
Optimal Multi-Row Detailed Placement for Yield and Model-Hardware
Correlation Improvements in Sub-10nm VLSI

Changho Han+, Kwangsoo Han‡, Andrew B. Kahng†‡, Hyein Lee‡, Lutong Wang‡ and Bangqi Xu‡
†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA

+Samsung Electronics Co., Ltd., Hwaseong-si, Gyeonggi-do, South Korea

{kwhan, abk, hyeinlee, luw002, bax002}@ucsd.edu, changho1.han@samsung.com

Abstract—In sub-10nm nodes, a change or step in diffusion height
between adjacent standard cells causes yield loss as well as a form of
model-hardware miscorrelation called neighbor diffusion effect (NDE).
Cell libraries must inevitably have multiple diffusion heights (numbers
of fins in PFETs and NFETs) in order to enable flexible exploration of
the power-performance envelope for design. However, this brings step-
induced risks of NDE, for which guardbanding is costly, as well as yield
loss. Special filler cells can protect against harmful NDE effects, but are
costly in terms of area. In this work, we develop dynamic programming-
based single-row and double-row detailed placement optimizations that
optimally minimize the impacts of NDE. Our algorithms support a richer
set of cell movements than in previous works – i.e., flipping, relocating and
reordering within the original row; we also consider cell displacement and
flipping costs. Importantly, to our knowledge, our dynamic programming-
based optimal detailed placement algorithm is the first to handle multiple
rows with multiple-height cells that can be reordered. We further develop
a timing-aware approach, which is capable of recovering (or, improving)
the worst negative slack (WNS) by creating additional diffusion steps
around timing-critical cells.

I. INTRODUCTION

In advanced technology nodes where the sizes of geometries

are near limits of underlying patterning technology, detailed cell

placement has become more restricted by various front-end-of-line

(FEOL) rules [6]. Even after such FEOL rules are introduced to

guarantee reliable patterning for a given lithographic patterning

technology, there exist “weak” patterns that cause model-hardware

miscorrelation. An important type of weak pattern is a diffusion step,

which corresponds to a difference in the heights of the diffusion areas

between two neighboring transistors. Figure 1(a) illustrates three

diffusion steps between four transistors. If the heights of neighboring

diffusion regions are different, there is a diffusion step, e.g., transistor

T2 has a diffusion step to each of T1 and T3. The diffusion step causes

(i) yield loss due to the corner rounding effect in patterning [24]; and

(ii) neighbor diffusion effect (NDE) [2].

Yield loss. In older technology nodes, resolution of conventional

193i lithography is sufficient for patterning of diffusion geometries.

Thus, the diffusion region of each transistor is patterned separately.

However, in advanced nodes, due to the small geometries and

limited resolution of the patterning technologies, it is impractical

to pattern each diffusion shape separately. Therefore, the diffusion

shapes of transistors are merged and patterned as a single polygon;

the transistors are then separated by using diffusion breaks (which are

achieved by applying diffusion cuts) [22], as shown in Figure 1(a).

Figure 1(b) illustrates the desired pattern of a single polygon to

generate the diffusion regions of four transistors. The actual pattern

of the polygon is shown in Figure 1(c). Figure 1(d) illustrates the

final printed diffusion layout with diffusion cuts. At the boundaries of

diffusion where diffusion steps exist, fin shapes and diffusion shapes

are distorted due to the corner rounding phenomena in lithography.

A distorted and/or sharp-angled end of a fin may cause an increase

in electrical field, resulting in gate oxide breakdown [18]. Further,

such distorted diffusion shapes cause dramatic shifts in threshold

Fig. 1: (a) Diffusion step and fin spacing, (b) desired pattern, (c)

actual diffusion region showing corner rounding, and (d) diffusion

breaks (after diffusion cuts applied).

voltage (Vt), or even device failure in sub-10nm nodes.1 This Vt

shift or device failure has negative impact on design performance

and quality. For example, Vt variation can cause setup time and/or

hold time violations in a design. As a result, the maximum frequency

that the design can achieve is reduced, or the design can even fail.

Our preliminary study (VGA, 85% utilization in an N7 (7nm) design

enablement) shows that approximately 60% of the adjacent pairs of

cell instances have inter-cell steps, with an estimated impact on yield

of -3.6%.2 In light of this, minimizing diffusion steps helps to recover

the yield of designs by reducing Vt (and thus speed) variation of

transistors.

Neighbor diffusion effect. NDE refers to the impact of the horizontal

spacing between diffusion regions on the performance of transistors.

More specifically, the drive strength (i.e., Ion) and the leakage

power (i.e., Ioff) of a transistor fin is a function of the horizontal

spacing to the adjacent diffusion regions of the transistor fin. Since

NDE changes the electrical characteristics of transistors, it affects

the power, performance and area of designs [2]. For example,

Figure 1(a) shows the transistor fins A and B with the spacings to

their neighboring diffusion area, i.e., dA and dB , respectively. As dA

and dB are different, Ion and Ioff of the two transistors are different

(e.g., Ioff (A) = f(dA) �= Ioff (B) = f(dB)). Notably, Ioff

(leakage) is changed significantly by NDE. In the 10nm node, leakage

variation can be 2× per transistor (i.e., varying across [0.5×Ioff,nom,

2×Ioff,nom] or an even wider range) depending on the STI process

and device types [24]. For a single inverter with a diffusion step next

to the PFET and a diffusion step next to the NFET, the two devices

1According to our collaborator [24], there can be >150mV Vt shift in the
10LPE node, which is > 3× the allowed variation range.

2Based on guidance from our collaborator [24], after scaling to account for
our small testcase sizes, we assume a failure rate of 2ppm for each step, and
1ppm after we remove the step. See Table IV in Section V below.

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 667

in combination result in higher leakage, but their respective impacts

on Ion (timing) will balance out [24].

