW. L. Hsu, “On the Maximum Empty Rectangle Problem”,Discrete Applied Mathematics

8(3) (1984), pp. 267-277.
[15] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke and C. Zhuo, “The ISPD-2012 Discrete Cell Sizing Contest

and Benchmark Suite”, Proc. ISPD, 2012, pp. 161-164.
[16] D. Panchenko, 18.650 Statistics for Applications, Cambridge, Massachusetts Institute of Technology: MIT Open-

CourseWare, 2004. https://ocw.mit.edu
[17] N. Viswanathan, C. J. Alpert, C. C. N. Sze, Z. Li and Y.Wei, “The DAC 2012 Routability-driven Placement Contest

and Benchmark Suite”, Proc. DAC, 2012, pp. 774-782.
[18] ARM Cortex A53 Processor. https://developer.arm.com/products/processors/cortex-a/cortex-a53
[19] Cadence Innovus User Guide.
[20] OpenCores: Open Source IP-Cores. http://www.opencores.org
[21] RMST-Pack: Rectilinear Minimum Spanning Tree Algorithms [Source code]. http://vlsicad.ucsd.edu/GSRC/

bookshelf/Slots/RSMT/RMST
[22] Synopsys IC Compiler User Guide.

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

9

https://ocw.mit.edu
https://ocw.mit.edu
https://developer.arm.com/products/processors/cortex-a/cortex-a53
http://www.opencores.org
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/RMST
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/RSMT/RMST

	Abstract
	1 Introduction
	1.1 Motivation: Non-uniformity of Net Pin Placements
	1.2 Related Works
	1.3 Contributions and Outline of This Paper

	2 Preliminaries
	2.1 Notations
	2.2 Probability that k Points Define the Bounding Box
	2.3 Independence of AR and R(P)/B(P)
	2.4 Efficient Calculation of R(P)

	3 Real vs. Random Pointsets
	3.1 L-ness of Real vs. Random Pointsets
	3.2 Pointset Generation

	4 Implications for RSMT Heuristics
	4.1 Impact of L-ness on RSMT Heuristics
	4.2 RSMT Cost on Real Pointsets

	5 An Improved WL Estimation Lookup Table
	6 Conclusion
	7 Acknowledgments
	References