In this work, we use a bimodal assumption to simplify the NDE

problem: either of two leakage values is assumed for a given

transistor, depending on whether there exists a diffusion region on the

nearest neighboring site of the transistor. In a conventional place-and-

route flow, intra-cell NDE (i.e., NDE effect within a standard cell) is

captured by library characterization since the diffusion shapes within

a cell are pre-determined. However, it is difficult to capture inter-cell

NDE since neighboring diffusion shapes are determined by detailed

placement. Thus, in general, library characterization always assumes

existence of a full-height neighboring diffusion region on standard

cell boundaries, which causes miscorrelation between the model

(i.e., library) and the hardware (i.e., diffusion shapes at standard

cell boundaries and their device performance impacts) in a design.

Therefore, minimizing diffusion steps in detailed placement is a key

idea toward reduction of model-hardware miscorrelation.

Current limitations and our approach. In order to reduce diffusion

steps, special non-functional filler cells are developed for instantiation

between functional cells [15]. However, the solution space is limited

given a fixed layout, and this approach (effectively similar to cell

padding) is expensive in terms of area. Other works [5] [14][19][23]

propose graph-algorithmic or dynamic programming methods to

resolve complex design rules in advanced nodes. However, the

solution spaces considered are typically limited due to the assumption

of (ordered)-single-row placement.3 Recent works [13][21] on multi-

row detailed placement involve a heuristic approach, and no advanced

node rules are considered.

In this paper, we present an optimal multi-row detailed placement

optimization, with support of a richer set of cell movements than

previous works, to reduce inter-cell steps. To our knowledge, ours

is the first optimal detailed placement framework to incorporate all

types of cell movements, with support of multi-height cells. Our main

contributions are summarized as follows.

• We propose an optimal single-row dynamic programming-based

approach to minimize a cost function that includes diffusion

steps. Our proposed algorithm is capable of all types of cell

movements – i.e., cell variants, relocating, and reordering (i.e.,

P-reordering with P > 2).

• We extend our approach to achieve an optimal double-row
dynamic programming-based approach with support of movable,

and partially reorderable, double-height cells.

• We extend our formulation to a potential timing-aware optimiza-

tion that leads to 6× increase in intentional steps around timing-

critical cells to improve the timing performance.

• We achieve up to 90% inter-cell diffusion step reduction

compared to the current tool flow.

The remainder of this paper is organized as follows. Section II

reviews related works. Section III describes the problem formulation

and dynamic programming-based single-row detailed placement

methodology. Section IV describes the double-row detailed placement

flow. In Section V, we describe our experimental setup and results.

Section VI gives conclusions and directions for ongoing work.

II. PREVIOUS WORK

We classify relevant previous works on detailed placement into

three categories: (i) detailed placement for advanced nodes, (ii) mixed

cell-height placement, and (iii) NDE-aware detailed placement.

3Lin et al. [14] propose a P-reordering problem. However, only 2-
reordering (i.e., neighbor cell switching) is presented. We describe our
methodology to handle the P-reordering problem in Section III.

Detailed placement for advanced nodes. To support complex

design rules introduced in advanced nodes, the objectives of

detailed placement have changed from classical objectives (e.g.,

wirelength reduction [7][8][9][11][12][17]) in recent years. The

works of [14][19][23] resolve triple-patterning issues. Yu et al. [23]

propose shortest path and dynamic programming algorithms to

solve the ordered single row (OSR) placement. Tian et al. [19]

develop a weighted partial MAX SAT approach to solve the OSR

problem. Lin et al. [14] propose a local reordered single row

refinement (LRSR) and implement a 2-reordering (i.e., neighboring

cell switching) approach using a unified graph model. Du and

Wong [5] apply a shortest-path algorithm supporting flipping and

2-reordering to address the drain-drain abutment problem in FinFET-

based cell placement. The works of [3][6] propose mixed integer

linear programming (MILP)-based methods to comply with drain-

drain abutment, minimum implant area and minimum oxide jog

length rules, and to increase vertical M1 connections.

Mixed cell-height placement. Wu et al. [21] propose a pairing

technique to handle double-height cells for detailed placement. Their

method simply groups or inflates cells so that all cells become

double-height cells, after which a conventional detailed placer can be

used. Recently, Lin et al. [13] have proposed a chain move scheme

along with a nested dynamic programming-based approach to support

multiple cell-height placement. They first perform chain moves to

save wirelength cost. On top of this, dynamic programming is applied

to solve the nested shortest path problem. Other techniques [4] are

developed to support non-integer-ratio (e.g., mixture of 8T and 12T

cells) mixed cell-height placement.

NDE-aware placement. Ou et al. [16] perform NDE-aware analog

placement by modifying and integrating a compact model for NDE

into an existing analog placement algorithm. Oh et al. [15] develop

special filler cells to mitigate NDE.

In summary, many works such as [5][14][19][23] propose graph

or dynamic programming models to resolve complex design rules in

advanced nodes. However, their solution spaces are limited by the

assumption of (ordered)-single- row placement. Two recent works

[13][21] on multi-row detailed placement give heuristic approaches,

but no advanced node rules are considered. Our work is distinguished

from all previous approaches in that (i) we formulate an optimal

single-row and double-row dynamic programming-based approach to

minimize a cost function that includes diffusion steps; (ii) we support

a richer set of cell movements than in previous works – i.e., flipping,

relocating and reordering – via a a systematic methodology to handle

P-reordering with P > 2; and (iii) our formulation supports multi-

height cells with movable, and partially reorderable, double-height

cells (that is, single-height cells can be reordered with double-height

cells, but double-height cells are ordered).

III. SINGLE-ROW OPTIMIZATION

In this section, we describe the problem statement and our dynamic

programming formulation for single-row detailed placement.

Single-Row Optimization Problem. Given an initial legalized
single-row placement, perturb the placement to minimize inter-cell
diffusion steps.

Inputs: A legalized single-row placement, available cell variants, and

cost function of a diffusion step.

Output: Optimized single-row detailed placement with minimized

overall cost (including inter-cell diffusion steps).

Constraints: Maximum displacement range, maximum reordering

range, availability of cell flipping.

668

A. Filler Cell and Step Costs

TABLE I: Cost for one diffusion step.

Spacing (sites) 0 1 2 3 4+
Cost 1 +∞ 1 1 0

Table I describes inter-cell diffusion step cost. For each pair of

adjacent cells, if there are zero, two or three empty sites in between,

the cost is equal to the number of inter-cell diffusion steps; if there

are at least four empty sites in between, the cost is always zero.

That is, with four or more empty sites we can always assume proper

filler cell insertions resulting in no inter-cell diffusion steps. Figure 2

shows an example of filler cell insertion between two functional cells

that have different diffusion heights at edges that face each other. If

the two functional cells have fewer than four empty sites in between,

filler cells can only match one of the diffusion heights. As a result,

there always exists at least one diffusion step that affects one of the

two functional cells. However, with a spacing of four or more sites,

a legal diffusion height transition can always be achieved by one

or more contiguous filler cell(s). Thus, the filler cell(s) can match

both the diffusion heights of the two functional cells. In a relevant

advanced technology, the minimum filler cell width is two placement

sites. Therefore, adjacent functional cells must abut, or have at least

two empty sites between them, in order to insert a filler cell. In our

implementation, we avoid single-site spacings by assigning infinite

cost to such scenarios, as indicated in Table I.

Fig. 2: Filler cell insertion given different spacings.

B. Notations

Table II shows notations used in our formulation. For each cell

ck, cell index k is its (left-to-right) sequentially ordered position in

the initial placement. Given a set of cells (C) in a row of an initial

placement, the leftmost cell is c1, and the rightmost cell is c|C|.

TABLE II: Notations.

Notation Meaning
C set of cells in a row of the initial placement

ck kth cell in the left-to-right ordered initial
placement, where k is the cell index

v a cell variant
wk,v width of ck with a variant v

[−xΔ, xΔ] displacement range
xk absolute x-coordinate of ck in the initial

placement, in units of placement sites
l displacement of a cell from the initial

placement, in units of placement sites
[−r, r] reordering range

i number of placed cells
j position shift of a cell from the initial placement
s placement status

d[i][j][v][l][s] minimum cost when i cells are placed
with case (j, v, l, s)

For each ck, we define cell variants (v) which correspond to

different cell orientations and cell layouts with the same functionality.

To minimize #diffusion steps, we can use several variants of a cell

with the same functionality, for which layouts have different diffusion

heights. In our experiments below, v = 0 indicates the cell orientation

in the initial placement, and v = 1 indicates the flipped (i.e., mirrored

about the y-axis) cell orientation. wk,v is the width of cell ck with

variant v, in units of placement sites. Flipping a cell does not change

the set of sites that the cell occupies.

We define the displacement range [−xΔ, xΔ] as the constraint

that a cell cannot move more than xΔ sites from its initial placement.

We use xk to denote the initial left x-coordinate of ck, in units of

placement sites. Thus, ck can be placed with its left x-coordinate in

the interval [xk−xΔ, xk +xΔ]. We use l to denote the displacement
(in sites) from the initial cell placement (i.e., l ∈ [−xΔ, xΔ]).

We support cell reordering with a reordering range [−r, r], i.e.,

given r, in the placement solution ck can have a new sequentially

ordered position within the range k − r, k − r + 1, . . . , k + r.

In our dynamic programming, we place one cell at a time from

left to right, and the index i is used to indicate that i cells have been

placed. Given a cell reordering range [−r, r], cells ck with k < i− r
are placed, i−r ≤ k ≤ i+r may or may not be placed, and k > i+r
are not placed. For the 2r + 1 cells such that i− r ≤ k ≤ i + r, we

use a binary array s to denote the placement status of each cell. Here,

s is a binary array of size (2r + 1), i.e., s ∈ {0, 1}2r+1. Each bit in

the array indicates whether the corresponding cell is placed or not.

For example, if we have five cells c1 to c5, i = 3 and r = 1, then

s captures the placement status of cells c2, c3 and c4. s = [0, 1, 1]
means that c2 is not placed, while c3 and c4 are placed. Figure 3

illustrates six placement solutions with three legal states when i = 3.

In this example, c1 must be placed and c5 must not be placed. We note

that the indices of s correspond to k (position in the initial placement),

but not the final position. For example, s[0] always represents the

status for c2, and s[2] always represents the status for c4, regardless

of the actual sequence of positions, as shown in Figure 3(b). Also,

when we have placed i cells, since cells with index k < i − r must

be placed, we must have placed i − (i − r − 1) = r + 1 cells that

have cell index i − r ≤ k ≤ i + r. Thus, at all times, a legal status

array s has exactly r + 1 elements equal to 1.

Given i, to identify the last placed cell ck (that is, the ith cell to

have been placed), we define the position shift as j, where k = i+j.

For example, in Figure 3(c), given i = 3, the position shift j = −1
tells that the last placed cell is c2, since 2 = 3 + (−1).

669

Fig. 3: Illustration of six placement solutions with three legal states

given i = 3 and r = 1.

At the heart of our dynamic programming recurrence, we use

d[i][j][v][l][s] to represent the minimum cost when i cells have been

placed. From this array, we can obtain the last placed cell ck, where

k = i+j. We can also tell the variant v in use, the displacement l, and

the status s. We define the above as case (j, v, l, s), with i implicitly

given, for simplicity. Therefore, we complete the row placement once

we reach i = |C|, and we obtain the optimal solution by finding the

minimum cost among all cases of i = |C|. We note that the optimized

placement can be traced back from d[|C|][j][v][l][s] all the way to

d[0][j][v][l][s].

C. Dynamic Programming Formulation

Algorithm 1 describes our dynamic programming (DP) procedure

for single-row placement in detail. Line 2 initializes the DP solution

array. Lines 3–13 describe the main algorithm. Starting with placing

the first cell, the algorithm incrementally adds (places) cells to the

current partial placement solution. Procedure getNext() returns a

list of legal next cells and the respective status of each of these cells.

Along with legal (j′, s′) from Line 5, Line 6 checks all possible cases

(v′, l′) considering placement legality and displacement constraints,

as shown in Equation (1). Lines 7–9 update the minimum cost for the

case (j′, v′, l′, s′) when we place the i′ = (i+1)st cell. In Lines 14–

17, we obtain the minimum cost among all legal cases when i = |C|,
and Line 18 returns the minimum cost for the current row.

xi+j + l + wi+j,v ≤ xi′+j′ + l′ (1)

The function cost(i′,j′,v′,l′
i,j,v,l) calculates the cost as a weighted sum

of (i) diffusion step cost, (ii) displacement cost, and (iii) cell variant

cost, as shown in Equation (2). The diffusion step cost is calculated as

total #inter-cell diffusion steps between the ith and (i′)th placed cells.

The displacement cost is equal to the absolute value of l′. As noted

above, in this work we assume two cell variants: original orientation

and flipped orientation. We set the variant cost to one if a cell is

flipped (v′ = 1), and zero otherwise. Two weighting factors α and

β are used to balance the three cost terms. We describe experiments

regarding the impact of weighting factors in Section V.

cost(i′,j′,v′,l′
i,j,v,l) = coststep + α · costdisp + α · β · costvar (2)

Algorithm 2 details our methodology to obtain next status. That

is, given a binary status array for i, we would like to obtain the

status array for i′ = i+1. Line 2 initializes the list of next available

(cellIndex, status) combinations. In Line 3, we first shift the status

array one bit to the left to obtain the cell placement status for i′ =

Algorithm 1 Dynamic programming (single-row)

1: Initialize for all legal cases (j, v, l, s)
2: d[0][j][v][l][s] ← 0, d[i][j][v][l][s] ← +∞, (0 < i ≤ |C|)
3: for all i = 0 to |C| − 1 do
4: for all d[i][j][v][l][s] �= +∞ do
5: for all (j′, s′) ∈ getNext(s) do
6: for all (v′, l′) do
7: i′ = i + 1

8: t ← d[i][j][v][l][s] + cost(i′,j′,v′,l′
i ,j ,v ,l)

9: d[i′][j′][v′][l′][s′] ← min (d[i′][j′][v′][l′][s′], t)
10: end for
11: end for
12: end for
13: end for
14: finalCost ← ∞
15: for all (j, v, l, s), i = |C| do
16: finalCost ← min (d[|C|][j][v][l][s], finalCost)
17: end for
18: Return finalCost

Algorithm 2 Procedure getNext (single-row)

1: Inputs: s
2: Initialize nextList ← ∅
3: s ← shiftLeft1Bit(s)
4: if s[−r] = 0 then
5: s[−r] ← 1
6: nextStatus ← s
7: nextList ← nextList ∪ (−r, nextStatus)
8: Return nextList
9: end if

10: for all m ∈ [−r, r] do
11: if s[m] = 0 then
12: nextStatus ← s
13: nextStatus[m] ← 1
14: nextList ← nextList ∪ (m, nextStatus)
15: end if
16: end for
17: Return nextList

i+1. Then, Lines 4–8 check whether cell ci′−r must be placed as the

(i′)th cell. If we do not place ci′−r as the (i′)th cell, then cell ci′−r

will be placed out of its reordering range. Thus, we set s[−r] = 1
and return so that we make sure to choose ci′−r as the (i′)th cell.

Lines 10–15 check whether any binary indicator s[m] is equal to

zero. If so, ci′+m could be the next legally placed cell. In such a

case, we add (m, nextStatus) to the list.

IV. DOUBLE-ROW OPTIMIZATION

In this section, we describe the problem statement and the

dynamic programming approach for double-row detailed placement
considering double-height cells as well as reordering, flipping and
available cell variants.

Double-Row Optimization Problem. Given an initial legalized
double-row placement with double-height cells, perturb the placement
within each row to minimize inter-cell diffusion steps.

Inputs: Legalized double-row placement, available cell variants, and

cost function of a diffusion step.

Output: Optimized double-row detailed placement with minimized

overall cost (including inter-cell diffusion steps).

Constraints: Maximum displacement range, maximum reordering

range, availability of cell flipping.

We make the following assumptions with respect to this problem

statement.

Assumption 1. Cell rows can be fully separated from each other
every two consecutive rows.

In the case of placement rows that contain only single-height cells,

the assumption is correct by definition. However, for any cell row, a

double-height cell that occupies sites in the row must span to either

670

the upper neighboring row or the lower neighboring row, but not both.

Figure 4(a) shows such separable pairs of cell rows, where rows 1

and 2 with double-height cells do not interfere with rows 3 and 4. By

contrast, in Figure 4(b), row 2 has double-height cells E and F which

interfere with both row 1 and row 3, violating our assumption. Given

the interleaving of VDD/VSS power rails in modern libraries, our

assumption is normally satisfied. In other words, all double-height

cells in the current technology node tend to have the same power rail

configuration. (In Figure 4(b), cell F has a different type of power rail

design (VDD-VSS-VDD) than the other double-height cells (VSS-

VDD-VSS).) We do not have such double-height library cells in the

current technology node.4

Assumption 2. The relative positions among double-height cells are
fixed.

For two double-height cells A and B, if A is initially to the left

of B (xA < xB), then we require that in our final placement, cA

remains to the left of cB . We note that double-height cells usually are

complex functional cells (e.g., flip-flops) and that all double-height

cells span more than 12 placement sites in width in our N7 FinFET

technology library. Given the maximum displacement range xΔ = 7
that we apply to experiments for all design blocks, Assumption 2

practically does not sacrifice solution quality. We note that we still

allow reordering between a single-height cell and a double-height

cell (thus, the double-height cells are partially reorderable) so as to

maximize the steps reduction.

Fig. 4: Illustrations of double-height cells in placement rows. (a)

Separable pairs of cell rows, reflecting power rail design of double-

height cells in current N10 libraries. (b) Non-separable pairs of cell

rows.

Given the above assumptions, our approach can provide optimal

placement solutions for two consecutive rows sharing common

double-height cells. Overall, double-row optimization uses single-row

optimization as a basic building block. From each double-height cell,

we invoke separate single-row optimization for each of the two rows,

and merge the solutions once we encounter the next double-height

cell. The merging is designed to preserve all optimal candidates, while

enabling movable and partially reorderable double-height cells. Our

development is similar to that of Algorithm 1, where we saw that

given the minimum costs of all cases (j, v, l, s) for i, we could derive

the minimum costs of all cases (j′, v′, l′, s′) for i′ = i+1. Now, let

us extend the definition of case to support double-height cells. We

define CASE (v, l, j0, s0, j1, s1) given I , where I is the number

of placed double-height cells. Subscripts 0 and 1 refer to row 0 and

row 1, respectively. In Algorithm 1, we obtain the last placed cell ck

from i and j. Here, in double-row optimization, we know exactly the

last placed double-height cell, and we would like to obtain i0 and

4Our collaborator [24] at a major advanced foundry indicates that all
double-height cells have only one power rail configuration in the 10LPE
node. Cells with height of four or more rows account for less than 1% of all
instances, and thus our formulation can be easily adopted if we just assume
that these very large (height ≥ four rows) cells are fixed.

Algorithm 3 Dynamic programming (double-row)

1: Initialize DHCellList ← getOrigDHOrdering()
2: Initialize for all legal CASES (v, l, j0, s0, j1, s1)
3: D[0][v][l][j0][s0][j1][s1] ← 0

D[I][v][l][j0][s0][j1][s1] ← +∞, (0 < I ≤ |DHCellList| + 1)
4: for all I = 0 to |DHCellList| do
5: for all D[I][v][l][j0][s0][j1][s1] �= +∞ do
6: for all legal (v′, l′, j′

0, s′
0, j′

1, s′
1) do

7: I′ = I + 1

8: t ← D[I][v][l][j0][s0][j1][s1] + Cost(
I′,v′,l′,j′0,s′0,j′1,s′1
I ,v ,l ,j0,s0,j1,s1

)

9: D[I′][v′][l′][j′
0][s

′
0][j

′
1][s

′
1] ←

min (D[I′][v′][l′][j′
0][s

′
0][j

′
1][s

′
1], t)

10: end for
11: end for
12: end for
13: for all (v, l, j0, s0, j1, s1), I = |DHCellList| do
14: sol ← min (D[I][v][l][j0][s0][j1][s1], sol)
15: end for
16: Return sol

Algorithm 4 Cost (double-row)

1: Inputs: I, v, l, j0, s0, j0, s0, I′, v′, l′, j′
0, s′

0, j′
1, s′

1
2: k0 ← getK(I, 0), k1 ← getK(I, 1)
3: k′

0 ← getK(I′, 0), k′
1 ← getK(I′, 1)

4: i0 ← k0 + j0, i1 ← k1 + j1
5: i′0 ← k′

0 + j′
0, i′1 ← k′

1 + j′
1

6: d0 ← optSR0(
i′0,j′0,v′,l′,s′0
i0,j0,v,l,s0

)

7: d1 ← optSR1(
i′1,j′1,v′,l′,s′1
i1,j1,v,l,s1

)

8: totCost ← d0 + d1
9: Return totCost

i1 (number of cells placed in row 0 and row 1, respectively). These

can be obtained from j0 and j1. Given the double-height cell’s initial

position k0 in row 0 and k1 in row 1, i0 = k0−j0 and i1 = k1−j1.

The values of v, l, s0 and s1 can be obtained directly from CASE.

We give a precise description of our double-row dynamic pro-

gramming in Algorithm 3. Line 1 obtains the double-height cell

sequence from the initial (i.e., input) two-row placement. We note

that two virtual double-height cells are added to “pad” the input at

the start and at the end of the placement rows, respectively. Lines 2-

3 initialize the DP solution array for double-height cells. Lines 4-12

describe the main algorithm. Starting with the (left) virtual double-

height cell, the algorithm incrementally places double-height cells

and updates minimum costs for all CASES. In Lines 13–15, we obtain

the minimum cost among all legal CASES when we reach the ending

(right) virtual cell (I = |DHCellList|), and Line 16 returns the

minimum cost for two rows.

Algorithm 4 describes the cost function in our double-row DP. Line

2 retrieves the double-height cell position in the initial placement for

each of the rows. Line 3 gets the next double-height cell similarly.

Line 4 obtains the numbers of cells (i0 and i1) that have been placed

for the two rows. And, Line 5 obtains the numbers of cells (i′0 and

i′1) that we must place by the time we reach the next double-height

cell. For example, for row 0, we need to place cells starting from

the case (j0, v, l, s0) with i0, until we reach the case (j′0, v
′, l′, s′0)

with i′0. The above can be achieved by optSR – a modified version

of the single-row dynamic programming. In optSR, we make sure

that we do not place any double-height cells other than ci′0 . Thus,

Assumption 2 is maintained. In Lines 8 and 9, we return the two-row

sum of costs.

We highlight the fact that in our implementation, given the starting

case (j, v, l, s) with i, optSR calculates all minimum costs of case
(j′, v′, l′, s′) with i′, where k′ = i′+j′, within one functional call to

our single-row DP. With this, #single-row DPs is proportional only

to #cases, rather than to #CASES.

671

Fig. 5: Sensitivity of runtime to (xΔ, r, f).

Fig. 6: Sensitivity of #steps to (xΔ, r, f).

V. EXPERIMENTS

We implement our dynamic programming in C++ with OpenAccess

2.2.43 [27] to support LEF/DEF [26], and with OpenMP [29]

to enable thread-level parallelism. We perform experiments in an

N7 FinFET technology with multi-height triple-Vt libraries from a

leading technology consortium. We apply our detailed placement

optimization to ARM Cortex M0 and four design blocks (AES,

JPEG, VGA and MPEG) from OpenCores [28]. Design information

is summarized in Table III. We synthesize designs using Synopsys
Design Compiler L-2016.03-SP4 [30], and then place and route using

Cadence Innovus Implementation System v15.2 [25]. All experiments

are performed with 8 threads on a 2.6GHz Intel Xeon server.

TABLE III: Design information.

design #inst clock period
AES ∼12K 500ps
M0 ∼10K 500ps

JPEG ∼54K 500ps
VGA ∼69K 500ps

MPEG ∼14K 500ps

A. Scalability/Sensitivity Study

To assess the scalability of our approach, we sweep (xΔ, r), i.e.,

maximum allowed cell displacement xΔ (in placement sites) and

maximum allowed one-sided reordering r, and study the impact on

runtime. In this experiment, we sweep xΔ from 0 to 15, and r from 0

to 2. A cell can freely move across 31 placement sites, and can have

up to 5 different positions in a placement row, if we set xΔ = 15
and r = 2. We also experiment with enabling (f = 1) or disabling

(f = 0) of cell flipping. We set (α, β) = (0, 0) as these parameters

do not have any impact on the complexity of our formulation. We

use design block AES for this study.

Our study results are shown in Figure 5. For cell flipping, we can

see that changing from (xΔ, r, f) = (15, 2, 0) to (15, 2, 1) incurs

a runtime increase of 4×. We also find that the runtime generally

grows quadratically with the number of available placement sites per

each cell. However, for cell reordering, there is a dramatic increase

in runtime as r goes up, e.g., we observe 12× runtime increase going

from r = 1 to r = 2.

Fig. 7: Sensitivity of routed wirelength to (xΔ, r, f).

Fig. 8: Impacts of weighting factors (α, β) on the tradeoff between

RWL and #steps.

Figures 6 and 7 show #diffusion steps and routed wirelength

(RWL) as we sweep (xΔ, r, f). Since our algorithm only optimizes

#diffusion steps when (α, β) = (0, 0), here we see RWL that

corresponds to a best-case (minimized) #steps. We see from Figure 6

that enabling flipping can reduce #steps by half even without cell

movement. As xΔ increases, flipping shows consistent advantage

over non-flipping cases in terms of #steps, at a minor cost of RWL.

Moreover, for f = 1, there is only 1% benefit of using r = 2 over

r = 1, at the cost of 12× the runtime; this suggests that r ≥ 2 may

not offer significant benefit in reducing #steps. In Figure 7, RWL

increases linearly as xΔ goes up. Based on these studies, to balance

solution quality and runtime we apply (xΔ, r, f) = (7, 1, 1) in all of

the following experiments.

B. Study of Weighting Factors

We also investigate impacts on RWL and #steps of the weighting

factors (α, β) for cell displacement and flipping. We sweep α from

0 to 1 with step size of 0.1 (with additional points at α = 0.01
and 0.05), and β from 0 to 5 with step size of 1. We perform this

experiment using design block AES, with results shown in Figure 8.

Given fixed β (i.e., β = 1 in red dots), as α changes, there is a

clear tradeoff between RWL and #steps. Notably, compared to a

displacement-oblivious (α = 0) optimization, using α = 0.01 can

directly reduce the RWL overhead from 6% to 3% compared to

the routing of the original placement solution, without sacrificing

#steps. Therefore, we apply α = 0.01 in all following experiments.

Similarly, we choose β = 1 as our parameter setting for all following

experiments.

C. Main Results

We apply our double-row dynamic programming-based optimiza-

tion to all our design blocks using the aforementioned parameter

settings, i.e., (xΔ, r, f) = (7, 1, 1) and (α, β) = (0.01, 1). Table IV

shows the step reduction, runtime and estimated yield improvement

for all five design blocks. We also report the impact on other metrics,

i.e., routed wirelength (RWL), worst negative slack (WNS) and

leakage power as reported by the place-and-route tool [25]. The

672

results are shown in Table IV. For all designs, we achieve up to

90% reduction in #steps at the cost of around 3% RWL increase.

The results also show that our optimization has negligible impact

on WNS and that we can slightly improve the leakage. In addition,

we perform a preliminary yield estimation assuming 2ppm failure

rate for each step, and 1ppm failure rate after we remove the step
(recall Footnote 2). Based on this assumption, we can see a yield

improvement of up to 3.59% for a design block of 69K instances.

We note that the yield improvement is expected to grow markedly

with the die size. A larger design of millions of instances may see

more benefits. Figure 9 shows the layouts of placements before and

after our optimization.

We also investigate the improvement achieved by our double-

row optimization over single-row optimization and previous works.

We compare double-row (DR) optimization to (i) single-row (SR)

optimization [5][14], and (ii) ordered double-row (ODR) optimiza-

tion [13]. For (i), we use the proposed methodology in Section III

and fix the locations of all multi-height cells. We note that our SR

implementation is equivalent to [5][14], supporting neighboring cell

swapping and cell flipping with the adaptation of NDE. In SR, we

use the same displacement range and reordering range as in DR.

For (ii), we simply run our DR optimization with zero reordering

range to achieve an ODR equivalent to [13]. The comparison is

shown in Table V. For design blocks with fewer double-height cells,

SR performance is competitive with that of ODR. However, for

design blocks with more double-height cells, ODR is significantly

better (up to 21% more step reduction) than SR due to movable

double-height cells. The results show that DR effectively reduces

the diffusion steps by around half compared to SR, and by around

40% compared to ODR. On average, DR has 11.6% more step
reduction than ODR, and 17.7% more than SR, compared to the

initial number of diffusion steps. This suggests the importance of

supporting movable and reorderable double-height cells, as there will

be substantial benefits.

D. Performance Improvement Using Intentional Steps

Finally, similar in spirit to [10], we explore the possibility of

improving design performance with intentional steps – i.e., using

filler cells that create an intentional step to the neighboring timing-

critical functional cell so as to improve the timing of that functional

cell.5 In the cost function, we use a third weighting factor δ to

represent the benefit of an intentional step to a timing-critical cell.

We sweep δ from 0 to -2 with a step size of -0.2. We select 5%

of all cells as timing-critical cells and perform optimization using all

design blocks. The results are shown in Figure 10. We use orig.opt to

represent the results with δ = 0, and time.opt to represent the results

with δ = −2. We achieve up to 6× increase in #filler-induced steps
incident to timing-critical cells, at the cost of slightly increased #non-
filler-induced steps to non-timing-critical cells. This translates to 2.47

steps per timing-critical cell in time.opt, compared to 0.42 steps in

orig.opt. Overall, we can still reduce 50% of total steps, showing

the effectiveness of our algorithm. We note that as we are making

more intentional steps to timing-critical cells, we have a smaller

5An intentional inter-cell step may increase/decrease the drive strength of
the function cell. E.g., a step adjacent to a PFET may decrease the drive
strength while a step adjacent to an NFET may increase the drive strength.
Here, instead of using a filler cell to match diffusion heights for both the
NFET and the PFET of the function cell (to reduce #steps), we create a filler-
induced intentional step by matching the diffusion height for only the PFET,
thus increasing the drive strength for the NFET. We note that exact timing
and power impacts and tradeoffs will vary with STI processes.

Fig. 10: Comparison of #filler-induced steps and total #steps for all

design blocks before (orig.opt, δ = 0) and after (time.opt, δ = −2)

using intentional steps.

Fig. 11: Sensitivity of filler-induced steps to δ. (AES)

solution space for non-timing-critical cells. Thus, we also generate

more steps to non-timing-critical cells. We furthermore observe that

as δ decreases, there is an upper bound of #intentional steps that we

can achieve, as shown in Figure 11. This may help set expectations for

benefits that might be derived from a more comprehensive, timing-

aware flow (which we leave for future work).

VI. CONCLUSIONS

In this work, we present an optimal dynamic programming-based

single-/double-row detailed placement methodology to minimize

diffusion steps in sub-10nm VLSI, for improved yield and mitigation

of NDE. Our work achieves several improvements as compared

to previous works: (i) optimal dynamic programming with support

of a richer set of cell movements, i.e., flipping, relocating and

enhanced reordering; (ii) optimal double-row dynamic programming

with support of movable and reorderable double-height cells; and (iii)

a novel performance improvement technique using intentional steps.

The proposed techniques achieve up to 90% reduction of inter-cell

diffusion steps, with scalable runtime and high die utilization in an

N7 node enablement. Open directions for future research include (i)

optimal multi-row multi-height detailed placement; and (ii) a more

comprehensive timing-aware optimization flow.

REFERENCES

[1] S.-H. Baek, H.-Y. Kim, Y.-K. Lee, D.-Y. Jin, S.-C. Park and J.-D. Cho, “Ultra
High Density Standard Cell Library Using Multi-Height Cell Structure”, Proc.
SPIE, 2008, pp. 72680C-72680C.

[2] D. C. Chen, G. S. Lin, T. H. Lee, R. Lee, Y. C. Liu, M. F. Wang, Y. C. Cheng and
D. Y. Wu, “Compact Modeling Solution of Layout Dependent Effect for FinFET
Technology”, Proc. ICMTS, 2015, pp. 110-115.

[3] P. Debacker, K. Han, A. B. Kahng, H. Lee, P. Raghavan and L. Wang, ”Vertical
M1 Routing-Aware Detailed Placement for Congestion and Wirelength Reduction
in Sub-10nm Nodes”, Proc. DAC, 2017, pp. 51:1-51:6.

[4] S. Dobre, A. B. Kahng and J. Li, “Mixed Cell-Height Implementation for Improved
Design Quality in Advanced Nodes”, Proc. ICCAD, 2015, pp. 854-860.

[5] Y. Du and M. D. F. Wong, “Optimization of Standard Cell Based Detailed
Placement for 16nm FinFET Process”, Proc. DATE, 2014, pp. 1-6.

673

TABLE IV: Experimental results for all design blocks.

Design Util #steps RWL (μm) WNS (ns) Leakage (mW) Runtime Est. Yield
(%) Init Final (Δ%) Init Final (Δ%) Init Final Init Final (Δ%) (sec) Impr. %

AES 85% 7973 750 (-90.6%) 31873 32898 (+3.2%) -0.013 -0.016 16.1 15.8 (-1.9%) 37 +0.71
M0 85% 6588 842 (-87.2%) 27670 28470 (+2.9%) -0.043 -0.087 18.9 18.6 (-1.7%) 38 +0.57

JPEG 85% 34760 4555 (-86.9%) 101000 105550 (+4.5%) -0.019 -0.004 96.3 94.5 (-1.8%) 156 +2.86
VGA 85% 50766 11816 (-76.7%) 208155 214169 (+2.9%) -0.137 -0.118 208.3 205.5 (-1.3%) 195 +3.59

MPEG 85% 9994 2402 (-76.0%) 38896 39950 (+2.7%) -0.005 -0.033 33.2 33.0 (-1.8%) 25 +0.75

TABLE V: Comparison of diffusion steps with SR (to match [5][14]), ODR (to match [13]) and DR. DH%:= % of double-height cells.

design DH% Init SR ODR DR
AES 4.3% 7973 1278 (-84.0%) 1869 (-76.6%) 750 (-90.6%)
M0 8.4% 6588 1612 (-75.5%) 1742 (-73.6%) 842 (-87.2%)

JPEG 8.3% 34760 9275 (-73.3%) 8341 (-76.0%) 4555 (-86.9%)
VGA 24.8% 50766 27054 (-46.7%) 16405 (-67.7%) 11816 (-76.7%)

MPEG 23.0% 9994 5071 (-49.3%) 3444 (-65.5%) 2402 (-76.0%)
Avg. – 1.00× 0.34×(-65.8%) 0.28×(-71.9%) 0.16×(-83.5%)

Fig. 9: Layouts of placement before (orig) and after (opt) our optimization. Red color indicates cell instances with diffusion steps and blue

color indicates cell instances without diffusion steps.

[6] K. Han, A. B. Kahng and H. Lee, “Scalable Detailed Placement Legalization for
Complex Sub-14nm Constraints”, Proc. ICCAD, 2015, pp. 867-873.

[7] D. Hill, “Method and System for High Speed Detailed Placement of Cells Within
an Integrated Circuit Design”, US Patent 6370673, 2002.

[8] S.-W. Hur and J. Lillis, “Mongrel: Hybrid Techniques for Standard Cell
Placement”, Proc. ICCAD, 2000, pp. 165-170.

[9] A. B. Kahng, I. L. Markov and S. Reda, “On Legalization of Row-Based
Placements”, Proc. GLSVLSI, 2004, pp. 214-219.

[10] A. B. Kahng, P. Sharma and R. O. Topaloglu, “Exploiting STI Stress for
Performance”, Proc. ICCAD, 2007, pp. 83-90.

[11] A. B. Kahng, P. Tucker and A. Zelikovsky, “Optimization of Linear Placements
for Wirelength Minimization with Free Sites”, Proc. ASP-DAC, 1999, pp. 241-244.

[12] S. Li and C.-K. Koh, “Mixed Integer Programming Models for Detailed
Placement”, Proc. ISPD, 2012, pp. 87-94

[13] Y. Lin, B. Yu, X. Xu, J.-R. Gao, N. Viswanathan, W.-H. Liu, Z. Li, C. J. Alpert
and D. Z. Pan, “MrDP: Multiple-row Detailed Placement of Heterogeneous-sized
Cells for Advanced Nodes”, Proc. ICCAD, 2016, pp. 7:1-7:8.

[14] Y. Lin, B. Yu, B. Xu and D. Z. Pan, “Triple Patterning Aware Detailed Placement
Toward Zero Cross-Row Middle-of-Line Conflict”, Proc. ICCAD, 2015, pp. 396-
403.

[15] S.-K. Oh, “Standard Cell Library, Method of Using the Same, and Method
of Designing Semiconductor Integrated Circuit”, US Patent Application,,
US20160055283, February 2016.

[16] H.-C. Ou, K.-H. Tseng, J.-Y. Liu, I.-P. Wu and Y.-W. Chang, “Layout-Dependent-
Effects-Aware Analytical Analog Placement”, IEEE Trans. on CAD 35(8) (2016),
pp. 1243-1254.

[17] M. Pan, N. Viswanathan and C. Chu, “An Efficient and Effective Detailed
Placement Algorithm”, Proc. ICCAD, 2005, pp. 48-55.

[18] M. Tarabbia, A. Mittal and N. Hindawy, “Forming FinFET Cell with Fin Tip and
Resulting Device”, US Patent App, US20150137203.

[19] H. Tian, Y. Du, H. Zhang, Z. Xiao and M. D. F. Wong, “Triple Patterning Aware
Detailed Placement with Constrained Pattern Assignment”, Proc. ICCAD, 2014,
pp 116-123.

[20] C.-H. Wang, Y.-Y. Wu, J. Chen, Y.-W. Chang, S.-Y. Kuo, W. Zhu and G. Fan, “An
Effective Legalization Algorithm for Mixed-Cell-Height Standard Cells”, Proc.
ASP-DAC, 2017, pp. 450-455.

[21] G. Wu and C. Chu, “Detailed Placement Algorithm for VLSI Design with Double-
Row Height Standard Cells”, IEEE Trans. on CAD 35(9) (2016), pp. 1569-1573.

[22] R. Xie, K.-Y. Lim, M. G. Sung and R. R.-H. Kim, “Methods of Forming Single
and Double Diffusion Breaks on Integrated Circuit Products Comprised of FinFET
Devices and The Resulting Products”, US Patent, US9412616, August 2016.

[23] B. Yu, X. Xu, J.-R. Gao, Y. Lin, Z. Lee, C. J. Alpert and D. Z. Pan, “Methodology
for Standard Cell Compliance and Detailed Placement for Triple Patterning
Lithography”, IEEE Trans. on CAD 34(5) (2015), pp. 726-739.

[24] Model-Hardware Correlation Team, Samsung Electronics Co., Ltd., Nov. 2016.
[25] Cadence Innovus User Guide, http://www.cadence.com
[26] LEF/DEF reference 5.7. http://www.si2.org/openeda.si2.org/projects/lefdef
[27] Si2 OpenAccess. http://www.si2.org/?page=69
[28] OpenCores: Open Source IP-Cores, http://www.opencores.org
[29] OpenMP Architecture Review Board, “OpenMP Application Program Interface,

Version 4.0”.
[30] Synopsys Design Compiler User Guide, http://www.synopsys.com

674

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

